The Evolution of Emerging Nanovesicle Technologies for Enhanced Delivery of Molecules into and across the Skin
Abstract
:1. Introduction
2. Nanovesicles for Enhanced Drug Delivery into and across the Skin
2.1. Phospholipid-Based Nanovesicles for Dermal/Transdermal Drug Delivery
2.2. Non-Phospholipid Nanovesicles
3. Mechanism of Skin Penetration Enhancement via Nanovesicular Carriers
4. Examples of Studies Carried out with Nanovesicles for Enhanced Drug Delivery
4.1. In Vitro Studies
4.2. In Vivo Preclinical Studies
4.3. Clinical Studies
5. Biocompatibility of Nanovesicles for Dermal and Transdermal Delivery
6. Worldwide Products Designed Based on Nanovesicles as Carriers
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Touitou, E.; Natsheh, H. Topical Administration of Drugs Incorporated in Carriers Containing Phospholipid Soft Vesicles for the Treatment of Skin Medical Conditions. Pharmaceutics 2021, 13, 2129. [Google Scholar] [CrossRef]
- Natsheh, H.; Touitou, E. Phospholipid Vesicles for Dermal/Transdermal and Nasal Administration of Active Molecules: The Effect of Surfactants and Alcohols on the Fluidity of Their Lipid Bilayers and Penetration Enhancement Properties. Molecules 2020, 25, 2959. [Google Scholar] [CrossRef]
- Sahin, N.O. Niosomes as nanocarrier systems. In Nanomaterials and Nanosystems for Biomedical Applications; Springer: Amsterdam, The Netherlands, 2007; pp. 67–81. [Google Scholar]
- Shumilov, M.; Touitou, E. Buspirone transdermal administration for menopausal syndromes, in vitro and in animal model studies. Int. J. Pharm. 2010, 387, 26–33. [Google Scholar] [CrossRef]
- Cevc, G. Transdermal drug delivery of insulin with ultradeformable carriers. Clin. Pharmacokinet. 2003, 42, 461–474. [Google Scholar] [CrossRef]
- Cadinoiu, A.N.; Rata, D.M.; Atanase, L.I.; Mihai, C.T.; Bacaita, S.E.; Popa, M. Formulations Based on Drug Loaded Aptamer-Conjugated Liposomes as a Viable Strategy for the Topical Treatment of Basal Cell Carcinoma—In Vitro Tests. Pharmaceutics 2021, 13, 866. [Google Scholar] [CrossRef]
- Lai, F.; Caddeo, C.; Manca, M.L.; Manconi, M.; Sinico, C.; Fadda, A.M. What’s new in the field of phospholipid vesicular nanocarriers for skin drug delivery. Int. J. Pharm. 2020, 583, 119398. [Google Scholar] [CrossRef]
- Zoabi, A.; Touitou, E.; Margulis, K. Recent Advances in Nanomaterials for Dermal and Transdermal Applications. Colloids Interfaces 2021, 5, 18. [Google Scholar] [CrossRef]
- Marianecci, C.; Di Marzio, L.; Rinaldi, F.; Celia, C.; Paolino, D.; Alhaique, F.; Esposito, S.; Carafa, M. Niosomes from 80s to present: The state of the art. Adv. Colloid Interface Sci. 2014, 205, 187–206. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, P.; Tripathi, P.; Gupta, R.; Pandey, S. Niosomes: A review on niosomal research in the last decade. J. Drug Deliv. Sci. Technol. 2020, 56, 101581. [Google Scholar] [CrossRef]
- Touitou, E.; Dayan, N.; Bergelson, L.; Godin, B.; Eliaz, M. Ethosomes- novel vesicular carriers for enhanced delivery: Characterization and skin penetration properties. J. Control. Release 2000, 65, 403–418. [Google Scholar] [CrossRef] [PubMed]
- Touitou, E. Compositions for Applying Active Substances to or through the Skin. U.S. Patent 5,716,638, 10 February 1998. [Google Scholar]
- Carafa, M.; Santucci, E.; Alhaique, F.; Coviello, T.; Murtas, E.; Riccieri, F.M.; Lucania, G.; Torrisi, M.R. Preparation and properties of new unilamellar non-ionic/ionic surfactant vesicles. Int. J. Pharm. 1998, 160, 51–59. [Google Scholar] [CrossRef]
- Bangham, A.D.; Horne, R.W. Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. J. Mol. Boil. 1964, 8, 660-IN10. [Google Scholar] [CrossRef] [PubMed]
- Cevc, G.; Blume, G. Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradients and hydration force. Biochim. Biophys. Acta 1992, 1104, 226–232. [Google Scholar] [CrossRef] [PubMed]
- Manca, M.L.; Manconi, M.; Zaru, M.; Valenti, D.; Peris, J.E.; Matricardi, P.; Maccioni, A.M.; Fadda, A.M. Glycerosomes: Investigation of role of 1,2-dimyristoyl-sn-glycero-3-phosphatidycholine (DMPC) on the assembling and skin delivery performances. Int. J. Pharm. 2017, 532, 401–407. [Google Scholar] [CrossRef] [PubMed]
- Song, C.K.; Balakrishnan, P.; Shim, C.K.; Chung, S.J.; Chong, S.; Kim, D.D. A novel vesicular carrier, transethosome, for enhanced skin delivery of voriconazole: Characterization and in vitro/in vivo evaluation. Colloids Surf. B Biointerfaces 2012, 92, 299–304. [Google Scholar] [CrossRef] [PubMed]
- Sguizzato, M.; Ferrara, F.; Mariani, P.; Pepe, A.; Cortesi, R.; Huang, N.; Simelière, F.; Boldrini, P.; Baldisserotto, A.; Valacchi, G.; et al. “Plurethosome” as vesicular system for cutaneous administration of mangiferin: Formulative study and 3D skin tissue evaluation. Pharmaceutics 2021, 13, 1124. [Google Scholar] [CrossRef]
- Schätzlein, A.; Cevc, G. Non-uniform cellular packing of the stratum corneum and permeability barrier function of intact skin: A high-resolution confocal laser scanning microscopy study using highly deformable vesicles (Transfersomes). Br. J. Dermatol. 1998, 138, 583–592. [Google Scholar] [CrossRef]
- Cevc, G.; Gebauer, D.; Stieber, J.; Schätzlein, A.; Blume, G. Ultraflexible vesicles, Transfersomes, have an extremely low pore penetration resistance and transport therapeutic amounts of insulin across the intact mammalian skin. Biochim. Biophys. Acta 1998, 1368, 201–215. [Google Scholar] [CrossRef]
- Cevc, G. Preparation for the Application of Agents in Mini-Droplets. U.S. Patent 6,165,500, 8 April 1992. [Google Scholar]
- Trotta, M.; Peira, E.; Carlotti, M.E.; Gallarate, M. Deformable liposomes for dermal administration of methotrexate. Int. J. Pharm. 2004, 270, 119–125. [Google Scholar] [CrossRef]
- Zheng, W.S.; Fang, X.Q.; Wang, L.L.; Zhang, Y.J. Preparation and quality assessment of itraconazole transfersomes. Int. J. Pharm. 2012, 436, 291–298. [Google Scholar] [CrossRef]
- Ainbinder, D.; Touitou, E. Testosterone ethosomes for enhanced transdermal delivery. Drug Deliv. 2005, 12, 297–303. [Google Scholar] [CrossRef] [PubMed]
- Godin, B.; Touitou, E. Erythromycin ethosomal systems: Physicochemical characterization and enhanced antibacterial activity. Curr. Drug Deliv. 2005, 2, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Rady, M.; Gomaa, I.; Afifi, N.; Abdel-Kader, M. Dermal delivery of Fe-chlorophyllin via ultradeformable nanovesicles for photodynamic therapy in melanoma animal model. Int. J. Pharm. 2018, 548, 480–490. [Google Scholar] [CrossRef] [PubMed]
- Manca, M.L.; Zaru, M.; Manconi, M.; Lai, F.; Valenti, D.; Sinico, C.; Fadda, A.M. Glycerosomes: A new tool for effective dermal and transdermal drug delivery. Int. J. Pharm. 2013, 455, 66–74. [Google Scholar] [CrossRef]
- Manca, M.L.; Cencetti, C.; Matricardi, P.; Castangia, I.; Zaru, M.; Sales, O.D.; Nacher, A.; Valenti, D.; Maccioni, A.M.; Fadda, A.M.; et al. Glycerosomes: Use of hydrogenated soy phosphatidylcholine mixture and its effect on vesicle features and diclofenac skin penetration. Int. J. Pharm. 2016, 511, 198–204. [Google Scholar] [CrossRef]
- El Maghraby, G.M.; Williams, A.C.; Barry, B.W. Interactions of surfactants (edge activators) and skin penetration enhancers with liposomes. Int. J. Pharm. 2004, 276, 143–161. [Google Scholar] [CrossRef]
- Santucci, E.; Carafa, M.; Coviello, T.; Murtas, E.; Riccieri, F.M.; Alhaique, F.; Modesti, A.; Modica, A. Vesicles from polysorbate 20 and cholesterol: A simple preparation and characterization. STP Pharma Sci. 1996, 6, 29–32. [Google Scholar]
- Marianecci, C.; Rinaldi, F.; Mastriota, M.; Pieretti, S.; Trapasso, E.; Paolino, D.; Carafa, M. Anti-inflammatory activity of novel ammonium glycyrrhizinate/niosomes delivery system: Human and murine models. J. Control. Release 2012, 164, 17–25. [Google Scholar] [CrossRef]
- Baillie, A.J.; Florence, A.T.; Hume, L.R.; Muirhead, G.T.; Rogerson, A. The preparation and properties of niosomes—Non-ionic surfactant vesicles. J. Pharm. Pharmacol. 1985, 37, 863–868. [Google Scholar] [CrossRef]
- Varshosaz, J.; Pardakhty, A.; Hajhashemi, V.I.; Najafabadi, A.R. Development and physical characterization of sorbitan monoester niosomes for insulin oral delivery. Drug Deliv. 2003, 10, 251–262. [Google Scholar] [CrossRef] [PubMed]
- Baillie, A.J.; Coombs, G.H.; Dolan, T.F.; Laurie, J. Non-ionic surfactant vesicles, niosomes, as a delivery system for the anti-leishmanial drug, sodium stibogluconate. J. Pharm. Pharmacol. 1986, 38, 502–505. [Google Scholar] [CrossRef]
- Mbah, C.C.; Builders, P.F.; Agubata, C.O.; Attama, A.A. Development of ethosomal vesicular carrier for topical application of griseofulvin: Effect of ethanol concentration. J. Pharm. Investig. 2019, 49, 27–36. [Google Scholar] [CrossRef]
- Hussain, A.; Singh, S.; Sharma, D.; Webster, T.J.; Shafaat, K.; Faruk, A. Elastic liposomes as novel carriers: Recent advances in drug delivery. Int. J. Nanomed. 2017, 12, 5087–5108. [Google Scholar] [CrossRef]
- Cevc, G.; Vierl, U. Nanotechnology and the transdermal route: A state of the art review and critical appraisal. J. Control. Release 2010, 141, 277–299. [Google Scholar] [CrossRef]
- Moolakkadath, T.; Aqil, M.; Ahad, A.; Imam, S.S.; Iqbal, B.; Sultana, Y.; Mujeeb, M.; Iqbal, Z. Development of transethosomes formulation for dermal fisetin delivery: Box-Behnken design, optimization, in vitro skin penetration, vesicles-skin interaction and dermatokinetic studies. Artif. Cells Nanomed. Biotechnol. 2018, 46, 755–765. [Google Scholar] [CrossRef]
- Fang, J.Y.; Hong, C.T.; Chiu, W.T.; Wang, Y.Y. Effect of liposomes and niosomes on skin permeation of enoxacin. Int. J. Pharm. 2001, 219, 61–7239. [Google Scholar] [CrossRef]
- Ferrara, F.; Benedusi, M.; Sguizzato, M.; Cortesi, R.; Baldisserotto, A.; Buzzi, R.; Valacchi, G.; Esposito, E. Ethosomes and Transethosomes as Cutaneous Delivery Systems for Quercetin: A Preliminary Study on Melanoma Cells. Pharmaceutics 2022, 14, 1038. [Google Scholar] [CrossRef]
- Paolino, D.; Celia, C.; Trapasso, E.; Cilurzo, F.; Fresta, M. Paclitaxel-loaded ethosomes®: Potential treatment of squamous cell carcinoma, a malignant transformation of actinic keratoses. Eur. J. Pharm. Biopharm. 2012, 81, 102–112. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.T.; Shen, L.N.; Wu, Z.H.; Zhao, J.H.; Feng, N.P. Comparison of ethosomes and liposomes for skin delivery of psoralen for psoriasis therapy. Int. J. Pharm. 2014, 471, 449–452. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.; Utreja, P. Transethosomes of Econazole Nitrate for Transdermal Delivery: Development, In-Vitro Characterization, and Ex-vivo Assessment. Pharm. Nanotechnol. 2018, 6, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Md, S.; Alhakamy, N.A.; Aldawsari, H.M.; Husain, M.; Khan, N.; Alfaleh, M.A.; Asfour, H.Z.; Riadi, Y.; Bilgrami, A.L.; Akhter, M.H. Plumbagin-Loaded Glycerosome Gel as Topical Delivery System for Skin Cancer Therapy. Polymers 2021, 13, 923. [Google Scholar] [CrossRef]
- Manconi, M.; Sinico, C.; Valenti, D.; Lai, F.; Fadda, A.M. Niosomes as carriers for tretinoin: II. Influence of vesicular incorporation on tretinoin photostability. Int. J. Pharm. 2003, 260, 261–272. [Google Scholar] [CrossRef]
- Carafa, M.; Marianecci, C.; Rinaldi, F.; Santucci, E.; Tampucci, S.; Monti, D. Span® and Tween® neutral and pH-sensitive vesicles: Characterization and in vitro skin permeation. J. Liposome Res. 2009, 19, 332–340. [Google Scholar] [CrossRef]
- Sguizzato, M.; Mariani, P.; Spinozzi, F.; Benedusi, M.; Cervellati, F.; Cortesi, R.; Drechsler, M.; Prieux, R.; Valacchi, G.; Esposito, E. Ethosomes for Coenzyme Q10 Cutaneous Administration: From Design to 3D Skin Tissue Evaluation. Antioxidants 2020, 9, 485. [Google Scholar] [CrossRef]
- Coviello, T.; Trotta, A.M.; Marianecci, C.; Carafa, M.; Di Marzio, L.; Rinaldi, F.; Di Meo, C.; Alhaique, F.; Matricardi, P. Gel-embedded niosomes: Preparation, characterization and release studies of a new system for topical drug delivery. Colloids Surf. B Biointerfaces 2015, 125, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Cevc, G.; Blume, G. Hydrocortisone and dexamethasone in very deformable drug carriers have increased biological potency, prolonged effect, and reduced therapeutic dosage. Biochim. Biophys. Acta 2004, 1663, 61–73. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Aggarwal, G.; Singla, S.; Arora, R. Transfersomes: A novel vesicular carrier for enhanced transdermal delivery of sertraline: Development, characterization, and performance evaluation. Sci. Pharm. 2012, 80, 1061–1080. [Google Scholar] [CrossRef] [PubMed]
- Ascenso, A.; Pinho, S.; Eleutério, C.; Praça, F.G.; Bentley, M.V.L.B.; Oliveira, H.; Santos, C.; Silva, O.; Simões, S. Lycopene from tomatoes: Vesicular nanocarrier formulations for dermal delivery. J. Agric. Food Chem. 2013, 61, 7284–7293. [Google Scholar] [CrossRef] [PubMed]
- Vasanth, S.; Dubey, A.; Ravi, G.S.; Lewis, S.A.; Ghate, V.M.; El-Zahaby, S.A.; Hebbar, S. Development and investigation of vitamin C-enriched adapalene-loaded transfersome gel: A collegial approach for the treatment of acne vulgaris. AAPS Pharmscitech 2020, 21, 61. [Google Scholar] [CrossRef] [PubMed]
- Lodzki, M.; Godin, B.; Rakou, L.; Mechoulam, R.; Gallily, R.; Touitou, E. Cannabidiol-transdermal delivery and anti-inflammatory effect in a murine model. J. Control. Release 2003, 93, 377–387. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Liu, H.; Liu, J.; He, Z.; Ding, C.; Huang, G.; Zhou, W.; Zhou, L. Preparation of a ligustrazine ethosome patch and its evaluation in vitro and in vivo. Int. J. Nanomed. 2011, 6, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Albash, R.; Abdelbary, A.A.; Refai, H.; El-Nabarawi, M.A. Use of transethosomes for enhancing the transdermal delivery of olmesartan medoxomil: In vitro, ex vivo, and in vivo evaluation. Int. J. Nanomed. 2019, 14, 1953–1968. [Google Scholar] [CrossRef] [PubMed]
- Shreya, A.B.; Managuli, R.S.; Menon, J.; Kondapalli, L.; Hegde, A.R.; Avadhani, K.; Shetty, P.K.; Amirthalingam, M.; Kalthur, G.; Mutalik, S. Nano-transfersomal formulations for transdermal delivery of asenapine maleate: In vitro and in vivo performance evaluations. J. Liposome Res. 2016, 26, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.; Wang, J.; Guo, F.; Lei, M.; Tan, F.; Li, N. Development of nanovesicular systems for dermal imiquimod delivery: Physicochemical characterization and in vitro/in vivo evaluation. J. Mater. Sci. Mater. Med. 2015, 26, 191. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Zhang, Y.; Li, Z.; Li, N.; Feng, N. Essential oil-mediated glycerosomes increase transdermal paeoniflorin delivery: Optimization, characterization, and evaluation in vitro and in vivo. Int. J. Nanomed. 2017, 12, 3521–3532. [Google Scholar] [CrossRef]
- Salem, H.F.; Kharshoum, R.M.; Sayed, O.M.; Hakim, L.F.A. Formulation design and optimization of novel soft glycerosomes for enhanced topical delivery of celecoxib and cupferron by Box–Behnken statistical design. Drug Dev. Ind. Pharm. 2018, 44, 1871–1884. [Google Scholar] [CrossRef]
- El-Menshawe, S.F.; Hussein, A.K. Formulation and evaluation of meloxicam niosomes as vesicular carriers for enhanced skin delivery. Pharm. Dev. Technol. 2013, 18, 779–786. [Google Scholar] [CrossRef]
- Akbari, J.; Saeedi, M.; Enayatifard, R.; Morteza-Semnani, K.; Hashemi, S.M.H.; Babaei, A.; Rahimnia, S.M.; Rostamkalaei, S.S.; Nokhodchi, A. Curcumin Niosomes (curcusomes) as an alternative to conventional vehicles: A potential for efficient dermal delivery. J. Drug Deliv. Sci. Technol. 2020, 60, 102035. [Google Scholar] [CrossRef]
- Ghannoum, M.; Isham, N.; Henry, W.; Kroon, H.A.; Yurdakul, S. Evaluation of the morphological effects of TDT 067 (terbinafine in Transfersome) and conventional terbinafine on dermatophyte hyphae in vitro and in vivo. Antimicrob. Agents Chemother. 2012, 56, 2530–2534. [Google Scholar] [CrossRef]
- Barone, A.; Cristiano, M.C.; Cilurzo, F.; Locatelli, M.; Iannotta, D.; Di Marzio, L.; Celia, C.; Paolino, D. Ammonium glycyrrhizate skin delivery from ultradeformable liposomes: A novel use as an anti-inflammatory agent in topical drug delivery. Colloids Surf. B Biointerfaces 2020, 193, 111152. [Google Scholar] [CrossRef]
- Kneer, W.; Rother, M.; Mazgareanu, S.; Seidel, E.J.; European IDEA-033 Study Group. A 12-week randomized study of topical therapy with three dosages of ketoprofen in Transfersome® gel (IDEA-033) compared with the ketoprofen-free vehicle (TDT 064), in patients with osteoarthritis of the knee. J. Pain Res. 2013, 6, 743–753. [Google Scholar] [CrossRef]
- Paolino, D.; Lucania, G.; Mardente, D.; Alhaique, F.; Fresta, M. Ethosomes for skin delivery of ammonium glycyrrhizinate: In vitro percutaneous permeation through human skin and in vivo anti-inflammatory activity on human volunteers. J. Control. Release 2005, 106, 99–110. [Google Scholar] [CrossRef] [PubMed]
- Horwitz, E.; Pisanty, S.; Czerninski, R.; Helser, M.; Eliav, E.; Touitou, E. A clinical evaluation of a novel liposomal carrier for acyclovir in the topical treatment of recurrent herpes labialis. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 1999, 87, 700–705. [Google Scholar] [CrossRef] [PubMed]
- El-Mahdy, M.; Mohamed, E.E.; Saddik, M.S.; Ali, M.F.; El-Sayed, A.M. Formulation and clinical evaluation of niosomal methylene blue for successful treatment of acne. J. Adv. Biomed. Pharm. Sci. 2020, 3, 116–126. [Google Scholar] [CrossRef]
- Damrongrungruang, T.; Paphangkorakit, J.; Limsitthichaikoon, S.; Khampaenjiraroch, B.; Davies, M.J.; Sungthong, B.; Priprem, A. Anthocyanin complex niosome gel accelerates oral wound healing: In vitro and clinical studies. Nanomed. Nanotechnol. Biol. Med. 2021, 37, 102423. [Google Scholar] [CrossRef] [PubMed]
- Kassem, M.A.; Esmat, S.; Bendas, E.R.; El-Komy, M.H. Efficacy of topical griseofulvin in treatment of tinea corporis. Mycoses 2006, 49, 232–235. [Google Scholar] [CrossRef] [PubMed]
- Vimal, K.R.; Sankar, V.; Srinivas, C.R.; Kumaresan, M. Enhancement of Follicular Delivery of Finasteride in Niosomal and Proniosomal Gel Form for Treating Androgenetic Alopecia. Indian Drugs 2012, 49, 47–55. [Google Scholar] [CrossRef]
- Manosroi, A.; Manosroi, J.; Ruktanonchai, U.; Sakai, H.; Abe, M.; Manosroi, W. In vitro and in vivo skin anti-aging evaluation of gel containing niosomes loaded with a semi-purified fraction containing gallic acid from Terminalia chebula galls. Pharm. Biol. 2011, 49, 1190–1203. [Google Scholar] [CrossRef]
- Manosroi, A.; Manosroi, J.; Ruktanonchai, U.; Sakai, H.; Abe, M.; Manosroi, W. Anti-aging efficacy of topical formulations containing niosomes entrapped with rice bran bioactive compounds. Pharm. Biol. 2012, 50, 208–224. [Google Scholar] [CrossRef]
- Ma, H.; Guo, D.; Fan, Y.; Wang, J.; Cheng, J.; Zhang, X. Paeonol-loaded ethosomes as transdermal delivery carriers: Design, preparation and evaluation. Molecules 2018, 23, 1756. [Google Scholar] [CrossRef]
- Raj, R.; Raj, P.M.; Ram, A. Lipid based noninvasive vesicular formulation of cytarabine: Nanodeformable liposomes. Eur. J. Pharm. Sci. 2016, 88, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Vilela, J.d.M.V.; Moghassemi, S.; Dadashzadeh, A.; Dolmans, M.-M.; Azevedo, R.B.; Amorim, C.A. Safety of Lavender Oil-Loaded Niosomes for In Vitro Culture and Biomedical Applications. Nanomaterials 2022, 12, 1999. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Hanning, S.; Falconer, J.; Locke, M.; Wen, J. Recent advances in non-ionic surfactant vesicles (niosomes): Fabrication, characterization, pharmaceutical and cosmetic applications. Eur. J. Pharm. Biopharm. 2019, 144, 18–39. [Google Scholar] [CrossRef] [PubMed]
Type | Vesicles Modifying Agent | Preparation Method | Year | Reference |
---|---|---|---|---|
Liposomes | -- | Film formation and hydration | 1964 | [14] |
Phospholipid flexible nanovesicles | ||||
Tranfersomes | Surfactants | Film formation and hydration | 1992 | [15] |
Ultradeformable liposomes | Surfactants | Film formation and hydration | 2003 | [5] |
Phospholipid soft nanovesicles | ||||
Ethosomes | Alcohol | Mixing method | 1998 | [12] |
Glycerosomes | Glycerin | Film formation and hydration | 2013 | [16] |
Tranethosomes | Surfactants and alcohol | Mixing method | 2012 | [17] |
Plurethosomes | Copolymer Pluronic | Mixing method | 2021 | [18] |
Non-phospholipid vesicles | ||||
Niosomes | Non-ionic surfactants | Mixing method; Film forming and hydration | 1975 | [9] |
Active Molecule | In Vitro Study | Results | Reference |
---|---|---|---|
Transfersome | |||
Methotrexate | Permeation of Methotrexate through porcine skin | Improved skin permeation of Methotrexate by deformable liposomes by 4 folds in comparison with a conventional liposome | [22] |
Quercetin | Wound healing assay on HaCat and Ht-144 cells | Enhanced wound healing by Quercetin Ethosomes and Transethosomes | [40] |
Ethosome | |||
Minoxidil | Permeation of Minoxidil through porcine ear skin | Improved skin permeation of Minoxidil from Ethosome by 45 times in comparison to a hydroethanolic solution | [11] |
Paclitaxel | Permeation study on human stratum corneum (SC); anti-proliferative effect in squamous carcinoma cells | Significant anti-cancer effect in squamous carcinoma cell line by Paclitaxel Ethosomal system as compared to free drug | [41] |
Psoralen | Permeation and penetration study using Franz diffusion cells and excised rat skin | Remarkable skin targeting, producing 2.15 times more psoralen skin deposition than liposomes | [42] |
Transethosome | |||
Fisetin | Penetration and dermatokinetic studies on rat skin by CLSM | Deeper delivery of Rhodamine B up to 70 µm compared to only 30 µm for the hydroalcoholic solution | [38] |
Econazole nitrate | Skin permeation and retention studies followed by anti-fungal activity against C. albicans fungus | Transethosomal gel exhibited high ex-vivo skin retention 38.75 ± 2.88%, and superior in-vitro antifungal activity in comparison with marketed cream of econazole nitrate. | [43] |
Glycerosome | |||
Diclofenac sodium | Penetration and permeation studies on new-born pig skin | Enhanced skin drug permeation by up to 5 times in comparison with liposome | [16,27,28] |
Plumbagin | Permeation study on rat skin | Enhanced skin permeation by more than 6 folds compared to Plumbagin suspension | [44] |
Plurethosome | |||
Mangiferin | Anti-inflammatory effect on 3D skin model | The anti-inflammatory effects of Mangiferin Plurethosome improved by 3 times compared to control | [18] |
Niosome | |||
Tretinoin | Permeation through silicone membrane using Franz cells | High local drug concentration. High trenitoin permeation Best formulation: TritonCG 110-Niosomes | [45] |
Ammonium glycyrrhizinate | Release studies of niosomal system embedded in gel matrix | A slower diffusion rate of Ammonium glycyrrhizinate (AG) loaded in Niosomes embedded in the gel matrix as compared to non-embedded vesicles | [31] |
Ibuprofen | The effect of niosome composition in the in vitro skin accumulation and transdermal permeation though rat skin | The more lipophilic the surfactant (Tw20/Chol, Tw20/Chol/Chems, Sp60/Chol, Sp60/Chol/Chems), the greater its ability to penetrate the skin | [46] |
Active Molecule | In Vivo Study | Results | Reference |
---|---|---|---|
Transfersome | |||
Hydrocortisone Dexamethasone | Evaluation of the anti-inflammatory effect in mice with arachidonic-induced edema | Prolonged suppression of the drug-induced oedema nearly 2-fold (to ~24 h per application). The effective dose of dexamethasone delivered with very deformable vesicles into murine skin is reduced >10 times compared with the crème- or lotion-based products. | [49] |
Sertraline | Evaluation of the antidepressant activity using the forced swim model test | Transfersomal gel had better antidepressant activity with 0.323 min immobility compared to 2 min in the group treated with the control gel. | [50] |
Lycopene | The anti-inflammatory effect of lycopene loaded in transfersomes and ethosomes in mice with anthralin-induced ear swelling. | The results show that lycopene applied from the nanosystems inhibited ear swelling with no significant difference between the systems | [51] |
Adapalene | Treatment of acne vulgaris in rats with testosterone-induced acne | Papule count was reduced 3-fold after 4 weeks of the therapy as compared to commercial gel | [52] |
Ethosome | |||
Cannabidiol (CBD) | Skin permeation and organ distribution in mice; evaluation of the reduction in paw thickness in carrageenan-induce edema | Prevention of inflammation and edema in an animal model of Rheumatoid Arthritis by CBD Ethosomal system | [53] |
Erythromycin | Antibacterial activity in mice models of deep dermal S. aureus infection | Efficient treatment of deep skin bacterial infections in rats by Erythromycin Ethosomes compared to Hydroethanolic solution | [25] |
Buspirone | Study on ovariectomized rats with hot flushes | Efficient Management of hot flushes by Buspirone Ethosomes compared to oral treatments. Temperature alleviation to normal values that lasted 3 h) | [4] |
Ibuprofen | Measurement of drug plasma concentrations in rats; in vivo antipyretic effect in fevered rats and analgesic effect using tail flick test in mice Anti-pyretic effect of Ibuprofen Ethosomal system. | Temperature alleviation to normal values that lasted at least 12 h versus 7 h after the oral treatment | [2] |
Ligustrazine | Pharmacodynamic study on rat model of acute myocardial ischemia | Significant differences in blood viscosity, plasma viscosity, hematocrit, red blood cell aggregation index, as well as deformation index between the ligustrazine ethosomal patch group and ischemic control group (p < 0.01). Ligustrazine ethosome patches exhibited a sustained-release property by maintaining stable and sustained blood drug concentration, leading to increased bioavailability, and reduced administration times. | [54] |
Transethosome | |||
Fe-chlorophyllin | Evaluation of the anti-tumor effect in mice | Successful treatment of resistant melanoma without recurrence for 8 months by a combination of the nanovesicles with photodynamic therapy | [26] |
Olmesartan medoxomil | Histopathological, pharmacodynamic, and dermatokinetic studies in rats | Controlled blood pressure values for 24 h, with the highest percentage reduction at four hours (35 ± 12%). On the other hand, the oral drug administration led to controlled values for six hours only. | [55] |
Asenapine maleate | Pharmacokinetic study in rats | Significant (p < 0.05) increase in the bioavailability upon transdermal application of the ethanolic transfersomes compared with oral administration. | [56] |
Imiquimod | In vivo skin histological examination in rats; permeation study on rats | Enhanced skin localization by 3 folds compared to commercial product | [57] |
Glycerosome | |||
Paeoniflorin | Permeation experiments through excised rat abdominal skin; in vivo deposition in rat synovium | Glycerosomes modified with Speranskia tuberculata essential oil enhanced the skin deposition of the molecule by three folds compared to conventional glycerosomes | [58] |
Cuperron | Permeation study in rat hairless skin; anti-inflammatory effect in carrageenan-induced acute inflammation in rats | Six folds increase in the inhibition of paw edema in comparison with indomethacin commercial product (p < 0.05) | [59] |
Niosomes | |||
Meloxicam | Pharmacodynamic study on a rat model of carrageenan-induced paw edema. | Anti-inflammatory effect of Meloxicam niosomes. Paw edema reduced by 2 times in comparison with conventional gel | [60] |
Curcumin | Skin irritation test in rats; antinociceptive and anti-inflammatory effect in mice | Curcumin niosomal gels were found to be not irritant. Considerable antinociceptive and anti-inflammatory activities compared to conventional gel | [61] |
Active Molecule | Clinical Study | Results | Reference |
---|---|---|---|
Transfersome | |||
Insulin | Hypoglycemic effect of insulin in a clinical study on healthy volunteers to study | Longer hypoglycemic effect in healthy volunteers of Insulin Transfersome compared to subcutaneous injection of the drug | [5] |
Terbinafine | Phase two clinical study with bilateral onychomycosis of the toenail. | Anti-fungal activity within 7 days | [62] |
Ammonium glycyrrhizinate | Anti-inflammatory activity of Ammonium glycyrrhizinate Ultra-deformable liposomal system on 8 healthy volunteers | Erythema reduced by 15–30 folds with respect to an aqueous solution | [63] |
Ketoprofen | Randomized clinical study conducted on knee osteoarthritis patients | Ketoprofen-containing systems showed significantly higher rates versus the group receiving the empty vehicle | [64] |
Ethosome | |||
Ammonium glycyrrhizinate | Anti-inflammatory activity of Ammonium glycyrrhizinate Ethosomes on 12 healthy volunteers with chemically induced erythema. | The ethosomal system antagonized the appearance of erythema | [65] |
Acyclovir | Antiviral effect of Acyclovir Ethosomes in a two-armed, double-blind, randomized clinical study on 40 participants with Herpes labialis | A significant improvement of all the evaluated clinical parameters (crusts formation, loss of crusts, pain) | [66] |
Prostaglandin E1 | An “in office” pilot clinical study on Prostaglandin E1 Ethosomes for Treatment of Erectile Dysfunction. | Enhanced penile rigidity and prolonged erection duration (10–60 min) | [2] |
Clindamycin and Salicylic acid | Treatment of Acne vulgaris by Clindamycin and Salicylic acid ethosomal gel in a clinical study | Improved condition in 71% of the participants | [2] |
Niosome | |||
Ammonium glycyrrhizinate (AG) | Anti-inflammatory activity of Ammonium glycyrrhizinate (AG) Niosomal system on healthy volunteers. | Erythema reduced by 3.4 folds with respect to an aqueous solution | [31] |
Methylene blue combined with phototherapy | Four months follow-up clinical study on 40 acne vulgaris patients | The niosomal gel of methylene blue combined with phototherapy showed a significantly higher improvement in inflammation when compared with IPL treatment | [67] |
Anthocyanin complex | A randomized placebo-controlled double-blind study on 60 patients (18–60 years old) with oral wounds | AC niosomal gel accelerated wound closure, reduced pain due to oral wounds, and improved the patient’s quality of life as compared to AC gel, triamcinolone gel, and placebo gel. | [68] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Touitou, E.; Natsheh, H. The Evolution of Emerging Nanovesicle Technologies for Enhanced Delivery of Molecules into and across the Skin. Pharmaceutics 2024, 16, 267. https://doi.org/10.3390/pharmaceutics16020267
Touitou E, Natsheh H. The Evolution of Emerging Nanovesicle Technologies for Enhanced Delivery of Molecules into and across the Skin. Pharmaceutics. 2024; 16(2):267. https://doi.org/10.3390/pharmaceutics16020267
Chicago/Turabian StyleTouitou, Elka, and Hiba Natsheh. 2024. "The Evolution of Emerging Nanovesicle Technologies for Enhanced Delivery of Molecules into and across the Skin" Pharmaceutics 16, no. 2: 267. https://doi.org/10.3390/pharmaceutics16020267
APA StyleTouitou, E., & Natsheh, H. (2024). The Evolution of Emerging Nanovesicle Technologies for Enhanced Delivery of Molecules into and across the Skin. Pharmaceutics, 16(2), 267. https://doi.org/10.3390/pharmaceutics16020267