Investigating the Effectiveness of Different Porous Nanoparticles as Drug Carriers for Retaining the Photostability of Pinosylvin Derivative
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Synthesis of Nanoformulations
2.2.1. Synthesis of PDA–PEI–MSNs
2.2.2. Synthesis of MPDA Nanoparticles
2.3. Fabrication of TCPSi Nanoparticles
2.4. Drug Incorporation into Nanoparticles
2.5. Physicochemical Characterization of Nanoparticles before and after PsMME Loading
2.6. Drug Release from Nanoparticles
2.7. Cell Culture and Maintenance
2.8. Cytotoxicity of MPDA Nanoparticles before and after Drug Loading
2.9. Photostability, Gas Chromatography, and Gas Chromatography–Mass Spectrometry Analysis
2.10. Statistical Analysis
3. Results and Discussion
3.1. Synthesis and Characterization of Nanoformulations
3.2. Drug Incorporation Capacity and Efficiency Comparison between Nanoparticles
3.3. Drug Release from Nanoparticles
3.4. Photostability Study
3.5. Cellular Viability of MPDA–PsMME
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bakrim, S.; Machate, H.; Benali, T.; Sahib, N.; Jaouadi, I.; Omari, N.E.; Aboulaghras, S.; Bangar, S.P.; Lorenzo, J.M.; Zengin, G.; et al. Natural Sources and Pharmacological Properties of Pinosylvin. Plants 2022, 11, 1541. [Google Scholar] [CrossRef]
- Eräsalo, H.; Hämäläinen, M.; Leppänen, T.; Mäki-Opas, I.; Laavola, M.; Haavikko, R.; Yli-Kauhaluoma, J.; Moilanen, E. Natural Stilbenoids Have Anti-Inflammatory Properties in Vivo and down-Regulate the Production of Inflammatory Mediators NO, IL6, and MCP1 Possibly in a PI3K/Akt-Dependent Manner. J. Nat. Prod. 2018, 81, 1131–1142. [Google Scholar] [CrossRef]
- Silva, F.; Figueiras, A.; Gallardo, E.; Nerín, C.; Domingues, F.C. Strategies to Improve the Solubility and Stability of Stilbene Antioxidants: A Comparative Study between Cyclodextrins and Bile Acids. Food Chem. 2014, 145, 115–125. [Google Scholar] [CrossRef]
- Välimaa, A.-L.; Raitanen, J.-E.; Tienaho, J.; Sarjala, T.; Nakayama, E.; Korpinen, R.; Mäkinen, S.; Eklund, P.; Willför, S.; Jyske, T. Enhancement of Norway Spruce Bark Side-Streams: Modification of Bioactive and Protective Properties of Stilbenoid-Rich Extracts by UVA-Irradiation. Ind. Crops Prod. 2020, 145, 112150. [Google Scholar] [CrossRef]
- Samie, S.M.A.; Nasr, M. Food to Medicine Transformation of Stilbenoid Vesicular and Lipid-Based Nanocarriers: Technological Advances. Drug Deliv. Asp. 2020, 4, 227–245. [Google Scholar]
- Zaharudin, N.S.; Isa, E.D.M.; Ahmad, H.; Rahman, M.B.A.; Jumbri, K. Functionalized Mesoporous Silica Nanoparticles Templated by Pyridinium Ionic Liquid for Hydrophilic and Hydrophobic Drug Release Application. J. Saudi Chem. Soc. 2020, 24, 289–302. [Google Scholar] [CrossRef]
- Rosenholm, J.M.; Sahlgren, C.; Lindén, M. Towards Multifunctional, Targeted Drug Delivery Systems Using Mesoporous Silica Nanoparticles—Opportunities & Challenges. Nanoscale 2010, 2, 1870. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Zhang, J.; Wang, J.; Qi, X.; Rosenholm, J.M.; Cai, K. Polydopamine Coatings in Confined Nanopore Space: Toward Improved Retention and Release of Hydrophilic Cargo. J. Phys. Chem. C 2015, 119, 24512–24521. [Google Scholar] [CrossRef]
- Chen, F.; Xing, Y.; Wang, Z.; Zheng, X.; Zhang, J.; Cai, K. Nanoscale Polydopamine (PDA) Meets π–π Interactions: An Interface-Directed Coassembly Approach for Mesoporous Nanoparticles. Langmuir 2016, 32, 12119–12128. [Google Scholar] [CrossRef] [PubMed]
- Santos, H.A.; Mäkilä, E.; Airaksinen, A.J.; Bimbo, L.M.; Hirvonen, J. Porous Silicon Nanoparticles for Nanomedicine: Preparation and Biomedical Applications. Nanomedicine 2014, 9, 535–554. [Google Scholar] [CrossRef]
- Salah, R. Optical Study of Porous Silicon Layers Produced Electrochemically for Photovoltaic Application. In Solar Cells—Theory, Materials and Recent Advances; Mourtada Elseman, A., Ed.; IntechOpen: London, UK, 2021; ISBN 978-1-83881-016-0. [Google Scholar]
- Moretta, R.; De Stefano, L.; Terracciano, M.; Rea, I. Porous Silicon Optical Devices: Recent Advances in Biosensing Applications. Sensors 2021, 21, 1336. [Google Scholar] [CrossRef]
- Salonen, J.; Mäkilä, E. Thermally Carbonized Porous Silicon and Its Recent Applications. Adv. Mater. 2018, 30, 1703819. [Google Scholar] [CrossRef]
- Nakamae, K.; Hano, N.; Ihara, H.; Takafuji, M. Thermally Stable High-Contrast Iridescent Structural Colours from Silica Colloidal Crystals Doped with Monodisperse Spherical Black Carbon Particles. Mater. Adv. 2021, 2, 5935–5941. [Google Scholar] [CrossRef]
- Aalto, A.L.; Saadabadi, A.; Lindholm, F.; Kietz, C.; Himmelroos, E.; Marimuthu, P.; Salo-Ahen, O.M.H.; Eklund, P.; Meinander, A. Stilbenoid Compounds Inhibit NF-κB-Mediated Inflammatory Responses in the Drosophila Intestine. Front. Immunol. 2023, 14, 1253805. [Google Scholar] [CrossRef]
- Smeds, A.I.; Vähäsalo, L.; Rahkila, J.; Eklund, P.C.; Willför, S.M. Chemical Characterisation of Polymerised Extractives in Bleached Birch Kraft Pulp. Holzforschung 2019, 73, 1017–1033. [Google Scholar] [CrossRef]
- Shen, D.; Yang, J.; Li, X.; Zhou, L.; Zhang, R.; Li, W.; Chen, L.; Wang, R.; Zhang, F.; Zhao, D. Biphase Stratification Approach to Three-Dimensional Dendritic Biodegradable Mesoporous Silica Nanospheres. Nano Lett. 2014, 14, 923–932. [Google Scholar] [CrossRef]
- Rosenholm, J.M.; Duchanoy, A.; Lindén, M. Hyperbranching Surface Polymerization as a Tool for Preferential Functionalization of the Outer Surface of Mesoporous Silica. Chem. Mater. 2008, 20, 1126–1133. [Google Scholar] [CrossRef]
- Bimbo, L.M.; Sarparanta, M.; Santos, H.A.; Airaksinen, A.J.; Mäkilä, E.; Laaksonen, T.; Peltonen, L.; Lehto, V.-P.; Hirvonen, J.; Salonen, J. Biocompatibility of Thermally Hydrocarbonized Porous Silicon Nanoparticles and Their Biodistribution in Rats. ACS Nano 2010, 4, 3023–3032. [Google Scholar] [CrossRef] [PubMed]
- Alperth, F.; Schneebauer, A.; Kunert, O.; Bucar, F. Phytochemical Analysis of Pinus Cembra Heartwood—UHPLC-DAD-ESI-MSn with Focus on Flavonoids, Stilbenes, Bibenzyls and Improved HPLC Separation. Plants 2023, 12, 3388. [Google Scholar] [CrossRef]
- Ibrahim, A.H.; Smått, J.-H.; Govardhanam, N.P.; Ibrahim, H.M.; Ismael, H.R.; Afouna, M.I.; Samy, A.M.; Rosenholm, J.M. Formulation and Optimization of Drug-Loaded Mesoporous Silica Nanoparticle-Based Tablets to Improve the Dissolution Rate of the Poorly Water-Soluble Drug Silymarin. Eur. J. Pharm. Sci. 2020, 142, 105103. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Gan, Y.; Lin, C.; Lin, K.; Hu, P.; Liu, L.; Yu, S.; Zhao, S.; Shi, J. NIR-/pH-Responsive Nanocarriers Based on Mesoporous Hollow Polydopamine for Codelivery of Hydrophilic/Hydrophobic Drugs and Photothermal Synergetic Therapy. ACS Appl. Bio Mater. 2021, 4, 1605–1615. [Google Scholar] [CrossRef]
- Gupta, R.; Chen, Y.; Xie, H. In Vitro Dissolution Considerations Associated with Nano Drug Delivery Systems. WIREs Nanomed. Nanobiotechnol. 2021, 13, e1732. [Google Scholar] [CrossRef]
- Marslin, G.; Siram, K.; Liu, X.; Khandelwal, V.; Shen, X.; Wang, X.; Franklin, G. Solid Lipid Nanoparticles of Albendazole for Enhancing Cellular Uptake and Cytotoxicity against U-87 MG Glioma Cell Lines. Molecules 2017, 22, 2040. [Google Scholar] [CrossRef] [PubMed]
- Obiedallah, M.M.; Abdel-Mageed, A.M.; Elfaham, T.H. Ocular Administration of Acetazolamide Microsponges in Situ Gel Formulations. Saudi Pharm. J. 2018, 26, 909–920. [Google Scholar] [CrossRef] [PubMed]
- Thomas, P.; Smart, T.G. HEK293 Cell Line: A Vehicle for the Expression of Recombinant Proteins. J. Pharmacol. Toxicol. Methods 2005, 51, 187–200. [Google Scholar] [CrossRef] [PubMed]
- Valerius, M.T.; Patterson, L.T.; Feng, Y.; Potter, S.S. Hoxa 11 Is Upstream of Integrin α 8 Expression in the Developing Kidney. Proc. Natl. Acad. Sci. USA 2002, 99, 8090–8095. [Google Scholar] [CrossRef] [PubMed]
- Díaz Osterman, C.J.; Gonda, A.; Stiff, T.; Sigaran, U.; Asuncion Valenzuela, M.M.; Ferguson Bennit, H.R.; Moyron, R.B.; Khan, S.; Wall, N.R. Curcumin Induces Pancreatic Adenocarcinoma Cell Death Via Reduction of the Inhibitors of Apoptosis. Pancreas 2016, 45, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Kong, N.; Ouyang, J.; Feng, C.; Kim, N.Y.; Ji, X.; Wang, C.; Farokhzad, O.C.; Zhang, H.; Tao, W. Phosphorus Science-Oriented Design and Synthesis of Multifunctional Nanomaterials for Biomedical Applications. Matter 2020, 2, 297–322. [Google Scholar] [CrossRef]
- Wu, W.; Shen, J.; Banerjee, P.; Zhou, S. Water-Dispersible Multifunctional Hybrid Nanogels for Combined Curcumin and Photothermal Therapy. Biomaterials 2011, 32, 598–609. [Google Scholar] [CrossRef]
- Eilenberger, C.; Kratz, S.R.A.; Rothbauer, M.; Ehmoser, E.-K.; Ertl, P.; Küpcü, S. Optimized alamarBlue Assay Protocol for Drug Dose-Response Determination of 3D Tumor Spheroids. MethodsX 2018, 5, 781–787. [Google Scholar] [CrossRef]
- Smeds, A.I.; Eklund, P.C.; Monogioudi, E.; Willför, S.M. Chemical Characterization of Polymerized Products Formed in the Reactions of Matairesinol and Pinoresinol with the Stable Radical 2,2-Diphenyl-1-Picrylhydrazyl. Holzforschung 2012, 66, 283–294. [Google Scholar] [CrossRef]
- Kaasalainen, M.; Aseyev, V.; Von Haartman, E.; Karaman, D.Ş.; Mäkilä, E.; Tenhu, H.; Rosenholm, J.; Salonen, J. Size, Stability, and Porosity of Mesoporous Nanoparticles Characterized with Light Scattering. Nanoscale Res. Lett. 2017, 12, 74. [Google Scholar] [CrossRef] [PubMed]
- Pabisch, S.; Feichtenschlager, B.; Kickelbick, G.; Peterlik, H. Effect of Interparticle Interactions on Size Determination of Zirconia and Silica Based Systems—A Comparison of SAXS, DLS, BET, XRD and TEM. Chem. Phys. Lett. 2012, 521, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Billes, F.; Mohammed-Ziegler, I.; Mikosch, H.; Holmgren, A. Vibrational Spectroscopic and Conformational Analysis of Pinosylvin. J. Phys. Chem. A 2002, 106, 6232–6241. [Google Scholar] [CrossRef]
- Sun, X.; Wang, N.; Yang, L.-Y.; Ouyang, X.-K.; Huang, F. Folic Acid and PEI Modified Mesoporous Silica for Targeted Delivery of Curcumin. Pharmaceutics 2019, 11, 430. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Gu, C.; Zheng, W.; Dai, F.; Wang, X.; Zheng, Z. Facile Synthesis of Novel Size-Controlled Antibacterial Hybrid Spheres Using Silver Nanoparticles Loaded with Poly-Dopamine Spheres. RSC Adv. 2015, 5, 13470–13477. [Google Scholar] [CrossRef]
- Lumen, D.; Wang, S.; Mäkilä, E.; Imlimthan, S.; Sarparanta, M.; Correia, A.; Westerveld Haug, C.; Hirvonen, J.; Santos, H.A.; Airaksinen, A.J.; et al. Investigation of Silicon Nanoparticles Produced by Centrifuge Chemical Vapor Deposition for Applications in Therapy and Diagnostics. Eur. J. Pharm. Biopharm. 2021, 158, 254–265. [Google Scholar] [CrossRef]
- Xu, C.; Lei, C.; Yu, C. Mesoporous Silica Nanoparticles for Protein Protection and Delivery. Front. Chem. 2019, 7, 290. [Google Scholar] [CrossRef]
- Cheng, W.; Ma, H.; Zhang, L.; Wang, Y. Hierarchically Imprinted Mesoporous Silica Polymer: An Efficient Solid-Phase Extractant for Bisphenol A. Talanta 2014, 120, 255–261. [Google Scholar] [CrossRef]
- Biswas, S.; Vaze, O.S.; Movassaghian, S.; Torchilin, V.P. Polymeric Micelles for the Delivery of Poorly Soluble Drugs. In Drug Delivery Strategies for Poorly Water-Soluble Drugs; Douroumis, D., Fahr, A., Eds.; John Wiley & Sons Ltd.: Oxford, UK, 2013; pp. 411–476. ISBN 978-1-118-44472-6. [Google Scholar]
- Hu, J.; Johnston, K.P.; Williams, R.O. Nanoparticle Engineering Processes for Enhancing the Dissolution Rates of Poorly Water Soluble Drugs. Drug Dev. Ind. Pharm. 2004, 30, 233–245. [Google Scholar] [CrossRef]
- Chang, D.; Gao, Y.; Wang, L.; Liu, G.; Chen, Y.; Wang, T.; Tao, W.; Mei, L.; Huang, L.; Zeng, X. Polydopamine-Based Surface Modification of Mesoporous Silica Nanoparticles as pH-Sensitive Drug Delivery Vehicles for Cancer Therapy. J. Colloid Interface Sci. 2016, 463, 279–287. [Google Scholar] [CrossRef]
- Xia, B.; Zhang, W.; Shi, J.; Xiao, S. A Novel Strategy to Fabricate Doxorubicin/Bovine Serum Albumin/Porous Silicon Nanocomposites with pH-Triggered Drug Delivery for Cancer Therapy in Vitro. J. Mater. Chem. B 2014, 2, 5280. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Xie, C.; Xia, H.; Wang, Z. pH and Ultrasound Dual-Responsive Polydopamine-Coated Mesoporous Silica Nanoparticles for Controlled Drug Delivery. Langmuir 2018, 34, 9974–9981. [Google Scholar] [CrossRef] [PubMed]
- Abaandou, L.; Quan, D.; Shiloach, J. Affecting HEK293 Cell Growth and Production Performance by Modifying the Expression of Specific Genes. Cells 2021, 10, 1667. [Google Scholar] [CrossRef] [PubMed]
Name of NPs | Hydrodynamic Diameter (nm) | PDI | ζ-Potential (mV) | TEM Size (nm) | Specific Surface Area (m2/g) |
---|---|---|---|---|---|
MSNs | 96.7 ± 1.21 | 0.07 ± 0.00 | −27.8 ± 1.0 | 73.6 ± 1.9 | - |
PEI–MSNs | 118.8 ± 1.70 | 0.08 ± 0.02 | +32.9 ± 1.3 | 62.8 ± 14 | - |
PDA–PEI–MSNs | 147.5 ± 1.10 | 0.07 ± 0.03 | −31.3 ± 1.8 | 93.9 ± 4.5 | 129 ± 2 |
PDA–PEI-MSNs–PsMME | 157 ± 1.82 | 0.83 ± 0.00 | −11.3 + 0.01 | - | - |
TCPSi | 213.3 ± 0.12 | 0.12 ± 0.01 | −18.1 ± 1.8 | 180.6 ± 6.5 | 218 ± 2 |
TCPSi–PsMME | 447 ± 1.6 | 0.239 ± 0.00 | −14 ± 0.00 | - | - |
MPDA | 180.6 ± 12.49 | 0.35 ± 0.06 | −10.1 ± 0.1 | 78.2 ± 3.0 | 26 ± 1 |
MPDA–PsMME | 124 ± 2.34 | 0.536 ± 0.12 | −9.37 ± 0.03 | - | - |
Name of NPs | PsMME/NPs (wt%) | DL (%) ± SD | EE (%) ± SD | Drug Content (mg/mg) |
---|---|---|---|---|
PDA–PEI–MSNs | 20% | 19.53 ± 0.6 | 95.57 ± 2.9 | 0.16 ± 0.16 |
TCPSi | 20% | 11.43 ± 0.5 | 55.95 ± 2.5 | 0.100 ± 0.10 |
MPDA | 20% | 6.89 ± 0.7 | 34.49 ± 3.4 | 0.063 ± 0.063 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Howaili, F.; Saadabadi, A.; Mäkilä, E.; Korotkova, E.; Eklund, P.C.; Salo-Ahen, O.M.H.; Rosenholm, J.M. Investigating the Effectiveness of Different Porous Nanoparticles as Drug Carriers for Retaining the Photostability of Pinosylvin Derivative. Pharmaceutics 2024, 16, 276. https://doi.org/10.3390/pharmaceutics16020276
Howaili F, Saadabadi A, Mäkilä E, Korotkova E, Eklund PC, Salo-Ahen OMH, Rosenholm JM. Investigating the Effectiveness of Different Porous Nanoparticles as Drug Carriers for Retaining the Photostability of Pinosylvin Derivative. Pharmaceutics. 2024; 16(2):276. https://doi.org/10.3390/pharmaceutics16020276
Chicago/Turabian StyleHowaili, Fadak, Atefeh Saadabadi, Ermei Mäkilä, Ekaterina Korotkova, Patrik C. Eklund, Outi M. H. Salo-Ahen, and Jessica M. Rosenholm. 2024. "Investigating the Effectiveness of Different Porous Nanoparticles as Drug Carriers for Retaining the Photostability of Pinosylvin Derivative" Pharmaceutics 16, no. 2: 276. https://doi.org/10.3390/pharmaceutics16020276
APA StyleHowaili, F., Saadabadi, A., Mäkilä, E., Korotkova, E., Eklund, P. C., Salo-Ahen, O. M. H., & Rosenholm, J. M. (2024). Investigating the Effectiveness of Different Porous Nanoparticles as Drug Carriers for Retaining the Photostability of Pinosylvin Derivative. Pharmaceutics, 16(2), 276. https://doi.org/10.3390/pharmaceutics16020276