The Efficacy of Hybrid Vaginal Ovules for Co-Delivery of Curcumin and Miconazole against Candida albicans
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Ureasil–Polyether Hybrid Ovules
2.3. Physico-Chemical Characterization of Hybrid Ovules
2.3.1. Thermogravimetry (TGA)
2.3.2. Differential Thermal Analysis (DTA)
2.3.3. Fourier Transform Infrared Spectroscopy (FTIR)
2.4. In Vitro Drug Release Assay
2.5. Antifungal Activity of CUR and MCZ
2.5.1. Fungal Strain and Growth Conditions
2.5.2. Determination of the Minimum Inhibitory Concentration (MIC)
2.5.3. Checkerboard Test for Synergism Evaluation
2.6. Antifungal Activity of U-PEO Ovules
2.6.1. Sample Preparation
2.6.2. Broth Microdilution
2.6.3. Agar Diffusion Assay
2.7. Statistical Analysis
3. Results and Discussion
3.1. Synthesis of Ureasil–Polyether Hybrid Ovules
3.2. Physicochemical Characterization of Hybrid Ovules
3.2.1. Thermogravimetry (TGA)
3.2.2. Differential Thermal Analysis (DTA)
3.2.3. Fourier Transform Infrared Spectroscopy (FTIR)
3.3. In Vitro Drug Release Assay
3.4. Antifungal Activity of CUR and MCZ
3.4.1. Determination of the Minimum Inhibitory Concentration (MIC)
3.4.2. Checkerboard Test for Synergism Evaluation
3.5. Antifungal Activity of U-PEO Ovules
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Czechowicz, P.; Nowicka, J.; Gościniak, G. Virulence Factors of Candida spp. and Host Immune Response Important in the Pathogenesis of Vulvovaginal Candidiasis. Int. J. Mol. Sci. 2022, 23, 5895. [Google Scholar] [CrossRef] [PubMed]
- Willems, H.M.E.; Ahmed, S.S.; Liu, J.; Xu, Z.; Peters, B.M.; Willems, H.; Ahmed, S.; Liu, J.; Xu, Z.; Peters, B. Vulvovaginal Candidiasis: A Current Understanding and Burning Questions. J. Fungi 2020, 6, 27. [Google Scholar] [CrossRef] [PubMed]
- Yano, J.; Sobel, J.D.; Nyirjesy, P.; Sobel, R.; Williams, V.L.; Yu, Q.; Noverr, M.C.; Fidel, P.L. Current Patient Perspectives of Vulvovaginal Candidiasis: Incidence, Symptoms, Management and Post-Treatment Outcomes. BMC Women’s Health 2019, 19, 48. [Google Scholar] [CrossRef] [PubMed]
- Ledoux, M.P.; Herbrecht, R.; Nett, J.; Andes, D.; Andes, D.; Safdar, N.; Mao, Q. Antifungal therapy: New and evolving therapies. Semin. Respir. Crit. Care Med. 2020, 41, 158–174. [Google Scholar] [CrossRef]
- Stenkiewicz-Witeska, J.S.; Ene, I.V. Azole potentiation in Candida species. PLoS Pathog. 2023, 19, e1011583. [Google Scholar] [CrossRef] [PubMed]
- Czajka, K.M.; Venkataraman, K.; Brabant-Kirwan, D.; Santi, S.A.; Verschoor, C.; Appanna, V.D.; Singh, R.; Saunders, D.P.; Tharmalingam, S. Molecular Mechanisms Associated with Antifungal Resistance in Pathogenic Candida Species. Cells 2023, 12, 2655. [Google Scholar] [CrossRef]
- Ordaya, E.E.; Clement, J.; Vergidis, P. The Role of Novel Antifungals in the Management of Candidiasis: A Clinical Perspective. Mycopathologia 2023, 188, 937–948. [Google Scholar] [CrossRef]
- Livengood, S.J.; Drew, R.H.; Perfect, J.R. Combination Therapy for Invasive Fungal Infections. Curr. Fungal Infect. Rep. 2020, 14, 40–49. [Google Scholar] [CrossRef]
- Shapiro, R.S.; Gerstein, A.C. Powering up antifungal treatment: Using small molecules to unlock the potential of existing therapies. Mbio 2023, 14, e01073-23. [Google Scholar] [CrossRef]
- Martins, C.V.B.; Da Silva, D.L.; Neres, A.T.M.; Magalhães, T.F.F.; Watanabe, G.A.; Modolo, L.V.; Sabino, A.A.; De Fátima, Â.; De Resende, M.A. Curcumin as a Promising Antifungal of Clinical Interest. J. Antimicrob. Chemother. 2009, 63, 337–339. [Google Scholar] [CrossRef]
- Sharma, M.; Manoharlal, R.; Negi, A.S.; Prasad, R. Synergistic Anticandidal Activity of Pure Polyphenol Curcumin in Combination with Azoles and Polyenes Generates Reactive Oxygen Species Leading to Apoptosis. FEMS Yeast Res. 2010, 10, 570–578. [Google Scholar] [CrossRef] [PubMed]
- Salah, S.; Awad, G.E.; Makhlouf, A.I. Improved vaginal retention and enhanced antifungal activity of miconazole microsponges gel: Formulation development and in vivo therapeutic efficacy in rats. Eur. J. Pharm. Sci. 2018, 114, 255–266. [Google Scholar] [CrossRef] [PubMed]
- Truzzi, F.; Tibaldi, C.; Zhang, Y.; Dinelli, G.; D′ Amen, E. An overview on dietary polyphenols and their biopharmaceutical classification system (BCS). Int. J. Mol. Sci. 2021, 22, 5514. [Google Scholar] [CrossRef] [PubMed]
- Kanojiya, P.S.; Wadetwar, R.N.; Atole, P.G.; Thakrani, K.C.; Gawande, N.P. Sustained delivery of statistically optimized transfersomal gel of miconazole nitrate for vaginal candidiasis. J. Dispers. Sci. Technol. 2023, 1–18. [Google Scholar] [CrossRef]
- Conte, J.; Parize, A.L.; Caon, T. Advanced Solid Formulations for Vulvovaginal Candidiasis. Pharm. Res. 2023, 40, 593–610. [Google Scholar] [CrossRef]
- Oshiro Junior, J.A.; Carvalho, F.C.; Soares, C.P.; Chorilli, M.; Aparecida Chiavacci, L. Development of Cutaneous Bioadhesive Ureasil-Polyether Hybrid Films. Int. J. Polym. Sci. 2015, 2015. [Google Scholar] [CrossRef]
- Oshiro Junior, J.A.; Nasser, N.J.; Chiari-Andréo, B.G.; Cuberes, M.T.; Chiavacci, L.A. Study of triamcinolone release and mucoadhesive properties of macroporous hybrid films for oral disease treatment. Biomed. Phys. Eng. Express 2018, 4, 035009. [Google Scholar] [CrossRef]
- Oshiro-Junior, J.A.; Barros, R.M.; da Silva, C.G.; de Souza, C.C.; Scardueli, C.R.; Marcantonio, C.C.; Chiavacci, L.A. In vivo effectiveness of hybrid membranes with osteogenic growth peptide for bone regeneration. J. Tissue Eng. Regen. Med. 2021, 15, 722–731. [Google Scholar] [CrossRef]
- Ham, A.S.; Buckheit, R.W. Designing and Developing Suppository Formulations for Anti-HIV Drug Delivery. Ther. Deliv. 2017, 8, 805–817. [Google Scholar] [CrossRef] [PubMed]
- Haas, S.; Woerdenbag, H.; Sznitowska, M. Rectal and Vaginal. In Practical Pharmaceutics; Springer: Berlin/Heidelberg, Germany, 2015; pp. 189–227. [Google Scholar] [CrossRef]
- Oshiro, J.A.; Scardueli, C.R.; de Oliveira, G.J.P.L.; Marcantonio, R.A.C.; Chiavacci, L.A. Development of ureasil–polyether membranes for guided bone regeneration. Biomed. Phys. Eng. Express 2017, 3, 015019. [Google Scholar] [CrossRef]
- Nicolau Costa, K.M.; Sato, M.R.; Barbosa, T.L.A.; Rodrigues, M.G.F.; Medeiros, A.C.D.; Damasceno, B.P.G.D.L.; Oshiro-Júnior, J.A. Curcumin-Loaded Micelles Dispersed in Ureasil-Polyether Materials for a Novel Sustained-Release Formulation. Pharmaceutics 2021, 13, 675. [Google Scholar] [CrossRef] [PubMed]
- CLSI M27-Ed4; Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts. Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2017.
- Pillai, S.K.; Moellering, R.C.; Eliopoulos, G.M. Antimicrobial combinations. In Antibiotics in Laboratory Medicine, 5th ed.; Lorian, V., Ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2005; pp. 365–435. [Google Scholar]
- CLSI M44-Ed3; Method for Antifungal Disk Diffusion Susceptibility Testing for Yeasts. Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018.
- Palmeira-de-Oliveira, R.; Oliveira, A.S.; Rolo, J.; Tomás, M.; Palmeira-de-Oliveira, A.; Simões, S.; Martinez-de-Oliveira, J. Women’s preferences and acceptance for different drug delivery routes and products. Adv. Drug Deliv. Rev. 2022, 182, 114133. [Google Scholar] [CrossRef] [PubMed]
- Kalmar, E.; Lasher, J.R.; Tarry, T.D.; Myers, A.; Szakonyi, G.; Dombi, G.; Alexander, K.S. Dosage uniformity problems which occur due to technological errors in extemporaneously prepared suppositories in hospitals and pharmacies. Saudi Pharm. J. 2014, 22, 338–342. [Google Scholar] [CrossRef] [PubMed]
- Domsta, V.; Krause, J.; Weitschies, W.; Seidlitz, A. 3D Printing of Paracetamol Suppositories: An Automated Manufacturing Technique for Individualized Therapy. Pharmaceutics 2022, 14, 2676. [Google Scholar] [CrossRef] [PubMed]
- Jannin, V.; Lemagnen, G.; Gueroult, P.; Larrouture, D.; Tuleu, C. Rectal route in the 21st Century to treat children. Adv. Drug Deliv. Rev. 2014, 73, 34–49. [Google Scholar] [CrossRef]
- Chen, Z.; Xia, Y.; Liao, S.; Huang, Y.; Li, Y.; He, Y.; Li, B. Thermal degradation kinetics study of curcumin with nonlinear methods. Food Chem. 2014, 155, 81–86. [Google Scholar] [CrossRef]
- Abd El-Halim, H.F.; Nour El-Dien, F.A.; Mohamed, G.G.; Mohamed, N.A. Synthesis, spectroscopic, thermal characterization, and antimicrobial activity of miconazole drug and its metal complexes. J. Therm. Anal. Calorim. 2012, 109, 883–892. [Google Scholar] [CrossRef]
- da Silva, C.G.; Monteiro, J.R.; Oshiro-Júnior, J.A.; Chiavacci, L.A. Hybrid Membranes of the Ureasil-Polyether Containing Glucose for Future Application in Bone Regeneration. Pharmaceutics 2023, 15, 1474. [Google Scholar] [CrossRef]
- Fugita, R.A.; Gálico, D.A.; Guerra, R.B.; Perpétuo, G.L.; Treu-Filho, O.; Galhiane, M.S.; Bannach, G. Thermal behaviour of curcumin. Braz. J. Therm. Anal. 2012, 1, 19–23. [Google Scholar]
- Kenechukwu, F.C.; Attama, A.A.; Ibezim, E.C.; Nnamani, P.O.; Umeyor, C.E.; Uronnachi, E.M.; Akpa, P.A. Surface-modified mucoadhesive microgels as a controlled release system for miconazole nitrate to improve localized treatment of vulvovaginal candidiasis. Eur. J. Pharm. Sci. 2018, 111, 358–375. [Google Scholar] [CrossRef] [PubMed]
- Tejada, G.; Piccirilli, G.N.; Sortino, M.; Salomón, C.J.; Lamas, M.C.; Leonardi, D. Formulation and in-vitro efficacy of antifungal mucoadhesive polymeric matrices for the delivery of miconazole nitrate. Mater. Sci. Eng. C 2017, 79, 140–150. [Google Scholar] [CrossRef]
- Chen, J.; Qin, X.; Zhong, S.; Chen, S.; Su, W.; Liu, Y. Characterization of curcumin/cyclodextrin polymer inclusion complex and investigation on its antioxidant and antiproliferative activities. Molecules 2018, 23, 1179. [Google Scholar] [CrossRef]
- Chen, X.; Zou, L.Q.; Niu, J.; Liu, W.; Peng, S.F.; Liu, C.M. The stability, sustained release and cellular antioxidant activity of curcumin nanoliposomes. Molecules 2015, 20, 14293–14311. [Google Scholar] [CrossRef]
- Rai, V.K.; Dwivedi, H.; Yadav, N.P.; Chanotiya, C.S.; Saraf, S.A. Solubility enhancement of miconazole nitrate: Binary and ternary mixture approach. Drug Dev. Ind. Pharm. 2014, 40, 1021–1029. [Google Scholar] [CrossRef]
- Oshiro-Junior, J.A.; Lusuardi, A.; Beamud, E.M.; Chiavacci, L.A.; Cuberes, M.T. Nanostructural Arrangements and Surface Morphology on Ureasil-Polyether Films Loaded with Dexamethasone Acetate. Nanomaterials 2021, 11, 1362. [Google Scholar] [CrossRef]
- Palacio, G.; Pulcinelli, S.H.; Mahiou, R.; Boyer, D.; Chadeyron, G.; Santilli, C.V. Coupling photoluminescence and ionic conduction properties using the different coordination sites of ureasil–polyether hybrid materials. ACS Appl. Mater. Interfaces 2018, 10, 37364–37373. [Google Scholar] [CrossRef] [PubMed]
- Workowski, K.A.; Bachmann, L.H. Centers for Disease Control and Prevention’s sexually transmitted diseases infection guidelines. Clin. Infect. Dis. 2022, 74 (Suppl. 2), S89–S94. [Google Scholar] [CrossRef] [PubMed]
- Askarizadeh, M.; Esfandiari, N.; Honarvar, B.; Sajadian, S.A.; Azdarpour, A. Kinetic modeling to explain the release of medicine from drug delivery systems. ChemBioEng Rev. 2023, 10, 1006–1049. [Google Scholar] [CrossRef]
- Atiyah, N.A.; Albayati, T.M.; Atiya, M.A. Interaction behavior of curcumin encapsulated onto functionalized SBA-15 as an efficient carrier and release in drug delivery. J. Mol. Struct. 2022, 1260, 132879. [Google Scholar] [CrossRef]
- Xue, B.; Yu, Y.; Peng, G.; Sun, M.; Lv, P.; Li, X. Amphotericin B and Curcumin Co-Loaded Porous Microparticles as a Sustained Release System against Candida albicans. Molecules 2022, 27, 3079. [Google Scholar] [CrossRef] [PubMed]
- Mo, F.; Ma, J.; Yang, X.; Zhang, P.; Li, Q.; Zhang, J. In vitro and in vivo effects of the combination of myricetin and miconazole nitrate incorporated to thermosensitive hydrogels, on C. albicans biofilms. Phytomedicine 2020, 71, 153223. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Manoharlal, R.; Puri, N.; Prasad, R. Antifungal curcumin induces reactive oxygen species and triggers an early apoptosis but prevents hyphae development by targeting the global repressor TUP1 in Candida albicans. Biosci. Rep. 2010, 30, 391–404. [Google Scholar] [CrossRef]
- Lam, P.L.; Wong, M.M.; Hung, L.K.; Yung, L.H.; Tang, J.O.; Lam, K.H.; Chui, C.H. Miconazole and terbinafine induced reactive oxygen species accumulation and topical toxicity in human keratinocytes. Drug Chem. Toxicol. 2022, 45, 834–838. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Manoharlal, R.; Shukla, S.; Puri, N.; Prasad, T.; Ambudkar, S.V.; Prasad, R. Curcumin modulates efflux mediated by yeast ABC multidrug transporters and is synergistic with antifungals. Antimicrob. Agents Chemother. 2009, 53, 3256–3265. [Google Scholar] [CrossRef] [PubMed]
- Fan, S.; Liu, X.; Liang, Y. Miconazole nitrate vaginal suppository 1,200 mg versus oral fluconazole 150 mg in treating severe vulvovaginal candidiasis. Gynecol. Obstet. Investig. 2015, 80, 113–118. [Google Scholar] [CrossRef]
- Abouali, N.; Moghimipour, E.; Mahmoudabadi, A.Z.; Namjouyan, F.; Abbaspoor, Z. The effect of curcumin-based and clotrimazole vaginal cream in the treatment of vulvovaginal candidiasis. J. Fam. Med. Prim. Care 2019, 8, 3920. [Google Scholar]
- Cui, J.; Ren, B.; Tong, Y.; Dai, H.; Zhang, L. Synergistic combinations of antifungals and anti-virulence agents to fight against Candida albicans. Virulence 2015, 6, 362–371. [Google Scholar] [CrossRef]
- Mariano, G.H.; de Sá, L.G.; da Silva, E.C.; Santos, M.A.; Fh, J.C.; Lira, B.O.V.; Brand, G.D. Characterization of novel human intragenic antimicrobial peptides, incorporation and release studies from ureasil-polyether hybrid matrix. Mater. Sci. Eng. C 2021, 119, 111581. [Google Scholar] [CrossRef]
- Gamil, Y.; Hamed, M.G.; Elsayed, M.; Essawy, A.; Medhat, S.; Zayed, S.O.; Ismail, R.M. The anti-fungal effect of miconazole and miconazole-loaded chitosan nanoparticles gels in diabetic patients with Oral candidiasis-randomized control clinical trial and microbiological analysis. BMC Oral Health 2024, 24, 196. [Google Scholar] [CrossRef]
- Marquez, S.M.T.; Reyes, L.D. Comparison of the effect of miconazole and clotrimazole in the treatment of vulvovaginal candidiasis among women seen in a tertiary medical center from 2016 to 2020. Philipp. J. Obstet. Gynecol. 2022, 46, 109–117. [Google Scholar] [CrossRef]
- Lee, Y.S.; Chen, X.; Widiyanto, T.W.; Orihara, K.; Shibata, H.; Kajiwara, S. Curcumin affects function of Hsp90 and drug efflux pump of Candida albicans. Front. Cell. Infect. Microbiol. 2022, 12, 944611. [Google Scholar] [CrossRef] [PubMed]
Microorganism | Drug Tested | MIC (µg/mL) | FICI | Result | |
---|---|---|---|---|---|
C. albicans ATCC 10231 | CUR MCZ | Alone | Combination | 0.375 | Synergism |
256 2.5 | 32 0.625 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bezerra, B.M.S.; y Araújo, S.E.D.d.M.; Alves-Júnior, J.d.O.; Damasceno, B.P.G.d.L.; Oshiro-Junior, J.A. The Efficacy of Hybrid Vaginal Ovules for Co-Delivery of Curcumin and Miconazole against Candida albicans. Pharmaceutics 2024, 16, 312. https://doi.org/10.3390/pharmaceutics16030312
Bezerra BMS, y Araújo SEDdM, Alves-Júnior JdO, Damasceno BPGdL, Oshiro-Junior JA. The Efficacy of Hybrid Vaginal Ovules for Co-Delivery of Curcumin and Miconazole against Candida albicans. Pharmaceutics. 2024; 16(3):312. https://doi.org/10.3390/pharmaceutics16030312
Chicago/Turabian StyleBezerra, Brenda Maria Silva, Sara Efigênia Dantas de Mendonça y Araújo, José de Oliveira Alves-Júnior, Bolívar Ponciano Goulart de Lima Damasceno, and João Augusto Oshiro-Junior. 2024. "The Efficacy of Hybrid Vaginal Ovules for Co-Delivery of Curcumin and Miconazole against Candida albicans" Pharmaceutics 16, no. 3: 312. https://doi.org/10.3390/pharmaceutics16030312
APA StyleBezerra, B. M. S., y Araújo, S. E. D. d. M., Alves-Júnior, J. d. O., Damasceno, B. P. G. d. L., & Oshiro-Junior, J. A. (2024). The Efficacy of Hybrid Vaginal Ovules for Co-Delivery of Curcumin and Miconazole against Candida albicans. Pharmaceutics, 16(3), 312. https://doi.org/10.3390/pharmaceutics16030312