Chitosan-Based Scaffolds Incorporated with Silver Nanoparticles for the Treatment of Infected Wounds
Abstract
:1. Introduction
2. The Mechanism of the Wound-Healing Process
3. Classification of Wound Dressings
4. Properties of Chitosan
5. Chitosan-Based Scaffolds Incorporated with Silver Nanoparticles
5.1. Sponges
5.2. Nanofibers
5.3. Hydrogels
5.4. Cryogels
5.5. Films and Membranes
5.6. Foams and Wafers
6. Clinical Trials of Chitosan-Based Wound Dressings
7. Conclusions
8. Future Perspective
Author Contributions
Funding
Conflicts of Interest
References
- Davies, A.; Francesca Spickett-Jones, A.; Toby, A.J.; Young, A.E. A systematic review of intervention studies demonstrates the need to develop a minimum set of indicators to report the presence of burn wound infection. Burns 2020, 46, 1487–1497. [Google Scholar] [CrossRef] [PubMed]
- Seth, A.K.; Geringer, M.R.; Hong, S.J.; Leung, K.P.; Mustoe, T.A.; Galiano, R.D. In vivo modelling of biofilm-infected wounds: A review. J. Surg. Res. 2012, 178, 330–338. [Google Scholar] [CrossRef] [PubMed]
- Scalise, A.; Bianchi, A.; Tartaglione, C.; Bolletta, E.; Pierangeli, M.; Torresetti, M.; Marazzi, M.; Di Benedetto, G. Microenvironment and microbiology of skin wounds: The role of bacterial biofilms and related factors. Semin. Vas. Surg. 2016, 28, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Robson, M.C.; Steed, D.L.; Franz, M.G. Wound healing: Biologic features and approaches to maximize healing trajectories. Curr. Probl. Surg. 2001, 2, 72–140. [Google Scholar] [CrossRef] [PubMed]
- Yoon, R.; Chang, K.; Morales, S.; Okamoto, Y.; Chan, H. Topical application of bacteriophages for treatment of wound infections. Transl. Res. 2020, 220, 153–166. [Google Scholar]
- Malafaya, P.; Silva, G.; Reis, R. Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv. Drug Deliv Rev. 2007, 59, 207–233. [Google Scholar] [CrossRef] [PubMed]
- Hussain, Z.; Thu, H.E.; Shuid, A.N.; Katas, H.; Hussain, F. Recent Advances in Polymer-based Wound Dressings for the Treatment of Diabetic Foot Ulcer: An Overview of State-of-the-art. Curr. Drug Targets 2017, 18, 527–550. [Google Scholar] [CrossRef]
- Saeedi, M.; Vahidi, O.; Reza, M.; Amadi, S.; Asadnia, M.; Akhavan, O.; Akhavan, O.; Seidi, F.; Rabiee, M.; Saeb, M.R.; et al. Customizing nano-chitosan for sustainable drug delivery. J. Control. Rel. 2022, 350, 175–192. [Google Scholar] [CrossRef]
- Mamidi, N.; Delgadillo, R.M. Design, fabrication, and drug release potential of dual stimuli-responsive composite hydrogel nanoparticle interfaces. Colloids Surf. B Biointerfaces. 2021, 204, 111819. [Google Scholar] [CrossRef]
- Miao, J.; Zhang, F.; Takieddin, M.; Mousa, S.; Linhardt, R.J. Adsorption of doxorubicin on poly (methyl methacrylate)–chitosan–heparin-coated activated carbon beads. Langmuir 2012, 28, 4396–4403. [Google Scholar] [CrossRef]
- Mamidi, N.; García, R.G.; Martínez, J.D.H.; Briones, C.M.; Martinez Ramos, A.M.; Tamez, M.F.L.; Del Valle, B.G.; Segura, F.J.M. Recent advances in designing fibrous biomaterials for the domain of biomedical, clinical, and environmental applications. ACS Biomat. Sci. Eng. 2022, 8, 3690–3716. [Google Scholar] [CrossRef] [PubMed]
- Halarnekar, D.; Ayyanar, M.; Gangapriya, P.; Kalaskar, M.; Redasani, V.; Gurav, N.; Nadaf, S.; Saoji, S.; Rarokar, N.; Gurav, S. Eco synthesized chitosan/zinc oxide nanocomposites as the next generation of nano-delivery for antibacterial, antioxidant, antidiabetic potential, and chronic wound repair. Int. J. Biol. Macromol. 2023, 242, 124764. [Google Scholar] [CrossRef] [PubMed]
- Martău, G.A.; Mihai, M.; Vodnar, D.C. The use of chitosan, alginate, and pectin in the biomedical and food sector—Biocompatibility, bioadhesiveness, and biodegradability. Polymers 2019, 11, 1837. [Google Scholar] [CrossRef] [PubMed]
- Dash, M.; Chiellini, F.; Ottenbrite, R.M.; Chiellini, E. Chitosan—A versatile semi-synthetic polymer in biomedical applications. Prog. Polym. Sci. 2011, 36, 981–1014. [Google Scholar] [CrossRef]
- Alven, S.; Buyana, B.; Feketshane, Z.; Aderibigbe, B.A. Electrospun Nanofibers/Nanofibrous Scaffolds Loaded with Silver Nanoparticles as Effective Antibacterial Wound Dressing Materials. Pharmaceutics 2021, 13, 964. [Google Scholar] [CrossRef] [PubMed]
- Ousey, K.; Swanson, T.; Sussman, G. Wound Infection in Clinical Practice Made Easy. 2022. Available online: www.woundsinternational.com/made-easy (accessed on 10 January 2024).
- Eriksson, E.; Liu, P.Y.; Schultz, G.S.; Martins-Green, M.M.; Tanaka, R.; Weir, D.; Gould, L.J.; Armstrong, D.G.; Gibbons, G.W.; Wolcott, R.; et al. Chronic wounds: Treatment consensus. Wound Repair Regen. 2022, 30, 156–171. [Google Scholar] [CrossRef] [PubMed]
- Nagle, S.M.; Stevens, K.A.; Wilbraham, S.C. Wound Assessment. [Updated on 26 June 2023]. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK482198/ (accessed on 10 January 2024).
- Ba, S.S.; Martins-Green, M. Animal models for the study of acute cutaneous wound healing. Wound Repair Regen. 2023, 31, 6–16. [Google Scholar]
- El-Sherbeni, S.; Negm, W. The wound healing effect of botanicals and pure natural substances used in in vivo models. Inflammopharmacology 2023, 31, 755–772. [Google Scholar] [CrossRef]
- Sari, M.H.M.; Cobre, A.D.F.; Pontarolo, R.; Ferreira, L.M. Status and Future Scope of Soft Nanoparticles-Based Hydrogel in Wound Healing. Pharmaceutics 2023, 15, 874. [Google Scholar] [CrossRef]
- Nosrati, H.; Heydari, M.; Tootiaei, Z.; Ganjbar, S.; Khodaei, M. Delivery of antibacterial agents for wound healing applications using polysaccharide-based scaffolds. J. Drug Deliv. Sci. Technol. 2023, 84, 104516. [Google Scholar] [CrossRef]
- Criollo-Mendoza, M.; Contreras-Angulo, L.; Leyva-l, N.; Guti, E.P.; Alfonso, L.; Heredia, J.B. Wound Healing Properties of Natural Products: Mechanisms of Action. Molecules 2023, 28, 598. [Google Scholar] [CrossRef]
- Schilrreff, P.; Alexiev, U. Chronic inflammation in non-healing skin wounds and promising natural bioactive compounds treatment. Int. J. Mol. Sci. 2022, 23, 4928. [Google Scholar] [CrossRef] [PubMed]
- MacLeod, A.S.; Mansbridge, J.N. The Innate Immune System in Acute and Chronic Wounds. Adv. Wound Care 2016, 5, 65–78. [Google Scholar] [CrossRef] [PubMed]
- Wynn, M. The impact of infection on the four stages of acute wound healing: An overview. Wounds UK 2021, 17, 26–32. [Google Scholar]
- Burgess, J.L.; Wyant, W.A.; Abdo, A.B.; Kirsner, R.S.; Jozic, I. Diabetic wound-healing science. Medicina 2021, 57, 1072. [Google Scholar] [CrossRef] [PubMed]
- Sinno, H.; Prakash, S. Complements and the wound healing cascade: An updated review. Plast. Surg. Int. 2013, 2013, 146764. [Google Scholar] [CrossRef] [PubMed]
- Kurahashi, T.; Fujii, J. Roles of Antioxidative Enzymes in Wound Healing. J. Dev. Biol. 2015, 3, 57–70. [Google Scholar] [CrossRef]
- Landén, N.; Li, D.; Ståhle, M. Transition from inflammation to proliferation: A critical step during wound healing. Cell. Mol. Life Sci. 2016, 73, 3861–3885. [Google Scholar] [CrossRef]
- Gonzalez, A.; Costa, T.; Andrade, Z.; Medrado, A. Wound healing—A literature review. An. Bras. Dermatol. 2016, 91, 614–620. [Google Scholar] [CrossRef]
- Alven, S.; Peter, S.; Mbese, Z.; Aderibigbe, B.A. Polymer-Based Wound Dressing Materials Loaded with Bioactive Agents: Potential Materials for the Treatment of Diabetic Wounds. Polymers 2022, 14, 724. [Google Scholar] [CrossRef]
- Sharma, S.; Dua, A.; Malik, A. Third-generation materials for wound dressings. Int. J. Pharm. Sci. Res. 2014, 6, 2113–2124. [Google Scholar]
- Koehler, J.; Brandl, F.P.; Goepferich, A.M. Hydrogel wound dressings for bioactive treatment of acute and chronic wounds. Eur. Polym. J. 2018, 100, 1–11. [Google Scholar] [CrossRef]
- Mir, M.; Ali, M.N.; Barakullah, A.; Gulzar, A.; Arshad, M.; Fatima, S.; Asad, M. Synthetic polymeric biomaterials for wound healing: A review. Prog. Biomater. 2018, 1, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, R.; Kishi, K. Skin Graft. Plast. Surg. Int. 2012, 2012, 563493. [Google Scholar] [CrossRef]
- Ambekar, B.; Kandasubramanian, R.S. Advancements in nanofibers for wound dressing: A review. Eur. Polym. J. 2019, 117, 304–336. [Google Scholar] [CrossRef]
- Aderibigbe, B.A.; Buyana, B. Alginate in Wound Dressings. Pharmaceutics 2018, 10, 42. [Google Scholar] [CrossRef] [PubMed]
- Fahimirad, S.; Ajalloueian, F. Naturally-derived electrospun wound dressings for target delivery of bio-active agents. Int. J. Pharm. 2019, 566, 307–328. [Google Scholar] [CrossRef]
- Buyana, B.; Alven, S.; Nqoro, X.; Aderibigbe, B.A. Antibiotics encapsulated scaffolds as potential wound dressings. In Antibiotic Materials in Healthcare; Academic Press: Cambridge, MA, USA, 2020; pp. 111–128. [Google Scholar]
- Anghel, E.L.; DeFazio, M.V.; Barker, J.C.; Janis, J.E.; Attinger, C.E. Current concepts in debridement: Science and strategies. Plas. Recons. Surg. 2016, 138, 82S–93S. [Google Scholar] [CrossRef]
- Liu, Y.F.; Ni, P.W.; Huang, Y.; Xie, T. Therapeutic strategies for chronic wound infection. Chin. J. Traumat. 2022, 25, 11–16. [Google Scholar] [CrossRef]
- Thomas, D.C.; Tsu, C.L.; Nain, R.A.; Arsat, N.; Fun, S.S.; Lah, N.A.S.N. The role of debridement in wound bed preparation in chronic wound: A narrative review. Ann. Med. Surg. 2021, 71, 102876. [Google Scholar] [CrossRef]
- Gupta, A.; Kowalczuk, M.; Heaselgrave, W.; Britland, S.T.; Martin, C.; Radecka, I. The production and application of hydrogels for wound management: A review. Eur. Polym. J. 2019, 111, 134–151. [Google Scholar] [CrossRef]
- Alven, S.; Aderibigbe, B.A. Chitosan and Cellulose-Based Hydrogels for Wound Management. Int. J. Mol. Sci. 2020, 21, 9656. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Song, S.; Liu, S.; Zhu, X.; Wang, P. Application of Nanomaterial in Hydrogels Related to Wound Healing. A review. J. Nanomater. 2022, 2022, 4656037. [Google Scholar] [CrossRef]
- Elangwe, C.N.; Morozkina, S.N.; Olekhnovich, R.O.; Krasichkov, A.; Polyakova, V.O.; Uspenskaya, M.V. A Review on Chitosan and Cellulose Hydrogels for Wound Dressings. Polymers 2022, 14, 5163. [Google Scholar] [CrossRef] [PubMed]
- Hamedi, H.; Moradi, S.; Hudson, S.M.; Tonelli, A.E. Chitosan-based hydrogels and their applications for drug delivery in wound dressings: A review. Carbohydr. Polym. 2018, 199, 445–460. [Google Scholar] [CrossRef] [PubMed]
- Shakeel, A.; Saiqa, I. Chitosan & its derivatives: A review in recent innovations. Int. J. Pharm. Sci. Res. 2015, 6, 14–30. [Google Scholar]
- Ahmed, S.; Ikram, S. Chitosan Based Scaffolds and Their Applications in Wound Healing. Achivements Life Sci. 2016, 10, 27–37. [Google Scholar] [CrossRef]
- Biranje, S.S.; Madiwale, P.V.; Patankar, K.C.; Chhabra, R.; Bangde, P.; Dandekar, P.; Adivarekar, R.V. Cytotoxicity and hemostatic activity of chitosan/carrageenan composite wound healing dressing for traumatic hemorrhage. Carbohy. Polym. 2020, 239, 116106. [Google Scholar] [CrossRef]
- Alimirzaei, F.; Vasheghani-Farahani, A.; Ghiaseddin, A.; Soleimani, M.; Najafi-gharavi, Z. pH-Sensitive Chitosan Hydrogel with Instant Gelation for Myocardial Regeneration. J. Tissue Sci. Eng. 2023, 8, 1000212. [Google Scholar]
- Azueta-aguayo, P.; Chuc-gamboa, M.; Aguilar-ayala, F.; Rodas-Junco, B.; Vargas-coronado, R.; Cauich-Rodríguez, J. Effects of Neutralization on the Physicochemical, Mechanical, and Biological Properties of Ammonium-Hydroxide-Crosslinked Chitosan Scaffolds. Int. J. Mol. Sci. 2022, 23, 14822. [Google Scholar] [CrossRef]
- Haider, A.; Kang, I. Preparation of silver nanoparticles and their industrial and biomedical applications: A comprehensive review. Adv. Mater. Sci. Eng. 2015, 2015, 165257. [Google Scholar] [CrossRef]
- Franci, G.; Falanga, A.; Galdiero, S.; Palomba, L.; Rai, M.; Morelli, G.; Galdiero, M. Silver nanoparticles as potential antibacterial agents. Molecules 2015, 20, 8856–8874. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Hu, C.; Shao, L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int. J. Nanomed. 2017, 12, 1227–1249. [Google Scholar] [CrossRef] [PubMed]
- Nqakala, Z.B.; Sibuyi, N.R.; Fadaka, A.O.; Meyer, M.; Onani, M.O.; Madiehe, A.M. Advances in nanotechnology towards the development of silver nanoparticle-based wound-healing agents. Int. J. Mol. Sci. 2021, 22, 11272. [Google Scholar] [CrossRef] [PubMed]
- Medici, S.; Peana, M.F.; Nurchi, V.M.; Zoroddu, M.A. Medical uses of silver: History, myths, and scientific evidence. J. Med. Chem. 2019, 62, 5923–5943. [Google Scholar] [CrossRef] [PubMed]
- Jannesari, M.; Akhavan, O.; Hosseini, H.R.; Bakhshi, B. Oxygen-rich graphene/ZnO2-Ag nanoframeworks with pH-switchable catalase/peroxidase activity as O2 nanobubble-self generator for bacterial inactivation. J. Coll. Interf. Sci. 2023, 637, 237–250. [Google Scholar] [CrossRef] [PubMed]
- Safdar, R.; Aziz, A.; Arunagiri, A.; Regupathi, I.; Thanabalan, M. Potential of Chitosan and its derivatives for controlled drug release applications—A review. J. Drug Deliv. Sci. Technol. 2019, 49, 642–659. [Google Scholar] [CrossRef]
- Ji, M.; Li, J.; Wang, Y.; Li, F.; Man, J.; Li, J.; Zhang, C.; Peng, S.; Wang, S. Advances in chitosan-based wound dressings: Modifications, fabrications, applications and prospects. Carbohydr. Polym. 2022, 297, 120058. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, N.; Meng, G.; He, J.; Wu, F. The effect of form of carboxymethyl-chitosan dressings on biological properties in wound healing. Colloids Surf. B Biointerface 2020, 194, 111191. [Google Scholar] [CrossRef]
- Ali Khan, Z.; Jamil, S.; Akhtar, A.; Mustehsan Bashir, M.; Yar, M. Chitosan-based hybrid materials used for wound healing applications-A short review. Int. J. Polym. Mater. Polym. Biomater. 2020, 69, 419–436. [Google Scholar] [CrossRef]
- Cao, S.; Xu, G.; Li, Q.; Zhang, S.; Yang, Y.; Chen, J. Double crosslinking chitosan sponge with antibacterial and hemostatic properties for accelerating wound repair. Compos. B Eng. 2022, 234, 109746. [Google Scholar] [CrossRef]
- Ye, H.; Cheng, J.; Yu, K. In situ reduction of silver nanoparticles by gelatin to obtain porous silver nanoparticle/chitosan composites with enhanced antimicrobial and wound-healing activity. Int. J. Biol. Macromol. 2019, 121, 633–642. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Li, S.; Ming, P.; Guo, Y.; Yuan, L.; Jiang, X.; Liu, Y.; Chen, J.; Xia, D.; He, Y.; et al. Rational design of porous structure-based sodium alginate/chitosan sponges loaded with green synthesized hybrid antibacterial agents for infected wound healing. Int. J. Biol. Macromol. 2023, 237, 123944. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Zhao, X.; Li, M.; Yan, L.; Lu, Y.; Jiang, C.; Liu, Y.; Pan, Z.; Shi, J. Antibacterial and wound healing—promoting effect of sponge-like chitosan-loaded silver nanoparticles biosynthesized by iturin. Int. J. Biol. Macromol. 2021, 181, 1183–1195. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Qian, Z.; Shi, Q.; Yang, S.; Wang, Q.; Liu, B.; Xu, J.; Guo, X.; Liu, H. An asymmetric wettable chitosan–silk fibroin composite dressing with fixed silver nanoparticles for infected wound repair: In vitro and in vivo evaluation. RSC Adv. 2017, 7, 43909. [Google Scholar] [CrossRef]
- Lu, Z.; Gao, J.; He, Q.; Wu, J.; Liang, D.; Yang, H.; Chen, R. Enhanced antibacterial and wound healing activities of microporous chitosan-Ag/ZnO composite dressing. Carbohydr. Polym. 2017, 156, 460–469. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Bao, X.; Wang, Z. A novel silver-loaded chitosan composite sponge with sustained silver release as a long-lasting antimicrobial dressing. RSC Adv. 2017, 7, 34655. [Google Scholar] [CrossRef]
- Long, L.Y.; Hu, C.; Liu, W.; Wu, C.; Lu, L.; Yang, L.; Wang, Y.B. Microfibrillated cellulose-enhanced carboxymethyl chitosan/oxidized starch sponge for chronic diabetic wound repair. Biomater. Adv. 2022, 135, 112669. [Google Scholar] [CrossRef]
- Lu, B.; Lu, F.; Zou, Y.; Liu, J.; Rong, B.; Li, Z.; Dai, F.; Wu, D.; Lan, G. In situ reduction of silver nanoparticles by chitosan-l-glutamic acid/hyaluronic acid: Enhancing antimicrobial and wound-healing activity. Carbohydr. Polym. 2017, 173, 556–565. [Google Scholar] [CrossRef]
- Wu, Z.; Zhou, W.; Deng, W.; Xu, C.; Cai, Y.; Wang, X. Antibacterial and Hemostatic Thiol-Modified Chitosan-Immobilized AgNPs Composite Sponges. ACS Appl. Mater. Interfaces. 2020, 12, 20307–20320. [Google Scholar] [CrossRef]
- Ding, L.; Shan, X.; Zhao, X.; Zha, H.; Chen, X.; Wang, J.; Cai, C.; Wang, X.; Li, G.; Hao, J.; et al. Spongy bilayer dressing composed of chitosan—Ag nanoparticles and chitosan—Bletilla striata polysaccharide for wound healing applications. Carbohydr. Polym. 2017, 157, 1538–1547. [Google Scholar] [CrossRef] [PubMed]
- Chabala, L.; Cuartas, C.; Lopez, M. Release Behavior and Antibacterial Activity of Chitosan/Alginate Blends with Aloe vera and Silver Nanoparticles. Mar. Drugs 2017, 15, 328. [Google Scholar] [CrossRef]
- Kalantari, K.; Amalina, M.A.; Jahangirian, H.; Webster, T.J. Biomedical applications of chitosan electrospun nanofibres as a green polymer—Review. Carbohydr. Polym. 2019, 207, 588–600. [Google Scholar] [CrossRef] [PubMed]
- Dadras Chomachayi, M.; Solouk, A.; Akbari, S.; Sadeghi, D.; Mirahmadi, F.; Mirzadeh, H. Electrospun nanofibers comprising of silk fibroin/gelatin for drug delivery applications: Thyme essential oil and doxycycline monohydrate release study. J. Biomed. Mater. Res. A 2018, 106, 1092–1103. [Google Scholar] [CrossRef] [PubMed]
- Elsabee, M.; Naguib, H.; Morsi, R. Chitosan based nanofibers, review. Mater. Sci. Eng. C 2012, 32, 1711–1726. [Google Scholar] [CrossRef] [PubMed]
- Fereydouni, N.; Zangouei, M.; Darroudi, M.; Hosseinpour, M.; Gholoobi, A. Antibacterial activity of chitosan-polyethylene oxide nanofibers containing silver nanoparticles against aerobic and anaerobic bacteria. J. Mol. Struct. 2023, 1274, 134304. [Google Scholar] [CrossRef]
- Heydari Foroushani, P.; Rahmani, E.; Alemzadeh, I.; Vossoughi, M.; Pourmadadi, M.; Rahdar, A.; Díez-Pascual, A.M. Curcumin sustained release with a hybrid chitosan-silk fibroin nanofiber containing silver nanoparticles as a novel highly efficient antibacterial wound dressing. Nanomaterials 2022, 12, 3426. [Google Scholar] [CrossRef]
- Ganesh, M.; Aziz, A.S.; Ubaidulla, U.; Hemalatha, P.; Saravanakumar, A.; Ravikumar, R.; Peng, M.M.; Choi, E.Y.; Jang, H.T. Sulfanilamide and silver nanoparticles-loaded polyvinyl alcohol-chitosan composite electrospun nanofibers: Synthesis and evaluation on synergism in wound healing. J. Ind. Eng. Chem. 2016, 39, 127–135. [Google Scholar] [CrossRef]
- Lee, S.J.; Heo, D.N.; Moon, J.H.; Ko, W.K.; Lee, J.B.; Bae, M.S.; Park, S.W.; Kim, J.E.; Lee, D.H.; Kim, E.C.; et al. Electrospun chitosan nanofibers with controlled levels of silver nanoparticles. Preparation, characterization and antibacterial activity. Carbohydr. Polym. 2014, 111, 530–537. [Google Scholar] [CrossRef]
- Aljohani, M.M.; Abu-Rayyan, A.; Elsayed, N.H.; Alatawi, F.A.; Al-Anazi, M.; Mustafa, S.K.; Albalawi, R.K.; Abdelmonem, R. One-pot microwave synthesis of chitosan-stabilized silver nanoparticles entrapped polyethylene oxide nanofibers, with their intrinsic antibacterial and antioxidant potency for wound healing. Int. J. Biol. Macromol. 2023, 235, 123704. [Google Scholar] [CrossRef]
- Júnior, A.F.; Ribeiro, C.A.; Leyva, M.E.; Marques, P.S.; Soares, C.R.J.; de Queiroz, A.A.A. Biophysical properties of electrospun chitosan-grafted poly(lactic acid) nanofibrous scaffolds loaded with chondroitin sulfate and silver nanoparticles. J. Biomater. Appl. 2022, 36, 1098–1110. [Google Scholar] [CrossRef] [PubMed]
- Hussein, M.A.M.; Guler, E.; Rayaman, E.; Cam, M.E.; Sahin, A.; Grinholc, M.; Mansuroglu, D.S.; Sahin, Y.M.; Gunduz, O.; Muhammed, M.; et al. Dual-drug delivery of Ag-chitosan nanoparticles and phenytoin via core-shell PVA/PCL electrospun nanofibers. Carbohydr. Polym. 2021, 270, 118373. [Google Scholar] [CrossRef] [PubMed]
- Kohsari, I.; Shariatinia, Z.; Pourmortazavi, S.M. Antibacterial electrospun chitosan–polyethylene oxide nanocomposite mats containing bioactive silver nanoparticles. Carbohydr. Polym. 2016, 140, 287–298. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, M.; Validi, M.; Gholipour, A.; Makvandi, P.; Sharifi, E. Chitosan nanofiber biocomposites for potential wound healing applications: Antioxidant activity with synergic antibacterial effect. Bioeng. Transl. Med. 2022, 7, e10254. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Cheng, F.; Gao, J.; Wang, L. Antibacterial wound dressing from chitosan/polyethylene oxide nanofibers mats embedded with silver nanoparticles. J. Biomater. Appl. 2015, 29, 1086–1095. [Google Scholar] [CrossRef]
- Abdelgawad, A.M.; Hudson, S.M.; Rojas, O.J. Antimicrobial wound dressing nanofiber mats from multicomponent (chitosan/silver-NPs/polyvinyl alcohol) systems. Carbohydr. Polym. 2014, 100, 166–178. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhou, Y.; Wu, X.; Wang, L.; Xu, L.; Wei, S. A facile method for electrospinning of Ag nanoparticles/poly (vinyl alcohol)/carboxymethyl-chitosan nanofibers. Appl. Surf. Sci. 2012, 258, 8867–8873. [Google Scholar] [CrossRef]
- Kharaghani, D.; Khan, M.Q.; Tamada, Y.; Ogasawara, H.; Inoue, Y.; Saito, Y.; Hashmi, M.; Kim, I.S. Fabrication of electrospun antibacterial PVA/Cs nanofibers loaded with CuNPs and AgNPs by an in-situ method. Polym. Test. 2018, 72, 315–321. [Google Scholar] [CrossRef]
- Liu, C.; Zhu, Y.; Lun, X.; Sheng, H.; Yan, A. Effects of wound dressing based on the combination of silver@curcumin nanoparticles and electrospun chitosan nanofibers on wound healing. Bioengineered 2022, 13, 4328–4339. [Google Scholar] [CrossRef]
- Kumar, A.; Jaiswal, M. Design and in vitro investigation of nanocomposite hydrogel based in situ spray dressing for chronic wounds and synthesis of silver nanoparticles using green chemistry. J. Appl. Polym. Sci. 2016, 133, 43260. [Google Scholar] [CrossRef]
- Bilici, C.; Can, V.; Noöchel, U.; Behl, M.; Lendlein, A.; Okay, O. Melt-processable shape-memory hydrogels with self-healing ability of high mechanical strength. Macromolecules 2016, 49, 7442–7449. [Google Scholar] [CrossRef]
- Yoo, H.; Kim, H. Synthesis and Properties of Waterborne Polyurethane Hydro-gels for Wound Healing Dressings. J. Biomed. Mater. Res. Part B Appl. Biomater. 2008, 85B, 326–333. [Google Scholar] [CrossRef] [PubMed]
- Tavakoli, S.; Klar, A.S. Advanced Hydrogels as Wound Dressings. Biomolecules 2020, 10, 1169. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Huang, J.; Wu, X.; Ren, Y.; Li, Z.; Ren, J. Controlled release of silver ions from AgNPs using a hydrogel based on konjac glucomannan and chitosan for infected wounds. Int. J. Biol. Macromol. 2020, 149, 148–157. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Liao, X.; Zhang, J.; Yang, F.; Fan, Z. Novel chitosan hydrogels reinforced by silver nanoparticles with ultrahigh mechanical and high antibacterial properties for accelerating wound healing. Int. J. Biol. Macromol. 2018, 119, 402–412. [Google Scholar] [CrossRef] [PubMed]
- Nešović, K.; Janković, A.; Radetić, T.; Vukašinović-Sekulić, M.; Kojić, V.; Živković, L.; Perić-Grujić, A.; Rhee, K.Y.; Mišković-Stanković, V. Chitosan-based hydrogel wound dressings with electrochemically incorporated silver nanoparticles–In vitro study. Eur. Polym. J. 2019, 121, 109257. [Google Scholar] [CrossRef]
- Chu, W.; Wang, P.; Ma, Z.; Peng, L.; Guo, C.; Fu, Y.; Ding, L. Lupeol-loaded chitosan-Ag+ nanoparticle/sericin hydrogel accelerates wound healing and effectively inhibits bacterial infection. Int. J. Biol. Macromol. 2023, 243, 125310. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Behl, T.; Chadha, S. Synthesis of physically crosslinked PVA/Chitosan loaded silver nanoparticles hydrogels with tunable mechanical properties and antibacterial effects. Int. J. Biol. Macromol. 2020, 149, 1262–1274. [Google Scholar] [CrossRef]
- Chalitangkoon, J.; Wongkittisin, M.; Monvisade, P. Silver loaded hydroxyethylacryl chitosan/sodium alginate hydrogel films for controlled drug release wound dressings. Int. J. Biol. Macromol. 2020, 159, 194–203. [Google Scholar] [CrossRef]
- Choudhary, P.; Ramalingam, B.; Das, S.K. Rational design of antimicrobial peptide conjugated graphene-silver nanoparticle loaded chitosan wound dressing. Int. J. Biol. Macromol. 2023, 246, 125347. [Google Scholar] [CrossRef]
- Pandian, M.; Selvaprithviraj, V.; Pradeep, A.; Rangasamy, J. In-situ silver nanoparticles incorporated N, O-carboxymethyl chitosan-based adhesive, self-healing, conductive, antibacterial and anti-biofilm hydrogel. Int. J. Biol. Macromol. 2021, 188, 501–511. [Google Scholar] [CrossRef] [PubMed]
- Zhou, K.; Zhang, Z.; Xue, J.; Shang, J.; Ding, D.; Zhang, W.; Liu, Z.; Yan, F.; Cheng, N. Hybrid Ag nanoparticles/polyoxometalate-polydopamine nano-flowers loaded chitosan/gelatin hydrogel scaffolds with synergistic photothermal/chemodynamic/Ag+ antibacterial action for accelerated wound healing. Int. J. Biol. Macromol. 2022, 221, 135–148. [Google Scholar] [CrossRef] [PubMed]
- Aldakheel, F.M.; Mohsen, D.; El Sayed, M.M.; Alawam, K.A.; Binshaya, A.S.; Alduraywish, S.A. Silver Nanoparticles Loaded on Chitosan-g-PVA Hydrogel for the Wound-Healing Applications. Molecules 2023, 28, 3241. [Google Scholar] [CrossRef] [PubMed]
- Suflet, D.M.; Popescu, I.; Pelin, I.M.; Ichim, D.L.; Daraba, O.M.; Constantin, M.; Fundueanu, G. Dual crosslinked chitosan/PVA hydrogels containing silver nanoparticles with antimicrobial properties. Pharmaceutics 2021, 13, 1461. [Google Scholar] [CrossRef] [PubMed]
- Bharathi, S.; Ramesh, B.; Kumaran, S.; Radhakrishnan, M.; Saravanan, D.; Saravanan, P.; Pugazhvendan, S.R. Development of nanobiomaterial for wound healing based on silver nanoparticles loaded on chitosan hydrogel. 3 Biotech 2021, 11, 490. [Google Scholar] [CrossRef] [PubMed]
- Ferfera-Harrar, H.; Berdous, D.; Benhalima, T. Hydrogel nanocomposites based on chitosan-g-polyacrylamide and silver nanoparticles synthesized using Curcuma longa for antibacterial applications. Polym. Bull. 2018, 75, 2819–2846. [Google Scholar] [CrossRef]
- Khampieng, T.; Wongkittithavorn, S.; Chaiarwut, S.; Ekabutr, P.; Pavasant, P.; Supaphol, P. Silver nanoparticles-based hydrogel: Characterization of material parameters for pressure ulcer dressing applications. J. Drug Deliv. Sci. Technol. 2018, 44, 91–100. [Google Scholar] [CrossRef]
- Lee, Y.; Hong, Y.; Wu, T. Novel silver and nanoparticle-encapsulated growth factor co-loaded chitosan composite hydrogel with sustained antimicrobility and promoted biological properties for diabetic wound healing. Mater. Sci. Eng. C 2021, 118, 111385. [Google Scholar] [CrossRef]
- Masood, N.; Ahmed, R.; Tariq, M.; Ahmed, Z.; Masoud, M.S.; Ali, I.; Asghar, R.; Andleeb, A.; Hasan, A. Silver nanoparticle impregnated chitosan-PEG hydrogel enhances wound healing in diabetes-induced rabbits. Int. J. Pharm. 2019, 559, 23–36. [Google Scholar] [CrossRef]
- El-Naggar, M.; Othman, S.; Allam, A.; Morsy, O. Synthesis, drying process and medical application of polysaccharide-based aerogels. Int. J. Biol. Macromol. 2020, 145, 1115–1128. [Google Scholar] [CrossRef]
- Budtova, T. Cellulose II aerogels: A review. Cellulose 2019, 26, 81–121. [Google Scholar] [CrossRef]
- Alam, M.; Christopher, L. Natural cellulose-chitosan crosslinked superabsorbent hydrogels with superior swelling properties. ACS Sustain. Chem. Eng. 2018, 6, 8736–8742. [Google Scholar] [CrossRef]
- Antonyuk, S.; Heinrich, S.; Gurikov, P.; Raman, S.; Smirnova, I. Influence of coating and wetting on the mechanical behaviour of highly porous cylindrical aerogel particles. Powder Technol. 2015, 285, 34–43. [Google Scholar] [CrossRef]
- Mehling, T.; Smirnova, I.; Guenther, U.; Neubert, R. Polysaccharide-based aerogels as drug carriers. J. Non-Cryst. Solids 2009, 355, 2472–2479. [Google Scholar] [CrossRef]
- Xu, N.; Yuan, Y.; Ding, L.; Li, J.; Jia, J.; Li, Z.; He, D.; Yu, Y. Multifunctional chitosan/gelatin@ tannic acid cryogels decorated with in situ reduced silver nanoparticles for wound healing. Burns Trauma 2022, 10, tkac019. [Google Scholar] [CrossRef] [PubMed]
- Zou, X.; Deng, P.; Zhou, C.; Hou, Y.; Chen, R. Preparation of a novel antibacterial chitosan-poly (ethylene glycol) cryogel/silver nanoparticles composites. J. Biomater. Sci. Polym. Ed. 2017, 28, 1324–1337. [Google Scholar] [CrossRef] [PubMed]
- Demir, D.; Özdemir, S.; Yalçın, M.S.; Bölgen, N. Chitosan cryogel microspheres decorated with silver nanoparticles as injectable and antimicrobial scaffolds. Int. J. Polym. Mater. Polym. Biomater. 2020, 69, 919–927. [Google Scholar] [CrossRef]
- Mohammed, A.M.; Hassan, K.T.; Hassan, O.M. Assessment of antimicrobial activity of chitosan/silver nanoparticles hydrogel and cryogel microspheres. Int. J. Biol. Macromol. 2023, 233, 123580. [Google Scholar] [CrossRef]
- Negut, I.; Grumezescu, V.; Grumezescu, A.M. Treatment Strategies for Infected Wounds. Molecules 2018, 23, 2392. [Google Scholar] [CrossRef]
- Gupta, B.; Agarwal, R.; Alam, M. Textile-based smart wound dressings. Indian J. Fibre Text. Res. 2010, 35, 174–184. [Google Scholar]
- Sood, A.; Granick, M.S.; Tomaselli, N.L. Wound dressings and comparative effectiveness data. Adv. Wound Care 2014, 3, 511–529. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Zhang, L.; Zheng, S.; Chai, S.; Wei, J.; Zhong, L.; He, Y.; Xue, J. Bacteriostatic activity and cytotoxicity of bacterial cellulose-chitosan film loaded with in-situ synthesized silver nanoparticles. Carbohydr. Polym. 2022, 281, 119017. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.; Zhao, B.; Zhu, J.; Lu, X.; Jiang, G. Preparation and characterization of chitosan/sodium cellulose sulfate/silver nanoparticles composite films for wound dressing. Mater. Today Commun. 2022, 33, 104192. [Google Scholar] [CrossRef]
- Vimala, K.; Mohan, Y.M.; Sivudu, K.S.; Varaprasad, K.; Ravindra, S.; Reddy, N.N.; Padma, Y.; Sreedhar, B.; MohanaRaju, K. Fabrication of porous chitosan films impregnated with silver nanoparticles: A facile approach for superior antibacterial application. Colloids Surf. B Biointerfaces 2010, 76, 248–258. [Google Scholar] [CrossRef] [PubMed]
- Bajpai, S.K.; Ahuja, S.; Chand, N.; Bajpai, M. Nano cellulose dispersed chitosan film with Ag NPs/Curcumin: An in vivo study on Albino Rats for wound dressing. Int. J. Biol. Macromol. 2017, 104, 1012–1019. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.T.T.; Tran, N.T.K.; Le, T.Q.; Nguyen, T.T.A.; Nguyen, L.T.M.; Van Tran, T. Passion fruit peel pectin/chitosan-based antibacterial films incorporated with biosynthesized silver nanoparticles for wound healing application. Alexandria Eng. J. 2023, 69, 419–430. [Google Scholar] [CrossRef]
- Marie Arockianathan, P.; Sekar, S.; Kumaran, B.; Sastry, T.P. Preparation, characterization and evaluation of biocomposite films containing chitosan and sago starch impregnated with silver nanoparticles. Int. J. Biol. Macromol. 2012, 50, 939–946. [Google Scholar] [CrossRef]
- Shah, A.; Ali Buabeid, M.; Arafa, E.S.A.; Hussain, I.; Li, L.; Murtaza, G. The wound healing and antibacterial potential of triple-component nanocomposite (chitosan-silver-sericin) films loaded with moxifloxacin. Int. J. Pharm. 2019, 564, 22–38. [Google Scholar] [CrossRef]
- Hasibuan, P.A.Z.; Tanjung, M.; Gea, S.; Pasaribu, K.M.; Harahap, M.; Perangin-Angin, Y.A.; Prayoga, A.; Ginting, J.G. Antimicrobial and antihemolytic properties of a CNF/AgNP-chitosan film: A potential wound dressing material. Heliyon 2021, 7, e08197. [Google Scholar] [CrossRef]
- Ambrogi, V.; Donnadio, A.; Pietrella, D.; Latterini, L.; Proietti, F.A.; Marmottini, F.; Padeletti, G.; Kaciulis, S.; Giovagnoli, S.; Ricci, M. Chitosan films containing mesoporous SBA-15 supported silver nanoparticles for wound dressing. J. Mater. Chem. B 2014, 2, 6054. [Google Scholar] [CrossRef] [PubMed]
- Cadinoiu, A.N.; Rata, D.M.; Daraba, O.M.; Ichim, D.L.; Popescu, I.; Solcan, C.; Solcan, G. Silver nanoparticles biocomposite films with antimicrobial activity: In vitro and in vivo tests. Int. J. Mol. Sci. 2022, 23, 10671. [Google Scholar] [CrossRef] [PubMed]
- Thomas, V.; Yallapu, M.M.; Sreedhar, B.; Bajpai, S.K. Fabrication, characterization of chitosan/nanosilver film and its potential antibacterial application. J. Biomater. Sci. Polym. Ed. 2009, 20, 2129–2144. [Google Scholar] [CrossRef] [PubMed]
- Dong, F.; Li, S. Wound dressings based on chitosan-dialdehyde cellulose nanocrystals-silver nanoparticles: Mechanical strength, antibacterial activity and cytotoxicity. Polymers 2018, 10, 673. [Google Scholar] [CrossRef] [PubMed]
- Benskin, L.L. Evidence for Polymeric Membrane Dressings as a Unique Dressing Subcategory, Using Pressure Ulcers as an Example. Adv. Wound Care 2018, 7, 419–426. [Google Scholar] [CrossRef]
- Nhi, T.T.; Khon, H.C.; Hoai, N.T.T.; Bao, B.C.; Quyen, T.N.; Van Toi, V.; Hiep, N.T. Fabrication of electrospun polycaprolactone coated with chitosan-silver nanoparticle membranes for wound dressing applications. J. Mater. Sci. Mater. Med. 2016, 27, 156. [Google Scholar] [CrossRef] [PubMed]
- Tang, T.N.; Nguyen, T.H.A.; Tran, C.M.; Doan, V.K.; Nguyen, N.T.T.; Vu, B.T.; Dang, N.N.T.; Duong, T.T.; Pham, V.H.; Dai Tran, L.; et al. Fabrication of silver nanoparticle-containing electrospun polycaprolactone membrane coated with chitosan oligosaccharides for skin wound care. J. Sci. Adv. Mater. Devices 2023, 8, 100582. [Google Scholar] [CrossRef]
- El-Aassar, M.R.; Ibrahim, O.M.; Fouda, M.M.; Fakhry, H.; Ajarem, J.; Maodaa, S.N.; Allam, A.A.; Hafez, E.E. Wound dressing of chitosan-based-crosslinked gelatin/polyvinyl pyrrolidone embedded silver nanoparticles, for targeting multidrug resistance microbes. Carbohydr. Polym. 2021, 255, 117484. [Google Scholar] [CrossRef] [PubMed]
- Dhivya, S.; Padma, V.V.; Santhini, E. Wound dressings—A review. BioMedicine 2015, 5, 24–28. [Google Scholar] [CrossRef]
- Morgan, D. Wounds—What should a dressing formulary include? Hosp. Pharm. 2002, 9, 216–261. [Google Scholar]
- Ramos-E-Silva, M.; Cristina, M.; Castro, R.D.E. New dressings, including tissue-engineered living skin. Clin. Dermatol. 2002, 6, 715–723. [Google Scholar] [CrossRef]
- Guibal, E.; Cambe, S.; Bayle, S.; Taulemesse, J.; Vincent, T. Silver/chitosan/cellulose fibers foam composites: From synthesis to antibacterial properties. J. Colloid Interface Sci. 2013, 393, 411–420. [Google Scholar] [CrossRef]
- Biswas, D.P.; Brien-simpson, N.M.O.; Reynolds, E.C.; Connor, A.J.O.; Tran, P.A. Comparative study of novel in situ decorated porous chitosan-selenium scaffolds and porous chitosan-silver scaffolds towards antimicrobial wound dressing application. J. Colloid Interface Sci. 2018, 515, 78–91. [Google Scholar] [CrossRef] [PubMed]
- Permyakova, E.S.; Konopatsky, A.S.; Ershov, K.I.; Bakhareva, K.I.; Sitnikova, N.A.; Shtansky, D.V.; Solovieva, A.O.; Manakhov, A.M. Ag-Contained Superabsorbent Curdlan–Chitosan Foams for Healing Wounds in a Type-2 Diabetic Mice Model. Pharmaceutics 2022, 14, 724. [Google Scholar] [CrossRef] [PubMed]
- Lipsky, B.; Hoey, C. Topical antimicrobial therapy for treating chronic wounds. Clin. Infect. Dis. 2009, 49, 1541–1549. [Google Scholar] [CrossRef]
- Jaiswal, M.; Koul, V.; Dinda, A.K. In vitro and in vivo investigational studies of a nanocomposite- hydrogel-based dressing with a silver-coated chitosan wafer for full-thickness skin wounds. J. Appl. Polym. Sci. 2016, 133, 1–12. [Google Scholar] [CrossRef]
- Mo, X.; Cen, J.; Gibson, E.; Wang, R.; Percival, S.L. An open multicenter comparative randomized clinical study on chitosan. Wound Rep. Reg. 2015, 23, 518–524. [Google Scholar] [CrossRef]
- Abdollahimajd, F.; Pourani, M.R.; Mahdavi, H.; Mirzadeh, H.; Younespour, S.; Moravvej, H. Efficacy and safety of chitosan-based bio-compatible dressing versus nanosilver (ActicoatTM) dressing in treatment of recalcitrant diabetic wounds: A randomized clinical trial. Derm. Ther. 2022, 35, e15682. [Google Scholar] [CrossRef]
- Halim, A.S.; Nor, F.M.; Saad, A.Z.; Nasir, N.A.; Norsa’adah, B.; Ujang, Z. Efficacy of chitosan derivative films versus hydrocolloid dressing on superficial wounds. J. Taibah Univ. Med. Sci. 2018, 13, 512–520. [Google Scholar] [CrossRef]
- Hu, J.; Lin, Y.; Cui, C.; Zhang, F.; Su, T.; Guo, K.; Chen, T. Clinical efficacy of wet dressing combined with chitosan wound dressing in the treatment of deep second-degree burn wounds: A prospective, randomised, single-blind, positive control clinical trial. Int. Wound J. 2023, 20, 699–705. [Google Scholar] [CrossRef]
- Yu, R.; Yang, Y.; He, J.; Li, M.; Guo, B. Novel supramolecular self-healing silk fibroin-based hydrogel via host–guest interaction as wound dressing to enhance wound healing. Chem. Eng. J. 2021, 417, 128278. [Google Scholar] [CrossRef]
- Surgeons’ Choice Highly Bioadhesive Haemostat. Available online: https://axiobio.com/axiostat-haemostatic-dressings/ (accessed on 7 October 2023).
- Devlin, J.J.; Kircher, S.; Kozen, B.G.; Littlejohn, L.F.; Johnson, A.S. Comparison of ChitoFlex®, CELOX™, and QuikClot® in control of hemorrhage. J. Emerg. Med. 2011, 41, 237–245. [Google Scholar] [CrossRef]
- CHITOSAM™ Haemostatic Dressing. Available online: https://www.statmedical.co.za/bleeding-control-haemostatic-dressing.html (accessed on 7 October 2023).
- HemCon Bandage PRO Hemorrhage Control Bandages. Available online: https://www.boundtree.com/first-aid-trauma-wound-care/hemostatics/hemcon-bandage-pro-hemorrhage-control-bandages/p/group000248 (accessed on 7 October 2023).
- Matica, M.A.; Aachmann, F.L.; Tøndervik, A.; Sletta, H.; Ostafe, V. Chitosan as a wound dressing starting material: Antimicrobial properties and mode of action. Int. J. Mol. Sci. 2019, 20, 5889. [Google Scholar] [CrossRef]
- Liu, H.; Wang, C.; Li, C.; Qin, Y.; Wang, Z.; Yang, F.; Li, Z.; Wang, J. A functional chitosan-based hydrogel as a wound dressing and drug delivery system in the treatment of wound healing. RSC Adv. 2018, 8, 7533–7549. [Google Scholar] [CrossRef]
- Tsegay, F.; Elsherif, M.; Butt, H. Smart 3D Printed Hydrogel Skin Wound Bandages: A Review. Polymers 2022, 14, 1012. [Google Scholar] [CrossRef]
- KYTOCEL. Available online: https://www.wound-care.co.uk/dressings/kytocel.html (accessed on 7 October 2023).
- ExcelArrest®XT. Available online: http://global.hemostasisllc.com/excelarrest.html (accessed on 7 October 2023).
- ChitoHeal Gel. Available online: https://chitotech.com/page/627/ChitoHeal-Gel (accessed on 7 October 2023).
Types of Wound Dressing | Description | Advantages | Limitations | References |
---|---|---|---|---|
Traditional dressings (e.g., gauze, wool dressing, bandages, plaster, and gauze) | Traditional wound dressings are dry and utilized as secondary dressings for protecting the injury from contamination. These dressings have been widely utilized since the 19th century because of their simple manufacturing, low cost, and easy application. Traditional dressings are normally employed for wounds with mild exudate. | Protect wounds from contamination, cushion the injury, absorb wound fluids, and terminate bleeding. | Leakage of exudate that promotes bacterial invasion of the wound. | [33,34] |
Skin substitutes (e.g., TransCyte, OrCel, and Apligraf) | There are two types of skin substitutes: cellular (which imitates the skin layer made up of fibroblasts and Keratinocytes) and acellular matrix (which contains only the dermal elements with fibroblasts). The main mechanism of skin substitutes is to release and activate growth factors by which epithelialization is accomplished. These dressings are appropriate for venous leg ulcers and diabetic foot ulcers. | Effective in skin regeneration. | Transmission of d34iseases and wound infections, are expensive, can be rejected by the immune system of the host, and possess inadequate shelf life. | [35] |
Dermal grafts (e.g., Acellular xenografts, allografts, and autografts) | Dermal grafts are the important dressings in dermatology and plastic surgery. These wound dressings are normally not considered for the management of complex lesions. They are used in various clinical situations, including traumatic wounds, burn reconstruction, defects after oncologic resection, etc. | Effective for the treatment of numerous wounds, such as oncologic resection, traumatic lesions, burns, etc. | Inability to treat complex wounds. | [36] |
Interactive dressings (e.g., acellular xenografts, allografts, and autografts) | Interactive dressings are primarily used to protect wounds from bacterial infections. They are frequently fabricated from synthetic polymers. These wound dressings can be used for the treatment of venous stasis ulcers, pressure ulcers, arterial ulcers, and burns. | Offer moisture and enhance re-epithelialization and granulation process. | Poor antimicrobial effects. | [37] |
Bioactive dressings (e.g., sponges, hydrocolloids, wafers, hydrogels, nanofibers, foams, and films) | Bioactive dressings are wound dressings that are mainly used for drug delivery of various bioactive agents (e.g., antibacterial molecules, growth factors, vitamins, etc.). They induce tissue repair, especially when the natural healing processes of the body are compromised. Bioactive dressings are effective for chronic injuries such as pressure, diabetes, and venous ulcers. | Good biocompatibility and biodegradability and are drug-delivery systems. | No obvious shortcomings. | [38,39] |
Types of Wound Dressing | Polymers Combined Chitosan | Preclinical Studies (In Vivo or In Vitro) | Significant Therapeutic Outcomes | References |
---|---|---|---|---|
Sponges | Gelatin | In vitro cytotoxicity and antibacterial studies | High cell viability towards skin cells and good antibacterial activity | [65] |
Sponges | Alginate | In vitro antimicrobial analysis | Potential antibacterial efficacy against P. aeruginosa and S. aureus | [66] |
Sponges | _ | In vitro antibacterial experiments | High inhibition efficiency against S. aureus and P. aeruginosa | [67] |
Sponges | Silk fibroin | In vitro antibacterial and in vivo wound healing studies | Superior antibacterial activity and accelerated wound-healing process of 99.38% on the 14th. | [68] |
Sponges | _ | In vitro antimicrobial and in vivo wound healing studies | Superior antibacterial effects against E. coli, P. aeruginosa, S. aureus, and MRSA with excellent healing activity compared to ZnO ointment gauze. | [69] |
Sponges | _ | In vitro antimicrobial and cell viability analysis | Antibacterial activity against E. coli and S. aureus with non-toxicity towards MC3T3 cells | [70] |
Sponges | _ | In vitro antimicrobial and cell proliferation analysis | Effective antibacterial outcomes and promoted cell migration and proliferation | [71] |
Sponges | Hyaluronic acid | In vitro antimicrobial and in vivo wound healing studies | High inhibition of bacterial growth and faster wound contraction. | [72] |
Sponges | _ | In vitro antibacterial studies | Excellent antibacterial studies against E. coli, P. aeruginosa, and S. aureus. | [73] |
Sponges | Bletilla striata polysaccharide | In vitro antimicrobial and in vivo wound healing studies | Potent antibacterial against E. coli, P. aeruginosa, and S. aureus with faster rate and wound healing. | [74] |
Sponges | Alginate | In vitro antimicrobial studies | Greater bacterial inhibition than gentamicin | [75] |
Nanofibers | PEO | In vitro antimicrobial studies | Good antibacterial efficacy against P. aeruginosa and S. aureus | [79] |
Nanofibers | Silk fibroin | In vitro wound healing and antibacterial studies | Good wound healing effects and stronger bacterial inhibitory effects | [80] |
Nanofibers | PVA | In vitro drug release studies | Sustained drug release profile | [81] |
Nanofibers | _ | In vitro drug release studies | Effective antibacterial effects against MRSA and P. aeruginosa | [82] |
Nanofibers | PEO | In vitro antimicrobial and cell viability analysis | Superior antibacterial efficacy against S. aureus and E. coli with high cell viability of 93.5% | [83] |
Nanofibers | PLA | In vitro antimicrobial and cytotoxicity analysis | Good antibacterial efficacy against S. aureus and E. coli with excellent cytocompatibility | [84] |
Nanofiber | PVA and PCL | In vitro drug release and antimicrobial studies | Controlled drug release and superior antibacterial efficacy against E. coli and S. aureus | [85] |
Nanofibers | PEO | In vitro antimicrobial analysis | Excellent antibacterial effects against S. aureus and E. coli | [86] |
Nanofibers | PEO | In vitro antibacterial and cytotoxicity experiments | Good antibacterial efficacy and excellent cytocompatibility | [87] |
Nanofibers | PEO | In vitro drug release and antimicrobial studies | Sustained drug release and excellent antibacterial activity | [88] |
Nanofibers | PVA | In vitro antimicrobial studies | Superior antibacterial properties | [89] |
Nanofibers | PVA | In vitro antimicrobial studies | Superior antimicrobial efficacy against S. aureus | [90] |
Nanofibers | PVA | In vitro antibacterial studies | Superior antibacterial efficacy | [91] |
Nanofibers | _ | In vivo wound closure studies | Improved the wound healing rates | [92] |
Hydrogels | Konjac glucomannan | In vitro drug release and in vivo antimicrobial studies | Sustained drug release mechanism and accelerated wound healing rate. | [97] |
Hydrogels | _ | In vitro antibacterial studies | Superior antimicrobial activity against E. coli and S. aureus | [98] |
Hydrogels | _ | In vitro antibacterial and cytotoxicity experiments | Good antibacterial efficacy against S. aureus and E. coli and high cell viability towards skin cells | [99] |
Hydrogels | Sericin | In vivo studies using infected full-thickness wound models | Accelerated the wound closure rate | [100] |
Hydrogels | PVA | In vitro antibacterial studies | Superior antimicrobial activity against E. coli and S. aureus | [101] |
Hydrogels | _ | In vitro antibacterial and cytotoxicity experiments | Antibacterial efficacy against E. coli and S. aureus | [102] |
Hydrogels | ε-poly-L-lysine | In vivo wound healing studies | Accelerated rate of wound healing | [103] |
Hydrogels | _ | In vitro antibacterial studies | superior anti-biofilm efficacy against P. aeruginosa, E. coli, and S. aureus | [104] |
Hydrogels | Gelatin | In vitro wound healing and antibacterial studies | Accelerated wound-healing process with superior antibacterial efficacy against E. coli and S. aureus | [105] |
Hydrogels | PVA | In vitro antibacterial studies | Excellent antibacterial efficacy against S. aureus and E. coli | [106] |
Hydrogels | PVA | In vitro antimicrobial studies | High inhibitory effect against K. pneumonia and S. aureus | [107] |
Hydrogels | _ | In vivo antibacterial wound healing studies | Accelerated wound healing of excisional wounds infected with P. aeruginosa | [108] |
Hydrogels | Polyacrylamide | In vitro antimicrobial studies | Superior antibacterial efficacy against S. aureus and E. coli | [109] |
Hydrogels | Alginate and PVP | In vitro antimicrobial studies | Superior antibacterial efficacy against P. aeruginosa, E. coli, S. aureus, and MRSA | [110] |
Hydrogels | _ | In vivo wound healing and in vitro antimicrobial studies | Enhanced diabetic wound repair effects and effective antibacterial effects against S. aureus and S. epidermidis | [111] |
Hydrogels | PEG | In vivo wound healing and in vitro antimicrobial studies | Sustained drug release, enhanced wound healing effects, and superior broad-spectrum antibacterial efficacy. | [112] |
Cryogels | Gelatin | In vivo wound healing and in vitro antimicrobial studies | Accelerated wound closure. | [118] |
Cryogels | PEG | In vitro antibacterial studies | Excellent antibacterial efficacy against E. coli | [119] |
Cryogels | _ | In vitro antioxidant and antibacterial studies | Good antioxidant and antibacterial efficacy | [120] |
Cryogels | _ | In vitro antibacterial studies | Excellent antibacterial efficacy | [121] |
Films | Cellulose | In vitro antibacterial and cytotoxicity studies | Superior antibacterial efficacy and excellent cytocompatibility | [125] |
Films | Graphene and ε-poly-L-lysine | In vitro antibacterial studies | Excellent antibacterial effects | [103] |
Films | Sodium cellulose sulfate | In vitro antibacterial studies | Antibacterial activity against E. coli and S. aureus, | [126] |
Films | _ | In vitro antimicrobial studies | Superior growth inhibition of E. coli, K. pneumoniae, and Bacillus | [127] |
Films | _ | In vivo wound closure studies | Accelerated wound reduction | [128] |
Films | Pectin | In vivo wound healing and in vitro antimicrobial studies | Excellent antimicrobial effects and accelerated wound healing | [129] |
Films | Sago starch | In vivo wound healing | Accelerated wound closure rate | [130] |
Films | Sericin | In vivo wound healing and in vitro antimicrobial studies | Good bactericidal efficacy and rapid wound closure | [131] |
Films | Cellulose | In vitro antimicrobial studies | Excellent antibacterial efficacy | [132] |
Films | _ | In vitro antimicrobial studies | Good antibacterial efficacy | [133] |
Films | PVA | In vitro antibacterial and cytotoxicity studies | Superior antibacterial efficacy against S. aureus and cytocompatibility towards HDFa cell lines | [134] |
Films | _ | In vitro antimicrobial studies | Superior antibacterial activity | [135] |
Films | Cellulose | In vitro antimicrobial studies | Good antibacterial efficacy | [136] |
Membranes | PCL | In vitro antibacterial and cytotoxicity studies | Good antibacterial efficacy against P. aeruginosa, E. coli, and S. aureus with high cell proliferation. | [138] |
Membranes | PCL | In vitro antimicrobial studies | Excellent antibacterial efficacy. | [139] |
Membranes | Gelatin and PVP | In vitro antimicrobial studies | Superior antibacterial activity. | [140] |
Foams | _ | In vitro antimicrobial studies | Enhanced antibacterial effects | [144] |
Foams | PVA | In vitro antimicrobial studies | Good antibacterial efficacy against E. coli, S. aureus, and MRSA | [145] |
Foams | Curdlan | In vivo wound healing studies | Accelerated rate of wound contraction | [146] |
Wafers | _ | In vivo wound healing and in vitro antimicrobial studies | Good antibacterial activity and a higher rate of wound contraction | [148] |
Products | Wound Dressing Type | Therapeutic Outcomes | References |
---|---|---|---|
Axiostat® | Sponge | Acts as a hemostatic material to terminate severe to moderate bleeding caused by abrasions, cuts, punctures, lacerations, and arterial or venous bleeding. | [154] |
Celox™ | Granules | Works by stimulating clot development via adsorption and dehydration and inducing the bonding of red blood cells. | [155] |
ChitoSAM™ 100 | Non-woven chitosan dressing | Manufactured to rapidly terminate chronic bleeding, and its ease of use is very effective. | [156] |
HemCon® Strip PRO | Bandage | Bio-adhesive nature results in sealing the lesion and controls bleeding. | [157] |
PosiSep® | Hemostatic sponge | Minimizes bleeding and oedema post-surgery. | [158] |
Chitoflex® HemCon | Gel | Good biocompatibility and antibacterial efficacy. | [48] |
Tegasorb® 3M | Hydrogel | Swells when it is absorbing exudate and forms a soft gel. Suitable for chronic wounds. | [47] |
Chitopack C® Eisai | Gel | Completely repairs disrupted body tissues and induced skin regeneration. | [159] |
Chitoseal® Abbott | Gel | Possesses good hemostatic functions and biocompatibility. Appropriate for bleeding lesions. | [159] |
Chitoderm® plus | Gel | Good absorbent characteristics | [160] |
KytoCel | Fiber | An extremely absorbent wound dressing appropriate for the treatment of high-exuding wounds. | [161] |
ExcelArrest® XT | Patch | Accelerates the clotting process to control bleeding from the skin. | [162] |
ChitoRhino | Gel | Excellent hemostasis efficacy and potential for wound repair process after endoscopic sinus surgery | [158] |
ChitoHeal | Gel | Accelerates the process of wound healing; biocompatible; reduces scar formation; effective for diabetic foot ulcers, burns, scratches, and cuts. | [163] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alven, S.; Aderibigbe, B.A. Chitosan-Based Scaffolds Incorporated with Silver Nanoparticles for the Treatment of Infected Wounds. Pharmaceutics 2024, 16, 327. https://doi.org/10.3390/pharmaceutics16030327
Alven S, Aderibigbe BA. Chitosan-Based Scaffolds Incorporated with Silver Nanoparticles for the Treatment of Infected Wounds. Pharmaceutics. 2024; 16(3):327. https://doi.org/10.3390/pharmaceutics16030327
Chicago/Turabian StyleAlven, Sibusiso, and Blessing Atim Aderibigbe. 2024. "Chitosan-Based Scaffolds Incorporated with Silver Nanoparticles for the Treatment of Infected Wounds" Pharmaceutics 16, no. 3: 327. https://doi.org/10.3390/pharmaceutics16030327
APA StyleAlven, S., & Aderibigbe, B. A. (2024). Chitosan-Based Scaffolds Incorporated with Silver Nanoparticles for the Treatment of Infected Wounds. Pharmaceutics, 16(3), 327. https://doi.org/10.3390/pharmaceutics16030327