In Vitro and In Vivo Evaluation of Magnetic Floating Dosage Form by Alternating Current Biosusceptometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Floating Magnetic Tablets
2.3. Rheological Measurements
2.4. Floating Assessment and Magnetic Method by ACB
2.5. In Vitro Studies
2.6. In Vivo Study Protocol
2.7. Statistical Analysis
3. Results
3.1. In Vitro Studies
3.2. In Vivo Studies
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Das, S.; Kaur, S.; Rai, V.K. Gastro-retentive drug delivery systems: A recent update on clinical pertinence and drug delivery. Drug Deliv. Transl. Res. 2021, 11, 1849–1877. [Google Scholar] [CrossRef]
- Wen, H.; He, B.; Wang, H.; Chen, F.; Li, P.; Cui, M.; Li, Q.; Pan, W.; Yang, X. Structure-Based Gastro-Retentive and Controlled-Release Drug Delivery with Novel 3D Printing. AAPS PharmSciTech 2019, 20, 68. [Google Scholar] [CrossRef] [PubMed]
- Le, T.N.; Her, J.; Sim, T.; Jung, C.E.; Kang, J.K.; Oh, K.T. Preparation of Gastro-retentive Tablets Employing Controlled Superporous Networks for Improved Drug Bioavailability. AAPS PharmSciTech 2020, 21, 320. [Google Scholar] [CrossRef]
- Dhiman, S.; Philip, N.; Gurjeet Singh, T.; Babbar, R.; Garg, N.; Diwan, V.; Singh, P. An Insight on Novel Approaches & Perspectives for Gastro-Retentive Drug Delivery Systems. Curr. Drug Deliv. 2023, 20, 708–729. [Google Scholar] [CrossRef] [PubMed]
- Pawar, M.A.; Shevalkar, G.B.; Vavia, P.R. Design and Development of Gastro-retentive Drug Delivery System for Trazodone Hydrochloride: A Promising Alternative to Innovator’s Controlled-Release Tablet. AAPS PharmSciTech 2022, 23, 251. [Google Scholar] [CrossRef] [PubMed]
- Murugesan, S.; Gowramma, B.; Lakshmanan, K.; Reddy Karri, V.V.S.; Radhakrishnan, A. Oral Modified Drug Release Solid Dosage Form with Special Reference to Design; An Overview. Curr. Drug Res. Rev. 2020, 12, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Hou, Z.; Cheng, X.; Zhao, X.; Lin, J.; Zhang, H.; Li, Y.; Ding, J. Design and evaluation of gastro-swelling/gastro-floating sustained-release tablets of brivaracetam for epilepsy therapy. Int. J. Pharm. 2023, 644, 123301. [Google Scholar] [CrossRef] [PubMed]
- Jagdale, S.; Shinde, M. Development of Floating Delivery for Solid Self Micro-Emulsifying Drug Delivery System of Prochlorperazine Maleate. Recent Pat. Drug Deliv. Formul. 2017, 11, 198–210. [Google Scholar] [CrossRef]
- Grimm, M.; Koziolek, M.; Saleh, M.; Schneider, F.; Garbacz, G.; Kühn, J.P.; Weitschies, W. Gastric Emptying and Small Bowel Water Content after Administration of Grapefruit Juice Compared to Water and Isocaloric Solutions of Glucose and Fructose: A Four-Way Crossover MRI Pilot Study in Healthy Subjects. Mol. Pharm. 2018, 15, 548–559. [Google Scholar] [CrossRef]
- Vo, A.Q.; Feng, X.; Pimparade, M.; Ye, X.; Kim, D.W.; Martin, S.T.; Repka, M.A. Dual-mechanism gastroretentive drug delivery system loaded with an amorphous solid dispersion prepared by hot-melt extrusion. Eur. J. Pharm. Sci. 2017, 102, 71–84. [Google Scholar] [CrossRef]
- Treesinchai, S.; Puttipipatkhachorn, S.; Pitaksuteepong, T.; Sungthongjeen, S. Development of curcumin floating beads with low density materials and solubilizers. J. Drug Deliv. Sci. Technol. 2019, 51, 542–551. [Google Scholar] [CrossRef]
- Alaithan, S.; Naveen, N.R.; Goudanavar, P.S.; Bhavani, P.D.; Ramesh, B.; Koppuravuri, N.P.; Fattepur, S.; Sreeharsha, N.; Nair, A.B.; Aldhubiab, B.E.; et al. Development of Novel Unfolding Film System of Itopride Hydrochloride Using Box-Behnken Design—A Gastro Retentive Approach. Pharmaceuticals 2022, 15, 981. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, P.C.; dos Santos Grossklauss, D.B.; Alvarez, M.; Paixão, F.C.; Andreis, U.; Crispim, A.G.; de Castro, A.D.; Evangelista, R.C.; de Arruda Miranda, J.R. A novel automated alternating current biosusceptometry method to characterization of controlled-release magnetic floating tablets of metronidazole. Drug Dev. Ind. Pharm. 2014, 40, 1123–1131. [Google Scholar] [CrossRef] [PubMed]
- Abouelatta, S.M.; Aboelwafa, A.A.; El-Gazayerly, O.N. Gastroretentive raft liquid delivery system as a new approach to release extension for carrier-mediated drug. Drug Deliv. 2018, 25, 1161–1174. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Xu, H.; Li, S.; Li, Q.; Zhang, W.; Ye, T.; Yang, X.; Pan, W. A novel gastro-floating multiparticulate system for dipyridamole (DIP) based on a porous and low-density matrix core: In vitro and in vivo evaluation. Int. J. Pharm. 2014, 461, 540–548. [Google Scholar] [CrossRef]
- Naseem, F.; Shah, S.U.; Rashid, S.A.; Farid, A.; Almehmadi, M.; Alghamdi, S. Metronidazole Based Floating Bioadhesive Drug Delivery System for Potential Eradication of H. pylori: Preparation and In Vitro Characterization. Polymers 2022, 14, 519. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Gao, B.; Ma, L.; Lian, J.; Deng, L.; Chen, J. Innovative intragastric ascaridole floating tablets: Development, optimization, and in vitro-in vivo evaluation. Int. J. Pharm. 2015, 496, 432–439. [Google Scholar] [CrossRef]
- Raza, A.; Hayat, U.; Wang, H.J.; Wang, J.Y. Preparation and evaluation of captopril loaded gastro-retentive zein based porous floating tablets. Int. J. Pharm. 2020, 579, 119185. [Google Scholar] [CrossRef]
- Gaikwad, S.S.; Avari, J.G. Improved bioavailability of Azelnidipine gastro retentive tablets-optimization and in-vivo assessment. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 103, 109800. [Google Scholar] [CrossRef]
- Izgelov, D.; Freidman, M.; Hoffman, A. Investigation of cannabidiol gastro retentive tablets based on regional absorption of cannabinoids in rats. Eur. J. Pharm. Biopharm. 2020, 152, 229–235. [Google Scholar] [CrossRef]
- Cassilly, D.; Kantor, S.; Knight, L.C.; Maurer, A.H.; Fisher, R.S.; Semler, J.; Parkman, H.P. Gastric emptying of a non-digestible solid: Assessment with simultaneous SmartPill pH and pressure capsule, antroduodenal manometry, gastric emptying scintigraphy. Neurogastroenterol. Motil. 2008, 20, 311–319. [Google Scholar] [CrossRef]
- Kam, L.Y.; Wong, J.W.; Yuen, K.H. In Vivo Evaluation of Thiamine Hydrochloride with Gastro-Retentive Drug Delivery in Healthy Human Volunteers Using Gamma Scintigraphy. Pharmaceutics 2023, 15, 691. [Google Scholar] [CrossRef]
- Koziolek, M.; Garbacz, G.; Neumann, M.; Weitschies, W. Simulating the postprandial stomach: Biorelevant test methods for the estimation of intragastric drug dissolution. Mol. Pharm. 2013, 10, 2211–2221. [Google Scholar] [CrossRef]
- Neumann, M.; Schneider, F.; Koziolek, M.; Garbacz, G.; Weitschies, W. A novel mechanical antrum model for the prediction of the gastroretentive potential of dosage forms. Int. J. Pharm. 2017, 530, 63–70. [Google Scholar] [CrossRef]
- Radwan, A.; Wagner, M.; Amidon, G.L.; Langguth, P. Bio-predictive tablet disintegration: Effect of water diffusivity, fluid flow, food composition and test conditions. Eur. J. Pharm. Sci. 2014, 57, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Schneider, F.; Grimm, M.; Koziolek, M.; Modeß, C.; Dokter, A.; Roustom, T.; Siegmund, W.; Weitschies, W. Resolving the physiological conditions in bioavailability and bioequivalence studies: Comparison of fasted and fed state. Eur. J. Pharm. Biopharm. 2016, 108, 214–219. [Google Scholar] [CrossRef] [PubMed]
- Schneider, F.; Koziolek, M.; Weitschies, W. In Vitro and In Vivo Test Methods for the Evaluation of Gastroretentive Dosage Forms. Pharmaceutics 2019, 11, 416. [Google Scholar] [CrossRef] [PubMed]
- Eberle, V.A.; Schoelkopf, J.; Gane, P.A.; Alles, R.; Huwyler, J.; Puchkov, M. Floating gastroretentive drug delivery systems: Comparison of experimental and simulated dissolution profiles and floatation behavior. Eur. J. Pharm. Sci. 2014, 58, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Assaf, S.M.; Qandil, A.M.; Al-Ani, E.A. Fast and pH-dependent release of domperidone from orally disintegrating tablets. Pharm. Dev. Technol. 2013, 18, 897–905. [Google Scholar] [CrossRef] [PubMed]
- Koziolek, M.; Görke, K.; Neumann, M.; Garbacz, G.; Weitschies, W. Development of a bio-relevant dissolution test device simulating mechanical aspects present in the fed stomach. Eur. J. Pharm. Sci. 2014, 57, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Kindgen, S.; Wachtel, H.; Abrahamsson, B.; Langguth, P. Computational Fluid Dynamics Simulation of Hydrodynamics and Stresses in the PhEur/USP Disintegration Tester Under Fed and Fasted Fluid Characteristics. J. Pharm. Sci. 2015, 104, 2956–2968. [Google Scholar] [CrossRef]
- Abuhelwa, A.Y.; Williams, D.B.; Upton, R.N.; Foster, D.J. Food, gastrointestinal pH, and models of oral drug absorption. Eur. J. Pharm. Biopharm. 2017, 112, 234–248. [Google Scholar] [CrossRef]
- Radwan, A.; Zaid, A.N.; Jaradat, N.; Odeh, Y. Food effect: The combined effect of media pH and viscosity on the gastrointestinal absorption of ciprofloxacin tablet. Eur. J. Pharm. Sci. 2017, 101, 100–106. [Google Scholar] [CrossRef]
- Nielsen, A.L.; Pedersen, P.B.; Baldursdóttir, S.G.; Müllertz, A. Impact of physiologically relevant viscosity on intrinsic dissolution rate of poorly soluble compounds in simulated gastric media. In 2nd Electronic Conference on Pharmaceutical Sciences; 2012; Available online: https://sciforum.net/manuscripts/805/original.pdf (accessed on 16 January 2024).
- Radwan, A.; Amidon, G.L.; Langguth, P. Mechanistic investigation of food effect on disintegration and dissolution of BCS class III compound solid formulations: The importance of viscosity. Biopharm. Drug Dispos. 2012, 33, 403–416. [Google Scholar] [CrossRef]
- Garbacz, G.; Kandzi, A.; Koziolek, M.; Mazgalski, J.; Weitschies, W. Release characteristics of quetiapine fumarate extended release tablets under biorelevant stress test conditions. AAPS PharmSciTech 2014, 15, 230–236. [Google Scholar] [CrossRef]
- Shimoyama, Y.; Kusano, M.; Kawamura, O.; Zai, H.; Kuribayashi, S.; Higuchi, T.; Nagoshi, A.; Maeda, M.; Mori, M. High-viscosity liquid meal accelerates gastric emptying. Neurogastroenterol. Motil. 2007, 19, 879–886. [Google Scholar] [CrossRef]
- Garbacz, G.; Wedemeyer, R.S.; Nagel, S.; Giessmann, T.; Mönnikes, H.; Wilson, C.G.; Siegmund, W.; Weitschies, W. Irregular absorption profiles observed from diclofenac extended release tablets can be predicted using a dissolution test apparatus that mimics in vivo physical stresses. Eur. J. Pharm. Biopharm. 2008, 70, 421–428. [Google Scholar] [CrossRef] [PubMed]
- Weitschies, W.; Wedemeyer, R.S.; Kosch, O.; Fach, K.; Nagel, S.; Söderlind, E.; Trahms, L.; Abrahamsson, B.; Mönnikes, H. Impact of the intragastric location of extended release tablets on food interactions. J. Control Release 2005, 108, 375–385. [Google Scholar] [CrossRef] [PubMed]
- Koziolek, M.; Schneider, F.; Grimm, M.; Modeβ, C.; Seekamp, A.; Roustom, T.; Siegmund, W.; Weitschies, W. Intragastric pH and pressure profiles after intake of the high-caloric, high-fat meal as used for food effect studies. J. Control Release 2015, 220, 71–78. [Google Scholar] [CrossRef]
- Schneider, F.; Beeck, R.; Hoppe, M.; Koziolek, M.; Weitschies, W. In vitro simulation of realistic gastric pressure profiles. Eur. J. Pharm. Sci. 2017, 107, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Yom-Tov, O.; Seliktar, D.; Bianco-Peled, H. A modified emulsion gelation technique to improve buoyancy of hydrogel tablets for floating drug delivery systems. Mater. Sci. Eng. C Mater. Biol. Appl. 2015, 55, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.K.; Söderlind, E.; Viridén, A.; Schug, B.; Abrahamsson, B.; Knopke, C.; Tajarobi, F.; Blume, H.; Anschütz, M.; Welinder, A.; et al. The influence of hydroxypropyl methylcellulose (HPMC) molecular weight, concentration and effect of food on in vivo erosion behavior of HPMC matrix tablets. J. Control Release 2014, 187, 50–58. [Google Scholar] [CrossRef]
- Brouwers, J.; Anneveld, B.; Goudappel, G.J.; Duchateau, G.; Annaert, P.; Augustijns, P.; Zeijdner, E. Food-dependent disintegration of immediate release fosamprenavir tablets: In vitro evaluation using magnetic resonance imaging and a dynamic gastrointestinal system. Eur. J. Pharm. Biopharm. 2011, 77, 313–319. [Google Scholar] [CrossRef]
- Schneider, F.; Hoppe, M.; Koziolek, M.; Weitschies, W. Influence of Postprandial Intragastric Pressures on Drug Release from Gastroretentive Dosage Forms. AAPS PharmSciTech 2018, 19, 2843–2850. [Google Scholar] [CrossRef] [PubMed]
- Hassan, D.S.; Hasary, H.J. The impact of viscosity on the dissolution of naproxen immediate-release tablets. J. Taibah Univ. Med. Sci. 2023, 18, 687–695. [Google Scholar] [CrossRef]
- Parojcić, J.; Vasiljević, D.; Ibrić, S.; Djurić, Z. Tablet disintegration and drug dissolution in viscous media: Paracetamol IR tablets. Int. J. Pharm. 2008, 355, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Van Den Abeele, J.; Schilderink, R.; Schneider, F.; Mols, R.; Minekus, M.; Weitschies, W.; Brouwers, J.; Tack, J.; Augustijns, P. Gastrointestinal and Systemic Disposition of Diclofenac under Fasted and Fed State Conditions Supporting the Evaluation of In Vitro Predictive Tools. Mol. Pharm. 2017, 14, 4220–4232. [Google Scholar] [CrossRef] [PubMed]
- Silchenko, S.; Nessah, N.; Li, J.; Li, L.-B.; Huang, Y.; Owen, A.J.; Hidalgo, I.J. In vitro dissolution absorption system (IDAS2): Use for the prediction of food viscosity effects on drug dissolution and absorption from oral solid dosage forms. Eur. J. Pharm. Sci. 2020, 143, 105164. [Google Scholar] [CrossRef]
- Corá, L.A.; Américo, M.F.; Oliveira, R.B.; Serra, C.H.; Baffa, O.; Evangelista, R.C.; Oliveira, G.F.; Miranda, J.R. Biomagnetic methods: Technologies applied to pharmaceutical research. Pharm. Res. 2011, 28, 438–455. [Google Scholar] [CrossRef]
- Corá, L.A.; Américo, M.F.; Oliveira, R.B.; Baffa, O.; Moraes, R.; Romeiro, F.G.; Miranda, J.R. Disintegration of magnetic tablets in human stomach evaluated by alternate current biosusceptometry. Eur. J. Pharm. Biopharm. 2003, 56, 413–420. [Google Scholar] [CrossRef]
- Pinto, L.; Soares, G.; Próspero, A.; Stoppa, E.; Biasotti, G.; Paixão, F.; Santos, A.; Oliveira, R.; Miranda, J. An easy and low-cost biomagnetic methodology to study regional gastrointestinal transit in rats. Biomed. Tech. 2021, 66, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Cora, L.A.; Romeiro, F.G.; Stelzer, M.; Americo, M.F.; Oliveira, R.B.; Baffa, O.; Miranda, J.R. AC biosusceptometry in the study of drug delivery. Adv. Drug Deliv. Rev. 2005, 57, 1223–1241. [Google Scholar] [CrossRef]
- Corá, L.A.; Américo, M.F.; Romeiro, F.G.; Oliveira, R.B.; Miranda, J.R.A. Pharmaceutical applications of AC Biosusceptometry. Eur. J. Pharm. Biopharm. 2010, 74, 67–77. [Google Scholar] [CrossRef]
- Miranda, J.R.A.; Corá, L.A.; Américo, M.F.; Romeiro, F.G. AC biosusceptometry technique to evaluate the gastrointestinal transit of pellets under influence of prandial state. J. Pharm. Sci. 2010, 99, 317–324. [Google Scholar] [CrossRef]
- Prospero, A.G.; Buranello, L.P.; Fernandes, C.A.; Dos Santos, L.D.; Soares, G.; Rossini, B.C.; Zufelato, N.; Bakuzis, A.F.; de Mattos Fontes, M.R.; de Arruda Miranda, J.R. Corona protein impacts on alternating current biosusceptometry signal and circulation times of differently coated MnFe2O4 nanoparticles. Nanomedicine 2021, 16, 2189–2206. [Google Scholar] [CrossRef]
- Sousa-Junior, A.A.; Mendanha, S.A.; Carrião, M.S.; Capistrano, G.; Próspero, A.G.; Soares, G.A.; Cintra, E.R.; Santos, S.F.O.; Zufelato, N.; Alonso, A.; et al. Predictive Model for Delivery Efficiency: Erythrocyte Membrane-Camouflaged Magnetofluorescent Nanocarriers Study. Mol. Pharm. 2020, 17, 837–851. [Google Scholar] [CrossRef] [PubMed]
- Soares, G.A.; Rodrigues, G.S.; Buranello, L.P.; de Oliveira, R.B.; de Arruda Miranda, J.R. Pharmacomagnetography assessment of the prokinetic effect on metronidazole absorption. J. Pharm. Pharmacol. 2023, 75, 1560–1568. [Google Scholar] [CrossRef] [PubMed]
- Pinto, L.A.; Corá, L.A.; Rodrigues, G.S.; Prospero, A.G.; Soares, G.A.; de Andreis, U.; de Arruda Miranda, J.R. Pharmacomagnetography to evaluate the performance of magnetic enteric-coated tablets in the human gastrointestinal tract. Eur. J. Pharm. Biopharm. 2021, 161, 50–55. [Google Scholar] [CrossRef]
- Soares, G.A.; Pires, D.W.; Pinto, L.A.; Rodrigues, G.S.; Prospero, A.G.; Biasotti, G.G.A.; Bittencourt, G.N.; Stoppa, E.G.; Corá, L.A.; Oliveira, R.B.; et al. The Influence of Omeprazole on the Dissolution Processes of pH-Dependent Magnetic Tablets Assessed by Pharmacomagnetography. Pharmaceutics 2021, 13, 1274. [Google Scholar] [CrossRef]
- Moraes, R.; Corá, L.A.; Américo, M.F.; Oliveira, R.B.; Baffa, O.; Miranda, J.R.A. Measurement of gastric contraction activity in dogs by means of AC biosusceptometry. Physiol. Meas. 2003, 24, 337. [Google Scholar] [CrossRef]
- Arora, S.; Ali, J.; Ahuja, A.; Khar, R.K.; Baboota, S. Floating drug delivery systems: A review. Aaps PharmSciTech 2005, 6, E372–E390. [Google Scholar] [CrossRef] [PubMed]
- Adebisi, A.O.; Conway, B.R. Preparation and characterisation of gastroretentive alginate beads for targeting H. pylori. J. Microencapsul. 2014, 31, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Jagdale, S.; Kurhe, P.; Kuchekar, B.; Chabukswar, A. Application of design of experiments to optimizing novel gastroretentive drug delivery of simvastatin. Curr. Drug Deliv. 2013, 10, 527–541. [Google Scholar] [CrossRef] [PubMed]
- Guguloth, M.; Bomma, R.; Veerabrahma, K. Development of sustained release floating drug delivery. PDA J. Pharm. Sci. Technol. 2011, 65, 198–206. [Google Scholar] [CrossRef] [PubMed]
- Nur, A.O.; Zhang, J.S. Captopril floating and/or bioadhesive tablets: Design and release kinetics. Drug Dev. Ind. Pharm. 2000, 26, 965–969. [Google Scholar] [CrossRef] [PubMed]
- Landge, P.; Lavande, J.; Swami, A.; Dharashive, V. A Review on Gastroretentive Drug Delivery System. Indian J. 2023, 15, 62–68. [Google Scholar] [CrossRef]
- Cora, L.A.; Romeiro, F.G.; Américo, M.F.; Oliveira, R.B.; Baffa, O.; Stelzer, M.; de Arruda Miranda, J.R. Gastrointestinal transit and disintegration of enteric coated magnetic tablets assessed by ac biosusceptometry. Eur. J. Pharm. Sci. 2006, 27, 1–8. [Google Scholar] [CrossRef]
- Franek, F.; Holm, P.; Larsen, F.; Steffansen, B. Interaction between fed gastric media (Ensure Plus®) and different hypromellose based caffeine controlled release tablets: Comparison and mechanistic study of caffeine release in fed and fasted media versus water using the USP dissolution apparatus 3. Int. J. Pharm. 2014, 461, 419–426. [Google Scholar] [CrossRef]
- Pentafragka, C.; Vertzoni, M.; Dressman, J.; Symillides, M.; Goumas, K.; Reppas, C. Characteristics of contents in the upper gastrointestinal lumen after a standard high-calorie high-fat meal and implications for the in vitro drug product performance testing conditions. Eur. J. Pharm. Sci. 2020, 155, 105535. [Google Scholar] [CrossRef]
- Marciani, L.; Gowland, P.A.; Spiller, R.C.; Manoj, P.; Moore, R.J.; Young, P.; Fillery-Travis, A.J. Effect of meal viscosity and nutrients on satiety, intragastric dilution, and emptying assessed by MRI. Am. J. Physiol.-Gastrointest. Liver Physiol. 2001, 280, G1227–G1233. [Google Scholar] [CrossRef]
- Koziolek, M.; Grimm, M.; Becker, D.; Iordanov, V.; Zou, H.; Shimizu, J.; Wanke, C.; Garbacz, G.; Weitschies, W. Investigation of pH and temperature profiles in the GI tract of fasted human subjects using the Intellicap® system. J. Pharm. Sci. 2015, 104, 2855–2863. [Google Scholar] [CrossRef] [PubMed]
Fasting | Fed | |||||
---|---|---|---|---|---|---|
Subjects | GRT (min) | OCTT (min) | FLT (min) | GRT (min) | OCTT (min) | FLT (min) |
1 | 120 | 240 | 60 | 180 | 300 | 90 |
2 | 150 | 225 | 75 | 180 | 240 | 105 |
3 | 100 | 225 | 60 | 135 | 270 | 75 |
4 | 150 | 270 | 90 | 225 | 330 | 120 |
5 | 120 | 225 | 75 | 285 | 340 | 165 |
6 | 135 | 240 | 90 | 150 | 240 | 105 |
7 | 175 | 240 | 90 | 205 | 365 | 125 |
8 | 165 | 270 | 45 | 165 | 315 | 75 |
Mean | 139.4 a | 241.9 a | 73.1 a | 190.2 b | 300 b | 107.5 b |
SD | 25.3 | 18.7 | 16.9 | 47.7 | 46.4 | 29.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues, G.S.; Barboza, J.M.; Buranello, L.P.; Brandão, V.M.; Ferrari, P.C.; Soares, G.A.; Miranda, J.R.d.A. In Vitro and In Vivo Evaluation of Magnetic Floating Dosage Form by Alternating Current Biosusceptometry. Pharmaceutics 2024, 16, 351. https://doi.org/10.3390/pharmaceutics16030351
Rodrigues GS, Barboza JM, Buranello LP, Brandão VM, Ferrari PC, Soares GA, Miranda JRdA. In Vitro and In Vivo Evaluation of Magnetic Floating Dosage Form by Alternating Current Biosusceptometry. Pharmaceutics. 2024; 16(3):351. https://doi.org/10.3390/pharmaceutics16030351
Chicago/Turabian StyleRodrigues, Gustavo Serafim, João Miguel Barboza, Laís Pereira Buranello, Vitor Melo Brandão, Priscileila Colerato Ferrari, Guilherme Augusto Soares, and José Ricardo de Arruda Miranda. 2024. "In Vitro and In Vivo Evaluation of Magnetic Floating Dosage Form by Alternating Current Biosusceptometry" Pharmaceutics 16, no. 3: 351. https://doi.org/10.3390/pharmaceutics16030351
APA StyleRodrigues, G. S., Barboza, J. M., Buranello, L. P., Brandão, V. M., Ferrari, P. C., Soares, G. A., & Miranda, J. R. d. A. (2024). In Vitro and In Vivo Evaluation of Magnetic Floating Dosage Form by Alternating Current Biosusceptometry. Pharmaceutics, 16(3), 351. https://doi.org/10.3390/pharmaceutics16030351