Antimicrobial Effects of Some Natural Products on Adhesion and Biofilm Inhibition of Clostridioides difficile
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains
2.2. Tested Substances
2.3. Antimicrobial Effect of Tested Substances on C. difficile Planktonic Growth
2.4. Cell Cultures
2.5. Effect of Tested Substances on C. difficile Adhesion
2.6. Effect of Tested Substances on C. difficile Biofilm Formation on Confocal Laser Scanning Microscopy
2.7. Statistical Analysis
3. Results
3.1. Effect of Tested Substances on C. difficile Adhesion
3.2. Effect of Tested Substances on Biofilm Formation by C. difficile
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Czepiel, J.; Dróżdż, M.; Pituch, H.; Kuijper, E.J.; Perucki, W.; Mielimonka, A.; Goldman, S.; Wultańska, D.; Garlicki, A.; Biesiada, G. Clostridium difficile infection: Review. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 1211–1221. [Google Scholar] [CrossRef] [PubMed]
- McDonald, L.C.; Killgore, G.E.; Thompson, A.; Owens, R.C., Jr.; Kazakova, S.V.; Sambol, S.P.; Johnson, S.; Gerding, D.N. An epidemic, toxin gene-variant strain of Clostridium difficile. N. Engl. J. Med. 2005, 353, 2433–2441. [Google Scholar] [CrossRef] [PubMed]
- Valiente, E.; Cairns, M.D.; Wren, B.W. The Clostridium difficile PCR ribotype 027 lineage: A pathogen on the move. Clin. Microbiol. Infect. 2014, 20, 396–404. [Google Scholar] [CrossRef] [PubMed]
- Pituch, H.; Obuch-Woszczatyński, P.; Lachowicz, D.; Wultańska, D.; Karpiński, P.; Młynarczyk, G.; van Dorp, S.M.; Kuijper, E.J.; Polish Clostridium difficile Study Group. Hospital-based Clostridium difficile infection surveillance reveals high proportions of PCR ribotypes 027 and 176 in different areas of Poland, 2011 to 2013. Eurosurveillance 2015, 20, 30025. [Google Scholar] [CrossRef] [PubMed]
- Lachowicz, D.; Szulencka, G.; Obuch-Woszczatyński, P.; van Belkum, A.; Pituch, H. First Polish outbreak of Clostridium difficile ribotype 027 infections among dialysis patients. Eur. J. Clin. Microbiol. Infect. Dis. 2015, 34, 63–67. [Google Scholar] [CrossRef] [PubMed]
- Bacci, S.; Mølbak, K.; Kjeldsen, M.K.; Olsen, K.E. Binary toxin and death after Clostridium difficile infection. Emerg. Infect. Dis. 2011, 17, 976–982. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, B.G.; Gardner, A. Mortality and Clostridium difficile infection: A review. Antimicrob. Resist. Infect. Control. 2012, 1, 20. [Google Scholar] [CrossRef] [PubMed]
- Frost, L.R.; Cheng, J.K.J.; Unnikrishnan, M. Clostridioides difficile biofilms: A mechanism of persistence in the gut? PLoS Pathog. 2021, 17, e1009348. [Google Scholar] [CrossRef] [PubMed]
- Vuotto, C.; Donelli, G.; Buckley, A.; Chilton, C. Clostridium difficile Biofilm. Adv. Exp. Med. Biol. 2018, 1050, 97–115. [Google Scholar] [PubMed]
- Dicks, L.M.T. Biofilm Formation of Clostridioides difficile, Toxin Production and Alternatives to Conventional Antibiotics in the Treatment of CDI. Microorganisms 2023, 11, 2161. [Google Scholar] [CrossRef] [PubMed]
- Normington, C.; Moura, I.B.; Bryant, J.A.; Ewin, D.J.; Clark, E.V.; Kettle, M.J.; Harris, H.C.; Spittal, W.; Davis, G.; Henn, M.R.; et al. Biofilms harbour Clostridioides difficile, serving as a reservoir for recurrent infection. NPJ Biofilms Microbiomes 2021, 7, 16. [Google Scholar] [CrossRef] [PubMed]
- van Prehn, J.; Reigadas, E.; Vogelzang, E.H.; Bouza, E.; Hristea, A.; Guery, B.; Krutova, M.; Norén, T.; Allerberger, F.; Coia, J.E.; et al. European Society of Clinical Microbiology and Infectious Diseases: 2021 update on the treatment guidance document for Clostridioides difficile infection in adults. Clin. Microbiol. Infect. 2021, 27 (Suppl. S2), S1–S21. [Google Scholar] [CrossRef] [PubMed]
- Song, J.H.; Kim, Y.S. Recurrent Clostridium difficile Infection: Risk Factors, Treatment, and Prevention. Gut Liver 2019, 13, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Cole, S.A.; Stahl, T.J. Persistent and Recurrent Clostridium difficile Colitis. Clin. Colon Rectal Surg. 2015, 28, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Adamczak, A.; Ożarowski, M.; Karpiński, T.M. Curcumin, a Natural Antimicrobial Agent with Strain-Specific Activity. Pharmaceuticals 2020, 13, 153. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Ao, M.; Dong, B.; Jiang, Y.; Yu, L.; Chen, Z.; Hu, C.; Xu, R. Anti-Inflammatory Effects of Curcumin in the Inflammatory Diseases: Status, Limitations and Countermeasures. Drug Des. Dev. Ther. 2021, 15, 4503–4525. [Google Scholar] [CrossRef] [PubMed]
- Diniz do Nascimento, L.; Moraes, A.A.B.; Costa, K.S.D.; Pereira Galúcio, J.M.; Taube, P.S.; Costa, C.M.L.; Neves Cruz, J.; de Aguiar Andrade, E.H.; Faria, L.J.G. Bioactive Natural Compounds and Antioxidant Activity of Essential Oils from Spice Plants: New Findings and Potential Applications. Biomolecules 2020, 10, 988. [Google Scholar] [CrossRef] [PubMed]
- Usai, F.; Di Sotto, A. trans-Cinnamaldehyde as a Novel Candidate to Overcome Bacterial Resistance: An Overview of In Vitro Studies. Antibiotics 2023, 12, 254. [Google Scholar] [CrossRef] [PubMed]
- Doyle, A.A.; Stephens, J.C. A review of cinnamaldehyde and its derivatives as antibacterial agents. Fitoterapia 2019, 139, 104405. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Shen, Y.; Thakur, K.; Han, J.; Zhang, J.G.; Hu, F.; Wei, Z.J. Antibacterial Activity and Mechanism of Ginger Essential Oil against Escherichia coli and Staphylococcus aureus. Molecules 2020, 25, 3955. [Google Scholar] [CrossRef]
- Tarfaoui, K.; Brhadda, N.; Ziri, R.; Oubihi, A.; Imtara, H.; Haida, S.; Al kamaly, O.M.; Saleh, A.; Parvez, M.K.; Fettach, S.; et al. Chemical Profile, Antibacterial and Antioxidant Potential of Zingiber officinale Roscoe and Elettaria cardamomum (L.) Maton Essential Oils and Extracts. Plants 2022, 11, 1487. [Google Scholar] [CrossRef] [PubMed]
- Piotrowski, M.; Wultańska, D.; Obuch-Woszczatyński, P.; Pituch, H. Fructooligosaccharides and mannose affect Clostridium difficile adhesion and biofilm formation in a concentration-dependent manner. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 1975–1984. [Google Scholar] [CrossRef] [PubMed]
- Wultańska, D.; Paterczyk, B.; Nowakowska, J.; Pituch, H. The Effect of Selected Bee Products on Adhesion and Biofilm of Clostridioides difficile Strains Belonging to Different Ribotypes. Molecules 2022, 27, 7385. [Google Scholar] [CrossRef] [PubMed]
- Piotrowski, M.; Karpiński, P.; Pituch, H.; van Belkum, A.; Obuch-Woszczatyński, P. Antimicrobial effects of Manuka honey on in vitro biofilm formation by Clostridium difficile. Eur. J. Clin. Microbiol. Infect. Dis. 2017, 36, 1661–1664. [Google Scholar] [CrossRef] [PubMed]
- Phanchana, M.; Harnvoravongchai, P.; Wongkuna, S.; Phetruen, T.; Phothichaisri, W.; Panturat, S.; Pipatthana, M.; Charoensutthivarakul, S.; Chankhamhaengdecha, S.; Janvilisri, T. Frontiers in antibiotic alternatives for Clostridioides difficile infection. World J. Gastroenterol. 2021, 27, 7210–7232. [Google Scholar] [CrossRef] [PubMed]
- Bhatwalkar, S.B.; Mondal, R.; Krishna, S.B.N.; Adam, J.K.; Govender, P.; Anupam, R. Antibacterial Properties of Organosulfur Compounds of Garlic (Allium sativum). Front. Microbiol. 2021, 12, 613077. [Google Scholar] [CrossRef] [PubMed]
- Mohamedin, A.; Elsayed, A.; Shakurfow, F. Molecular effects and antibacterial activities of ginger extracts against some drug resistant pathogenic bacteria. Egypt. J. Bot. 2018, 58, 133–143. [Google Scholar] [CrossRef]
- Kačániová, M.; Vukovič, N.; Horská, E.; Šalamon, I.; Bobkova, A.; Hleba, L.; Mellen, M.; Vatľák, A.; Petrova, J.; Bobko, M. Antibacterial activity against Clostridium genus and antiradical activity of the essential oils from different origin. J. Environ. Sci. Health B 2014, 49, 505–512. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Gao, Y.; Fu, X.; Chen, W.; Yang, J.; Chen, Z.; Wang, Z.; Zhuansun, X.; Feng, J.; Chen, Y. Preparation of peppermint oil nanoemulsions: Investigation of stability, antibacterial mechanism and apoptosis effects. Colloids Surf. B Biointerfaces 2021, 201, 111626. [Google Scholar] [CrossRef] [PubMed]
- Rasooli, I.; Shayegh, S.; Astaneh, S. The effect of Mentha spicata and Eucalyptus camaldulensis essential oils on dental biofilm. Int. J. Dent. Hyg. 2009, 7, 196–203. [Google Scholar] [CrossRef] [PubMed]
- Dai, C.; Lin, J.; Li, H.; Shen, Z.; Wang, Y.; Velkov, T.; Shen, J. The Natural Product Curcumin as an Antibacterial Agent: Current Achievements and Problems. Antioxidants 2022, 11, 459. [Google Scholar] [CrossRef] [PubMed]
- de Andrade Neto, J.B.; de Farias Cabral, V.P.; Nogueira, L.F.; da Silva, C.R.; Sá, L.G.; da Silva, A.R.; da Silva, W.M.; Silva, J.; Marinho, E.S.; Cavalcanti, B.C.; et al. Anti-MRSA activity of curcumin in planktonic cells and biofilms and determination of possible action mechanisms. Microb. Pathog. 2021, 155, 104892. [Google Scholar] [CrossRef] [PubMed]
- Sharahi, J.Y.; Ahovan, Z.A.; Maleki, D.T.; Rad, Z.R.; Rad, Z.R.; Goudarzi, M.; Shariati, A.; Bostanghadiri, N.; Abbasi, E.; Hashemi, A. In vitro antibacterial activity of curcumin-meropenem combination against extensively drug-resistant (XDR) bacteria isolated from burn wound infections. Avicenna J. Phytomed. 2020, 10, 3–10. [Google Scholar]
- Gayani, B.; Dilhari, A.; Wijesinghe, G.K.; Kumarage, S.; Abayaweera, G.; Samarakoon, S.R.; Perera, I.C.; Kottegoda, N.; Weerasekera, M.M. Effect of natural curcuminoids-intercalated layered double hydroxide nanohybrid against Staphylococcus aureus, Pseudomonas aeruginosa, and Enterococcus faecalis: A bactericidal, antibiofilm, and mechanistic study. Microbiologyopen 2019, 8, e00723. [Google Scholar] [CrossRef] [PubMed]
- Roshan, N.; Riley, T.V.; Hammer, K.A. Antimicrobial activity of natural products against Clostridium difficile in vitro. J. Appl. Microbiol. 2017, 123, 92–103. [Google Scholar] [CrossRef] [PubMed]
- Di Pasqua, R.; Hoskins, N.; Betts, G.; Mauriello, G. Changes in membrane fatty acids composition of microbial cells induced by addiction of thymol, carvacrol, limonene, cinnamaldehyde, and eugenol in the growing media. J. Agric. Food Chem. 2006, 54, 2745–2749. [Google Scholar] [CrossRef] [PubMed]
- Vasconcelos, N.G.; Croda, J.; Simionatto, S. Antibacterial mechanisms of cinnamon and its constituents: A review. Microb. Pathog. 2018, 120, 198–203. [Google Scholar] [CrossRef] [PubMed]
- Gill, A.O.; Holley, R.A. Inhibition of membrane bound ATPases of Escherichia coli and Listeria monocytogenes by plant oil aromatics. Int. J. Food Microbiol. 2006, 111, 170–174. [Google Scholar] [CrossRef] [PubMed]
- Kwon, J.A.; Yu, C.B.; Park, H.D. Bacteriocidal effects and inhibition of cell separation of cinnamic aldehyde on Bacillus cereus. Lett. Appl. Microbiol. 2003, 37, 61–65. [Google Scholar] [CrossRef] [PubMed]
- Amalaradjou, M.A.; Venkitanarayanan, K. Effect of trans-cinnamaldehyde on reducing resistance to environmental stresses in Cronobacter sakazakii. Foodborne Pathog. Dis. 2011, 8, 403–409. [Google Scholar] [CrossRef] [PubMed]
No. | Strain | RT | GO | PO | CU | CI | TCI | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MIC % v/v | MBC % v/v | MIC % v/v | MBC% v/v | MIC µg/mL | MBC µg/mL | MIC % v/v | MBC % v/v | MIC % v/v | MBC % v/v | |||
1 | 630 | 012 | >50 | >50 | >50 | >50 | 2048 | 4096 | 12.5 | 25 | 12.5 | 25 |
2 | ATCC 9689 | 001 | 25 | 50 | 25 | 50 | 2048 | 4096 | 12.5 | 25 | 6.25 | 12.5 |
3 | M120 | 078 | >50 | >50 | >50 | >50 | 2048 | 4096 | 12.5 | 25 | 12.5 | 25 |
4 | 4308/13 | 027 | 50 | >50 | 6.25 | 12.5 | 256 | 512 | 6.25 | 12.5 | 6.25 | 12.5 |
5 | 25694/12 | 023 | >50 | >50 | 25 | 50 | 2048 | 4096 | 12.5 | 25 | 6.25 | 12.5 |
6 | 2628/12 | 176 | 12.5 | 25 | 12.5 | 25 | 128 | 256 | 12.5 | 25 | 12.5 | 25 |
7 | CD 15 | 046 | 12.5 | 25 | 25 | 50 | 2048 | 4096 | 12.5 | 25 | 6.25 | 12.5 |
8 | 1128/06 | 017 | 6.25 | 12.5 | 25 | 50 | 64 | 128 | 12.5 | 25 | 12.5 | 25 |
Strain | Initial State | GO Treatment | PO Treatment | CU Treatment |
---|---|---|---|---|
Strain 630 | Heterogeneous, thin, sparse biofilm with low 3D structure, no visible microaggregates (Figure 2A) | Homogeneous, dense, thin biofilm, very rare microaggregates, no loose cells (Figure 2B) | Same as GO Treatment (Figure 2C) | Thicker biofilm, numerous microaggregates, cells curled up (Figure 2D) |
Strain ATCC 9689 | Homogeneous, dense biofilm, high 3D structure, small amount of microaggregates (Figure 2G) | Highly aggregated, irregular biofilm with high 3D structure (Figure 2H) | Homogeneous biofilm, low 3D structure, very thin, no microaggregates (Figure 2I) | Sparse, heterogeneous biofilm, high 3D structure, distinct microaggregates, rounded cells (Figure 2J) |
Strain M120 | Thick, dense, regular biofilm, high 3D structure (Figure 2M) | Homogeneous, thin biofilm, low 3D structure, small number of aggregates, rounded cells (Figure 2N) | Thick biofilm, high 3D structure, numerous microaggregates, rounded cells (Figure 2O) | Very thin, irregular biofilm, low 3D structure, few microaggregates, rounded cells (Figure 2P) |
Clinical strain 4308/13 | Highly homogeneous, thin, regular biofilm, low 3D structure, no visible microaggregates (Figure 3S) | Thicker, irregular biofilm, distinct microaggregates, changed cell morphology (Figure 3T) | Homogeneous, thick, dense biofilm, altered cell morphology (Figure 3U) | Thin, sparse biofilm, low 3D structure, no visible microaggregates (Figure 3V) |
Clinical strain 25694/12 | Homogeneous, thin biofilm, low 3D structure, few microaggregates (Figure 3A) | Homogeneous, thin biofilm, small amount of microaggregates (Figure 3B) | Homogeneous, thin, dense biofilm, low 3D structure (Figure 3C) | Thicker, homogeneous biofilm, distinct microaggregates, fairly high 3D structure (Figure 3D) |
Clinical strain 2628/12 | Thin, regular biofilm, rare 3D architecture (Figure 3E) | Thicker, irregular biofilm, microaggregates, altered cells (Figure 3F) | Heterogeneous, thick biofilm, high 3D architecture, distinct microaggregates (Figure 3G) | Very thick, regular biofilm, high 3D architecture, numerous microaggregates (Figure 3H) |
Clinical strain CD15 | Uniform, thick, dense, regular biofilm with microaggregates (Figure 3M) | Thinner than control, regular, thin biofilm, small amount of microaggregates (Figure 3N) | Thin, irregular biofilm, low 3D architecture, no visible microaggregates (Figure 3O) | Homogeneous, thick, very dense biofilm, high 3D architecture, numerous microaggregates, very long cells (Figure 3P) |
Clinical strain 1128/06 | Regular, thin, dense biofilm, low 3D architecture (Figure 3S) | Thick, dense, regular biofilm, high 3D architecture, numerous microaggregates (Figure 3T) | Thin, regular biofilm, low 3D architecture (Figure 3U) | Homogeneous, very thick, dense biofilm, high 3D architecture, microaggregates, elongated cells (Figure 3V) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wultańska, D.; Piotrowski, M.; Pituch, H. Antimicrobial Effects of Some Natural Products on Adhesion and Biofilm Inhibition of Clostridioides difficile. Pharmaceutics 2024, 16, 478. https://doi.org/10.3390/pharmaceutics16040478
Wultańska D, Piotrowski M, Pituch H. Antimicrobial Effects of Some Natural Products on Adhesion and Biofilm Inhibition of Clostridioides difficile. Pharmaceutics. 2024; 16(4):478. https://doi.org/10.3390/pharmaceutics16040478
Chicago/Turabian StyleWultańska, Dorota, Michał Piotrowski, and Hanna Pituch. 2024. "Antimicrobial Effects of Some Natural Products on Adhesion and Biofilm Inhibition of Clostridioides difficile" Pharmaceutics 16, no. 4: 478. https://doi.org/10.3390/pharmaceutics16040478
APA StyleWultańska, D., Piotrowski, M., & Pituch, H. (2024). Antimicrobial Effects of Some Natural Products on Adhesion and Biofilm Inhibition of Clostridioides difficile. Pharmaceutics, 16(4), 478. https://doi.org/10.3390/pharmaceutics16040478