A Two-Way Proposal for the Determination of Bioequivalence for Narrow Therapeutic Index Drugs in the European Union
Abstract
:1. Introduction
2. Materials and Methods
2.1. Type I Error
2.2. Power Analysis
2.3. Sample Size
3. Results
3.1. Type I Error
3.2. Power Analysis
3.3. Sample Size
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Disclaimer
References
- Morais, J.A.G.; Lobato, M.R. The new European Medicines Agency guideline on the investigation of bioequivalence. Basic Clin. Pharmacol. Toxicol. 2010, 106, 221–225. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.L.; Shah, V.P.; Crommelin, D.J.; Shargel, L.; Bashaw, D.; Bhatti, M.; Blume, H.; Dressman, J.; Ducharme, M.; Fackler, P.; et al. Harmonization of regulatory approaches for evaluating therapeutic equivalence and interchangeability of multisource drug products: Workshop summary report. Eur. J. Pharm. Sci. 2011, 44, 506–513. [Google Scholar] [CrossRef] [PubMed]
- Tothfalusi, L.; Endrenyi, L. Sample sizes for designing bioequivalence studies for highly variable drugs. J. Pharm. Pharm. Sci. 2012, 15, 73–84. [Google Scholar] [PubMed]
- Tamargo, J.; Le Heuzey, J.Y.; Mabo, P. Narrow therapeutic index drugs: A clinical pharmacological consideration to flecainide. Eur. J. Clin. Pharmacol. 2015, 71, 549–567. [Google Scholar] [CrossRef] [PubMed]
- EMA. Guideline on the Investigation of Bioequivalence; (CPMP/EWP/QWP/1401/98 Rev. 1/Corr**); European Medicines Agency, Committee for Medicinal Products for Human Use (EMEA): Amsterdam, The Netherlands, 2010. [Google Scholar]
- Paixao, P.; Guerreiro, R.B.; Silva, N.; Blake, K.; Bonelli, M.; Morais, J.A.G.; Arieta, A.G.; Gouveia, L.F. A Proposed Approach for the Determination of the Bioequivalence Acceptance Range for Narrow Therapeutic Index Drugs in the European Union. Clin. Pharmacol. Ther. 2022, 111, 470–476. [Google Scholar] [CrossRef] [PubMed]
- Paixao, P.; Silva, N.; Guerreiro, R.B.; Blake, K.; Bonelli, M.; Morais, J.A.G.; García-Arieta, A.; Gouveia, L.F. Evaluation of a Proposed Approach for the Determination of the Bioequivalence Acceptance Range for Narrow Therapeutic Index Drugs in the European Union. Pharmaceutics 2022, 14, 2349. [Google Scholar] [CrossRef] [PubMed]
- Tothfalusi, L.; Endrenyi, L.; Arieta, A.G. Evaluation of bioequivalence for highly variable drugs with scaled average bioequivalence. Clin. Pharmacokinet. 2009, 48, 725–743. [Google Scholar] [CrossRef] [PubMed]
- Schütz, H.; Labes, D.; Wolfsegger, M.J. Critical Remarks on Reference-Scaled Average Bioequivalence. J. Pharm. Pharm. Sci. 2022, 25, 285–296. [Google Scholar] [CrossRef] [PubMed]
- Team, R.C. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2016. [Google Scholar]
- Labes, D.; Schütz, H.; Lang, B. PowerTOST: Power and sample size based on Two One-Sided t-Tests (TOST) for (Bio)Equivalence Studies. 2019. Available online: https://www.researchgate.net/publication/339776882_Package_%27PowerTOST%27_Power_and_Sample_Size_for_BioEquivalence_Studies (accessed on 10 March 2024).
- Labes, D.; Schutz, H. Inflation of Type I Error in the Evaluation of Scaled Average Bioequivalence, and a Method for its Control. Pharm. Res. 2016, 33, 2805–2814. [Google Scholar] [CrossRef] [PubMed]
- Diletti, E.; Hauschke, D.; Steinijans, V.W. Sample size determination for bioequivalence assessment by means of confidence intervals. Int. J. Clin. Pharmacol. Ther. Toxicol. 1991, 29, S51-8. [Google Scholar]
- Boddy, A.W.; Snikeris, F.C.; Kringle, R.O.; Wei, G.C.G.; Oppermann, J.A.; Midha, K.K. An approach for widening the bioequivalence acceptance limits in the case of highly variable drugs. Pharm. Res. 1995, 12, 1865–1868. [Google Scholar] [CrossRef] [PubMed]
- Munoz, J.; Alcaide, D.; Ocana, J. Consumer’s risk in the EMA and FDA regulatory approaches for bioequivalence in highly variable drugs. Stat. Med. 2016, 35, 1933–1943. [Google Scholar] [CrossRef] [PubMed]
- Tothfalusi, L.; Endrenyi, L. Algorithms for evaluating reference scaled average bioequivalence: Power, bias, and consumer risk. Stat. Med. 2017, 36, 4378–4390. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Zhou, X.H. Methods to control the empirical type I error rate in average bioequivalence tests for highly variable drugs. Stat. Methods Med. Res. 2020, 29, 1650–1667. [Google Scholar] [CrossRef] [PubMed]
- Tothfalusi, L.; Endrenyi, L. An Exact Procedure for the Evaluation of Reference-Scaled Average Bioequivalence. AAPS J. 2016, 18, 476–489. [Google Scholar] [CrossRef] [PubMed]
- Ocana, J.; Munoz, J. Controlling type I error in the reference-scaled bioequivalence evaluation of highly variable drugs. Pharm. Stat. 2019, 18, 583–599. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.X.; Jiang, W.; Zhang, X.; Lionberger, R.; Makhlouf, F.; Schuirmann, D.; Muldowney, L.; Chen, M.; Davit, B.; Conner, D.; et al. Novel bioequivalence approach for narrow therapeutic index drugs. Clin. Pharmacol. Ther. 2015, 97, 286–291. [Google Scholar] [CrossRef] [PubMed]
- Jayachandran, P.; Okochi, H.; Frassetto, L.A.; Park, W.; Fang, L.; Zhao, L.; Benet, L.Z. Evaluating Within-Subject Variability for Narrow Therapeutic Index Drugs. Clin. Pharmacol. Ther. 2019, 105, 411–416. [Google Scholar] [CrossRef] [PubMed]
- Endrenyi, L.; Tothfalusi, L. Regulatory and study conditions for the determination of bioequivalence of highly variable drugs. J. Pharm. Pharm. Sci. 2009, 12, 138–149. [Google Scholar] [CrossRef] [PubMed]
- ICH. Final Business Plan—M13: Bioequivalence for Immediate-Release Solid Oral Dosage Forms; ICH: Geneva, Switzerland, 2020. [Google Scholar]
- FDA. Draft Guidance on Statistical Approaches to Establishing Bioequivalence; Food and Drug Administration: Silver Spring, MD, USA, 2022. [Google Scholar]
- Benet, L.Z.; Jayachandran, P.; Carroll, K.J.; Burmeister Getz, E. Batch-to-Batch and Within-Subject Variability: What Do We Know and How Do These Variabilities Affect Clinical Pharmacology and Bioequivalence? Clin. Pharmacol. Ther. 2019, 105, 326–328. [Google Scholar] [CrossRef] [PubMed]
EMA NTI | NLIVR a = 0.05 | NLIVR a = 0.042 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CV | GMR | 1.000 | 0.975 | 0.950 | 0.925 | 1.000 | 0.975 | 0.950 | 0.925 | 1.000 | 0.975 | 0.950 | 0.925 | |
80% Power | 5% | 6 | 6 | 9 | 33 | 24 | 153 | - | - | 27 | 165 | - | - | |
10% | 15 | 18 | 33 | 126 | 24 | 39 | 162 | - | 27 | 42 | 174 | - | ||
15% | 27 | 36 | 72 | 276 | 24 | 30 | 57 | 174 | 27 | 33 | 63 | 183 | ||
20% | 48 | 60 | 126 | 486 | 24 | 27 | 42 | 81 | 27 | 30 | 42 | 84 | ||
25% | 72 | 93 | 195 | 750 | 27 | 27 | 36 | 87 | 27 | 30 | 36 | 87 | ||
30% | 102 | 129 | 276 | 1068 | 27 | 30 | 36 | 123 | 30 | 30 | 39 | 123 | ||
35% | 138 | 174 | 369 | 1431 | 33 | 33 | 45 | 162 | 36 | 36 | 48 | 162 | ||
40% | 177 | 222 | 474 | 1836 | 42 | 42 | 60 | 210 | 42 | 45 | 60 | 210 | ||
90% Power | 5% | 6 | 6 | 12 | 45 | 30 | 210 | - | - | 33 | 222 | - | - | |
10% | 18 | 21 | 45 | 171 | 30 | 54 | 222 | - | 33 | 57 | 237 | - | ||
15% | 36 | 48 | 99 | 384 | 30 | 39 | 81 | 243 | 33 | 42 | 84 | 255 | ||
20% | 60 | 81 | 174 | 672 | 30 | 36 | 54 | 129 | 33 | 39 | 60 | 129 | ||
25% | 93 | 123 | 270 | 1041 | 33 | 36 | 54 | 189 | 33 | 36 | 54 | 189 | ||
30% | 129 | 177 | 381 | 1476 | 36 | 39 | 69 | 267 | 36 | 39 | 69 | 267 | ||
35% | 174 | 234 | 510 | 1980 | 45 | 51 | 93 | 357 | 45 | 51 | 93 | 357 | ||
40% | 222 | 300 | 654 | 2541 | 57 | 63 | 120 | 459 | 57 | 63 | 120 | 459 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paixao, P.; Garcia Arieta, A.; Silva, N.; Petric, Z.; Bonelli, M.; Morais, J.A.G.; Blake, K.; Gouveia, L.F. A Two-Way Proposal for the Determination of Bioequivalence for Narrow Therapeutic Index Drugs in the European Union. Pharmaceutics 2024, 16, 598. https://doi.org/10.3390/pharmaceutics16050598
Paixao P, Garcia Arieta A, Silva N, Petric Z, Bonelli M, Morais JAG, Blake K, Gouveia LF. A Two-Way Proposal for the Determination of Bioequivalence for Narrow Therapeutic Index Drugs in the European Union. Pharmaceutics. 2024; 16(5):598. https://doi.org/10.3390/pharmaceutics16050598
Chicago/Turabian StylePaixao, Paulo, Alfredo Garcia Arieta, Nuno Silva, Zvonimir Petric, Milton Bonelli, José Augusto Guimarães Morais, Kevin Blake, and Luís Filipe Gouveia. 2024. "A Two-Way Proposal for the Determination of Bioequivalence for Narrow Therapeutic Index Drugs in the European Union" Pharmaceutics 16, no. 5: 598. https://doi.org/10.3390/pharmaceutics16050598
APA StylePaixao, P., Garcia Arieta, A., Silva, N., Petric, Z., Bonelli, M., Morais, J. A. G., Blake, K., & Gouveia, L. F. (2024). A Two-Way Proposal for the Determination of Bioequivalence for Narrow Therapeutic Index Drugs in the European Union. Pharmaceutics, 16(5), 598. https://doi.org/10.3390/pharmaceutics16050598