Again and Again—Survival of Candida albicans in Urine Containing Antifungals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Candidal Growth and Microcalorimetric Measurement
2.2. Determination of Protein Concentration and Glucose
2.3. Autophagy
2.4. Microscopy
2.5. Statistical Analyses
3. Results
3.1. Controls
3.2. Antifungal Treatments
3.3. Proxy for Autophagy (Growth with Added Dead Cells)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Voltan, A.R. Candiduria: Epidemiology, Resistance, Classical and Alternative Antifungals Drugs. SOJ Microbiol. Infect. Dis. 2014, 2, 1–7. [Google Scholar] [CrossRef]
- Sobel, J.D.; Fisher, J.F.; Kauffman, C.A.; Newman, C.A. Candida urinary tract infections—Epidemiology. Clin. Infect. Dis. 2011, 52, S433–S436. [Google Scholar] [CrossRef]
- Pappas, P.G.; Kauffman, C.A.; Andes, D.R.; Clancy, C.J.; Marr, K.A.; Ostrosky-Zeichner, L.; Reboli, A.C.; Schuster, M.G.; Vazquez, J.A.; Walsh, T.J.; et al. Clinical Practice Guideline for the Management of Candidiasis: 2016 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2015, 62, e1–e50. [Google Scholar] [CrossRef] [PubMed]
- Sobel, J.D.; Kauffman, C.A.; McKinsey, D.; Zervos, M.; Vazquez, J.A.; Karchmer, A.W.; Lee, J.; Thomas, C.; Panzer, H.; Dismukes, W.E.; et al. Candiduria: A randomized, double-blind study of treatment with fluconazole and placebo. Clin. Infect. Dis. 2000, 30, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Nicolle, L.E.; Evans, G.; Laverdieve, M.; Phillips, P.; Quan, C.; Rotstein, C. Complicated urinary tract infection in adults. Can. J. Infect. Dis. Med. Microbiol. 2005, 16, 349–360. [Google Scholar] [CrossRef] [PubMed]
- Lewis, J.S.; Graybill, J.R. Fungicidal versus fungistatic: What’s in a word? Expert Opin. Pharmacother. 2008, 9, 927–935. [Google Scholar] [CrossRef] [PubMed]
- Hawser, S.; Islam, K. Comparisons of the effects of fungicidal and fungistatic antifungal agents on the morphogenetic transformation of Candida albicans. J. Antimicrob. Chemother. 1999, 43, 411–413. [Google Scholar] [CrossRef] [PubMed]
- Thomas, L.; Tracy, C.R. Treatment of Fungal Urinary Tract Infection. Urol. Clin. N. Am. 2015, 42, 473–483. [Google Scholar] [CrossRef] [PubMed]
- Odabasi, Z.; Mert, A. Candida urinary tract infections in adults. World J. Urol. 2020, 38, 2699–2707. [Google Scholar] [CrossRef] [PubMed]
- Cho, N.H.; Shaw, J.E.; Karuranga, S.; Huang, Y.; da Rocha Fernandes, J.D.; Ohlrogge, A.W.; Malanda, B. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract. 2018, 138, 271–281. [Google Scholar] [CrossRef]
- Bonkat, G.; Braissant, O.; Widmer, A.F.; Frei, R.; Rieken, M.; Wyler, S.; Gasser, T.C.; Wirz, D.; Daniels, A.U.; Bachmann, A. Rapid detection of urinary tract pathogens using microcalorimetry: Principle, technique and first results. BJU Int. 2012, 110, 892–897. [Google Scholar] [CrossRef] [PubMed]
- Wernli, L.; Bonkat, G.; Gasser, T.C.; Bachmann, A.; Braissant, O. Use of isothermal microcalorimetry to quantify the influence of glucose and antifungals on the growth of Candida albicans in urine. J. Appl. Microbiol. 2013, 115, 1186–1193. [Google Scholar] [CrossRef]
- Braissant, O.; Wirz, D.; Göpfert, B.; Daniels, A.U. Use of isothermal microcalorimetry to monitor microbial activities. FEMS Microbiol. Lett. 2010, 303, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Wadsö, I. Isothermal microcalorimetry in applied biology. Thermochim. Acta 2002, 394, 305–311. [Google Scholar] [CrossRef]
- Kathiravan, M.K.; Salake, A.B.; Chothe, A.S.; Dudhe, P.B.; Watode, R.P.; Mukta, M.S.; Gadhwe, S. The biology and chemistry of antifungal agents: A review. Bioorganic Med. Chem. 2012, 20, 5678–5698. [Google Scholar] [CrossRef] [PubMed]
- Brooks, T.; Keevil, C.W. A simple artificial urine for the growth of urinary pathogens. Lett. Appl. Microbiol. 1997, 24, 203–206. [Google Scholar] [CrossRef] [PubMed]
- Jain, N.; Kohli, R.; Cook, E.; Gialanella, P.; Chang, T.; Fries, B.C. Biofilm formation by and antifungal susceptibility of Candida isolates from urine. Appl. Environ. Microbiol. 2007, 73, 1697–1703. [Google Scholar] [CrossRef] [PubMed]
- Negri, M.; Silva, S.; Henriques, M.; Azeredo, J.; Svidzinski, T.; Oliveira, R. Candida tropicalis biofilms: Artificial urine, urinary catheters and flow model. Med. Mycol. 2011, 49, 560619. [Google Scholar] [CrossRef] [PubMed]
- Uppuluri, P.; Dinakaran, H.; Thomas, D.P.; Chaturvedi, A.K.; Lopez-Ribot, J.L. Characteristics of Candida albicans biofilms grown in a synthetic urine medium. J. Clin. Microbiol. 2009, 47, 4078–4083. [Google Scholar] [CrossRef]
- Clancy, C.J.; Yu, V.L.; Morris, A.J.; Snydman, D.R.; Nguyen, M.H. Fluconazole MIC and the fluconazole dose/MIC ratio correlate with therapeutic response among patients with candidemia. Antimicrob. Agents Chemother. 2005, 49, 3171–3177. [Google Scholar] [CrossRef]
- Guinet, R.; Nerson, D.; De Closets, F.; Dupouy-Camet, J.; Kures, L.; Marjollet, M.; Poirot, J.L.; Ros, A.; Texier-Maugein, J.; Volle, P.J. Collaborative evaluation in seven laboratories of a standardized micromethod for yeast susceptibility testing. J. Clin. Microbiol. 1988, 26, 2307–2312. [Google Scholar] [CrossRef] [PubMed]
- Lockhart, S.R.; Bolden, C.B.; Iqbal, N.; Kuykendall, R.J. Validation of 24-hour flucytosine MIC determination by comparison with 48-hour determination by the clinical and laboratory standards institute M27-A3 broth microdilution reference method. J. Clin. Microbiol. 2011, 49, 4322–4325. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.K.; Krohn, R.I.; Hermanson, G.T.; Mallia, A.K.; Gartner, F.H.; Provenzano, M.D.; Fujimoto, E.K.; Goeke, N.M.; Olson, B.J.; Klenk, D.C. Measurement of protein using bicinchoninic acid. Anal. Biochem. 1985, 150, 76–85. [Google Scholar] [CrossRef]
- Flavigny, R. Diabetic glucose meter for the determination of glucose in microbial cultures. J. Microbiol. Methods 2014, 100, 91–92. [Google Scholar] [CrossRef] [PubMed]
- Braissant, O.; Astasov-Frauenhoffer, M.; Waltimo, T.; Bonkat, G. A Review of Methods to Determine Viability, Vitality, and Metabolic Rates in Microbiology. Front. Microbiol. 2020, 11, 547458. [Google Scholar] [CrossRef] [PubMed]
- Kahm, M.; Hasenbrink, G.; Lichtenberg-Fraté, H.; Ludwig, J.; Kschischo, M. Grofit: Fitting Biological Growth Curves with R. J. Stat. Softw. 2010, 33, 1–21. [Google Scholar] [CrossRef]
- R Core Team. R; A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Jansons, V.K.; Nickerson, W.J. Induction, morphogenesis, and germination of the chlamydospore of Candida albicans. J. Bacteriol. 1970, 104, 910–921. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, D.M.; Balkis, M.; Chandra, J.; Mukherjee, P.K.; Ghannoum, M.A. Uses and limitations of the XTT assay in studies of Candida growth and metabolism. J. Clin. Microbiol. 2003, 41, 506–508. [Google Scholar] [CrossRef] [PubMed]
- Adriana Campos, C.; Fernanda Gliemmo, M.; Mariana González, M.; Lourdes Zalazar, A. A colorimetric assay using tetrazolium salts with an electron mediator to evaluate yeast growth in opaque dispersed systems. SDRP J. Food Sci. Technol. 2018, 3, 233–240. [Google Scholar] [CrossRef]
- Palmer, G.E.; Kelly, M.N.; Sturtevant, J.E. Autophagy in the pathogen Candida albicans. Microbiology 2007, 153, 51–58. [Google Scholar] [CrossRef]
- Palmer, G.E. Chapter Twenty-One Autophagy in Candida albicans. Methods Enzymol. 2008, 451, 311–322. [Google Scholar]
- Chaieb, K.; Kouidhi, B.; Zmantar, T.; Mahdouani, K.; Bakhrouf, A. Starvation survival of Candida albicans in various water microcosms. J. Basic Microbiol. 2011, 51, 357–363. [Google Scholar] [CrossRef]
- Fisher, J.F.; Sobel, J.D.; Kauffman, C.A.; Newman, C.A. Candida Urinary Tract Infections—Treatment. Clin. Infect. Dis. 2011, 52, S457–S466. [Google Scholar] [CrossRef]
- Graybill, J.R.; Burgess, D.S.; Hardin, T.C. Key issues concerning fungistatic versus fungicidal drugs. Eur. J. Clin. Microbiol. Infect. Dis. 1997, 16, 42–50. [Google Scholar] [CrossRef]
- Bekersky, I.; Fielding, R.M.; Dressler, D.E.; Lee, J.W.; Buell, D.N.; Walsh, T.J. Pharmacokinetics, excretion, and mass balance of liposomal amphotericin B (AmBisome) and amphotericin B deoxycholate in humans. Antimicrob. Agents Chemother. 2002, 46, 828–833. [Google Scholar] [CrossRef] [PubMed]
- Craven, P.C.; Ludden, T.M.; Drutz, D.J.; Rogers, W.; Haegele, K.A.; Skrdlant, H.B. Excretion pathways of amphotericin b. J. Infect. Dis. 1979, 140, 329–341. [Google Scholar] [CrossRef] [PubMed]
- Fisher, J.F.; Hicks, B.C.; Dipiro, J.T.; Venable, J.; Fincher, R.M.E. Correspondence: Efficacy of a Single Intravenous Dose of Amphotericin B in Urinary Tract Infections Caused by Candida. J. Infect. Dis. 1987, 156, 685–687. [Google Scholar] [CrossRef] [PubMed]
- Achkar, J.M.; Fries, B.C. Candida infections of the genitourinary tract. Clin. Microbiol. Rev. 2010, 23, 253–273. [Google Scholar] [CrossRef]
- Jacobs, L.G.; Skidmore, E.A.; Freeman, K.; Lipschultz, D.; Fox, N. Oral fluconazole compared with bladder irrigation with amphotericin B for treatment of fungal urinary tract infections in elderly patients. Clin. Infect. Dis. 1996, 22, 30–35. [Google Scholar] [CrossRef]
- Sable, C.A.; Strohmaier, K.M.; Chodakewitz, J.A. Advances in antifungal therapy. Annu. Rev. Med. 2008, 59, 361–379. [Google Scholar] [CrossRef]
- Alley, M.R.K.; Baker, S.J.; Beutner, K.R.; Plattner, J. Recent progress on the topical therapy of onychomycosis. Expert Opin. Investig. Drugs 2007, 16, 157–167. [Google Scholar] [CrossRef] [PubMed]
- Hollenbach, E. To treat or not to treat—Critically ill patients with candiduria. Mycoses 2008, 51, 12–24. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Jia, C.; Dong, Y.; Zhang, B.; Xiao, C.; Chen, Y.; Wang, Y.; Li, X.; Wang, L.; Zhang, B.; et al. Candida albicans autophagy, no longer a bystander: Its role in tolerance to ER stress-related antifungal drugs. Fungal Genet. Biol. 2015, 81, 238–249. [Google Scholar] [CrossRef] [PubMed]
- Böttcher, B.; Pöllath, C.; Staib, P.; Hube, B.; Brunke, S. Candida species rewired hyphae developmental programs for chlamydospore formation. Front. Microbiol. 2016, 7, 1697. [Google Scholar] [CrossRef] [PubMed]
- Montazeri, M.; Hedrick, H.G. Factors affecting spore formation of a Candida albicans strain. Appl. Environ. Microbiol. 1984, 47, 1341–1342. [Google Scholar] [CrossRef] [PubMed]
- Hornby, J.M.; Nickerson, K.W. Enhanced production of farnesol by Candida albicans treated with four azoles. Antimicrob. Agents Chemother. 2004, 48, 2305–2307. [Google Scholar] [CrossRef]
- Martin, S.W.; Douglas, L.M.; Konopka, J.B. Cell cycle dynamics and quorum sensing in Candida albicans chlamydospores are distinct from budding and hyphal growth. Eukaryot. Cell 2005, 4, 1191–1202. [Google Scholar] [CrossRef]
- Glannakopoulos, X.; Evangelou, A.; Kalfakakou, V.; Grammeniatis, E.; Papandropoulos, I.; Charalambopoulos, K. Human bladder urine oxygen content: Implications for urinary tract diseases. Int. Urol. Nephrol. 1997, 29, 393–401. [Google Scholar] [CrossRef] [PubMed]
- Hu, R.T.; Lankadeva, Y.R.; Yanase, F.; Osawa, E.A.; Evans, R.G.; Bellomo, R. Continuous bladder urinary oxygen tension as a new tool to monitor medullary oxygenation in the critically ill. Crit. Care 2022, 26, 389. [Google Scholar] [CrossRef]
- Braissant, O.; Wirz, D.; Göpfert, B.; Daniels, A.U. Biomedical use of isothermal microcalorimeters. Sensors 2010, 10, 9369–9383. [Google Scholar] [CrossRef]
- Moor, K.; Wotzka, S.Y.; Toska, A.; Diard, M.; Hapfelmeier, S.; Slack, E. Peracetic acid treatment generates potent inactivated oral vaccines from a broad range of culturable bacterial species. Front. Immunol. 2016, 7, 179993. [Google Scholar] [CrossRef] [PubMed]
- Sobel, J.D. Recurrent vulvovaginal candidiasis. Am. J. Obstet. Gynecol. 2016, 214, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Sheikh, S.; Ahmad, A.; Ali, S.M.; Paithankar, M.; Patel, R.; Chuadhari, S.; Dave, P.M.; Bhomia, M.V.; Desai, J.Y.; Munshi, A.; et al. Lipid-based amphotericin B gel treatment eradicates vulvovaginal candidiasis in patients who failed to azole therapy. Arch. Dermatol. Res. 2023, 315, 1939–1944. [Google Scholar] [CrossRef] [PubMed]
- Kan, S.; Song, N.; Pang, Q.; Mei, H.; Zheng, H.; Li, D.; Cui, F.; Lv, G.; An, R.; Li, P.; et al. In Vitro Antifungal Activity of Azoles and Other Antifungal Agents Against Pathogenic Yeasts from Vulvovaginal Candidiasis in China. Mycopathologia 2022, 188, 99–109. [Google Scholar] [CrossRef]
- Owen, D.H.; Katz, D.F. A vaginal fluid simulant. Contraception 1999, 59, 91–95. [Google Scholar] [CrossRef]
µ CFU | µ IMC | dt CFU | dt IMC | λ IMC | n | |
---|---|---|---|---|---|---|
Control | 0.147 ± 0.050 | 0.078 ± 0.003 | 4.7 ± 1.6 | 8.9 ± 0.3 | 4.1 ± 0.6 | 4 |
Amphotericin B | 0.077 ± 0.005 | 0.037 ± 0.004 | 9.0 ± 0.6 | 18.9 ± 2.2 | 172.3 ± 4.3 | 4 |
Flucytosine | 0.058 ± 0.001 | 0.022 ± 0.009 | 11.9 ± 0.2 | 31.5 ± 13.6 | 165.4 ± 2.9 | 3 * |
Fluconazole | 0.018 ± 0.001 | 0.014 ± 0.002 | 38.5 ± 2.1 | 49.5 ± 6.1 | 6.4 ± 6.2 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Facchini, N.; Wernli, L.; Rieken, M.; Bonkat, G.; Wirz, D.; Braissant, O. Again and Again—Survival of Candida albicans in Urine Containing Antifungals. Pharmaceutics 2024, 16, 605. https://doi.org/10.3390/pharmaceutics16050605
Facchini N, Wernli L, Rieken M, Bonkat G, Wirz D, Braissant O. Again and Again—Survival of Candida albicans in Urine Containing Antifungals. Pharmaceutics. 2024; 16(5):605. https://doi.org/10.3390/pharmaceutics16050605
Chicago/Turabian StyleFacchini, Nevio, Lukas Wernli, Malte Rieken, Gernot Bonkat, Dieter Wirz, and Olivier Braissant. 2024. "Again and Again—Survival of Candida albicans in Urine Containing Antifungals" Pharmaceutics 16, no. 5: 605. https://doi.org/10.3390/pharmaceutics16050605
APA StyleFacchini, N., Wernli, L., Rieken, M., Bonkat, G., Wirz, D., & Braissant, O. (2024). Again and Again—Survival of Candida albicans in Urine Containing Antifungals. Pharmaceutics, 16(5), 605. https://doi.org/10.3390/pharmaceutics16050605