Functionalized Calcium Carbonate-Based Microparticles as a Versatile Tool for Targeted Drug Delivery and Cancer Treatment
Abstract
:1. Introduction
2. Core-Only CaCO3 Microparticles
2.1. Loading Methods
2.2. Demonstration and Limitations
3. CaCO3-Based Core/Shell Systems
3.1. Methods of Fabrication
3.2. Delivery of Small Molecules
3.3. Delivery of Proteins
3.4. Delivery of Nucleic Acids
4. CaCO3-Based Hollow Microcapsules
4.1. Methods of Fabrication
4.2. Delivery of Small Molecules
4.3. Delivery of Proteins
4.4. Delivery of Nucleic Acids
5. Conclusions
6. Outlook: In Vivo Studies
6.1. Modulation of the pH of Tumor Environment
6.2. Biodistribution and Biocompatibility
6.3. Retention, Stability, and Toxicity
6.4. Vaccinal Applications
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bahrom, H.; Goncharenko, A.A.; Fatkhutdinova, L.I.; Peltek, O.O.; Muslimov, A.R.; Koval, O.Y.; Eliseev, I.E.; Manchev, A.; Gorin, D.; Shishkin, I.I.; et al. Controllable synthesis of calcium carbonate with different geometry: Comprehensive analysis of particle formation, cellular uptake, and biocompatibility. ACS Sustain. Chem. Eng. 2019, 7, 19142–19156. [Google Scholar] [CrossRef]
- Trushina, D.B.; Bukreeva, T.V.; Antipina, M.N. Size-controlled synthesis of vaterite calcium carbonate by the mixing method: Aiming for nanosized particles. Cryst. Growth Des. 2016, 16, 1311–1319. [Google Scholar] [CrossRef]
- Vostrikova, A.V.; Prikhozhdenko, E.S.; Mayorova, O.A.; Goryacheva, I.Y.; Tarakina, N.V.; Sukhorukov, G.B.; Sapelkin, A.V. Thermal carbonization in nanoscale reactors: Controlled formation of carbon nanodots inside porous CaCO3 microparticles. Sci. Rep. 2018, 8, 9394. [Google Scholar] [CrossRef] [PubMed]
- Trofimov, A.D.; Ivanova, A.A.; Zyuzin, M.V.; Timin, A.S. Porous inorganic carriers based on silica, calcium carbonate and calcium phosphate for controlled/modulated drug delivery: Fresh outlook and future perspectives. Pharmaceutics 2018, 10, 167. [Google Scholar] [CrossRef] [PubMed]
- Lam, S.F.; Bishop, K.W.; Mintz, R.; Fang, L.; Achilefu, S. Calcium carbonate nanoparticles stimulate cancer cell reprogramming to suppress tumor growth and invasion in an organ-on-a-chip system. Sci. Rep. 2021, 11, 9246. [Google Scholar] [CrossRef] [PubMed]
- Ševčík, R.; Šašek, P.; Viani, A. Physical and nanomechanical properties of the synthetic anhydrous crystalline CaCO3 polymorphs: Vaterite, aragonite and calcite. J. Mater. Sci. 2018, 53, 4022–4033. [Google Scholar] [CrossRef]
- Svenskaya, Y.I.; Fattah, H.; Inozemtseva, O.A.; Ivanova, A.G.; Shtykov, S.N.; Gorin, D.A.; Parakhonskiy, B.V. Key parameters for size- and shape-controlled synthesis of vaterite particles. Cryst. Growth Des. 2018, 18, 331–337. [Google Scholar] [CrossRef]
- Han, C.; Hu, Y.; Wang, K.; Luo, G. Preparation and in-situ surface modification of CaCO3 nanoparticles with calcium stearate in a microreaction system. Powder Technol. 2019, 356, 414–422. [Google Scholar] [CrossRef]
- Niu, Y.Q.; Liu, J.H.; Aymonier, C.; Fermani, S.; Kralj, D.; Falini, G.; Zhou, C.H. Calcium carbonate: Controlled synthesis, surface functionalization, and nanostructured materials. Chem. Soc. Rev. 2022, 51, 7883–7943. [Google Scholar] [CrossRef]
- Fadia, P.; Tyagi, S.; Bhagat, S.; Nair, A.; Panchal, P.; Dave, H.; Dang, S.; Singh, S. Calcium carbonate nano- and microparticles: Synthesis methods and biological applications. 3 Biotech 2021, 11, 457. [Google Scholar] [CrossRef]
- Byrappa, K.; Ohara, S.; Adschiri, T. Nanoparticles synthesis using supercritical fluid technology—Towards biomedical applications. Adv. Drug Deliv. Rev. 2008, 60, 299–327. [Google Scholar] [CrossRef]
- Pai, R.K.; Pillai, S. Nanoparticles of amorphous calcium carbonate by miniemulsion: Synthesis and mechanism. CrystEngComm 2008, 10, 865–872. [Google Scholar] [CrossRef]
- Anton, N.; Benoit, J.P.; Saulnier, P. Design and production of nanoparticles formulated from nano-emulsion templates—A review. J. Control. Release 2008, 128, 185–199. [Google Scholar] [CrossRef] [PubMed]
- Babou-Kammoe, R.; Hamoudi, S.; Larachi, F.; Belkacemi, K. Synthesis of CaCO3 nanoparticles by controlled precipitation of saturated carbonate and calcium nitrate aqueous solutions. Can. J. Chem. Eng. 2012, 90, 26–33. [Google Scholar] [CrossRef]
- Campbell, J.; Abnett, J.; Kastania, G.; Volodkin, D.; Vikulina, A.S. Which biopolymers are better for the fabrication of multilayer capsules? A comparative study using vaterite CaCO3 as templates. ACS Appl. Mater. 2021, 13, 3259–3269. [Google Scholar] [CrossRef] [PubMed]
- Chesneau, C.; Larue, L.; Belbekhouche, S. Design of tailor-made biopolymer-based capsules for biological application by combining porous particles and polysaccharide assembly. Pharmaceutics 2023, 15, 1718. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.; Dima, C.; Huang, M.; Assadpour, E.; Wang, J.; Sun, B.; Kharazmi, M.S.; Jafari, S.M. Advanced CaCO3-derived delivery systems for bioactive compounds. Adv. Colloid Interface Sci. 2022, 309, 102791. [Google Scholar] [CrossRef] [PubMed]
- Kalenichenko, D.; Nifontova, G.; Karaulov, A.; Sukhanova, A.; Nabiev, I. Designing functionalized polyelectrolyte microcapsules for cancer treatment. Nanomaterials 2021, 11, 3055. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Zhao, Y.; Zhang, J.; Hao, J.; Xu, D.; Cao, Y. CaCO3 Loaded lipid microspheres prepared by the solid-in-oil-in-water emulsions technique with propylene glycol alginate and xanthan gum. Front. Nutr. 2022, 9, 961326. [Google Scholar] [CrossRef]
- Yoshida, K.; Ono, T.; Kashiwagi, Y.; Takahashi, S.; Sato, K.; Anzai, J.I. pH-dependent release of insulin from layer-by-layer-deposited polyelectrolyte microcapsules. Polymers 2015, 7, 1269–1278. [Google Scholar] [CrossRef]
- Dou, J.; Zhao, F.; Fan, W.; Chen, Z.; Guo, X. Preparation of non-spherical vaterite CaCO3 particles by flash nano precipitation technique for targeted and extended drug delivery. J. Drug Deliv. Sci. 2020, 57, 101768. [Google Scholar] [CrossRef]
- Gundogdu, D.; Alemdar, C.; Turan, C.; Husnugil, H.H.; Banerjee, S.; Erel-Goktepe, I. Tuning stimuli-responsive properties of alginate hydrogels through layer-by-layer functionalization for dual-responsive dual drug release. Colloids Surf. A Physicochem. Eng. Asp. 2023, 676, 132213. [Google Scholar] [CrossRef]
- Decher, G.; Hong, J.D.; Schmitt, J. Buildup of ultrathin multilayer films by a self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin Solid Films 1992, 210–211, 831–835. [Google Scholar] [CrossRef]
- Decher, G.; Hong, J.-D. Buildup of ultrathin multilayer films by a self-assembly process: I. Consecutive adsorption of anionic and cationic bipolar amphiphiles on charged surfaces. Makromol. Chem. Macromol. Symp. 1991, 46, 321–327. [Google Scholar] [CrossRef]
- Vikulina, A.S.; Campbell, J. Biopolymer-based multilayer capsules and beads made via templating: Advantages, hurdles and perspectives. Nanomaterials 2021, 11, 2502. [Google Scholar] [CrossRef] [PubMed]
- Volodkin, D.V.; Madaboosi, N.; Blacklock, J.; Skirtach, A.G.; Möhwald, H. Surface-supported multilayers decorated with bio-active material aimed at light-triggered drug delivery. Langmuir 2009, 25, 14037–14043. [Google Scholar] [CrossRef] [PubMed]
- De Geest, B.G.; Skirtach, A.G.; Mamedov, A.A.; Antipov, A.A.; Kotov, N.A.; De Smedt, S.C.; Sukhorukov, G.B. Ultrasound-triggered release from multilayered capsules. Small 2007, 3, 804–808. [Google Scholar] [CrossRef] [PubMed]
- Déjugnat, C.; Sukhorukov, G.B. pH-responsive properties of hollow polyelectrolyte microcapsules templated on various cores. Langmuir 2004, 20, 7265–7269. [Google Scholar] [CrossRef] [PubMed]
- Alford, A.; Tucker, B.; Kozlovskaya, V.; Chen, J.; Gupta, N.; Caviedes, R.; Gearhart, J.; Graves, D.; Kharlampieva, E. Encapsulation and ultrasound-triggered release of G-quadruplex DNA in multilayer hydrogel microcapsules. Polymers 2018, 10, 1342. [Google Scholar] [CrossRef]
- Campbell, J.; Kastania, G.; Volodkin, D. Encapsulation of low-molecular-weight drugs into polymer multilayer capsules templated on vaterite CaCO3 crystals. Micromachines 2020, 11, 717. [Google Scholar] [CrossRef]
- Li, S.; Lian, B. Application of calcium carbonate as a controlled release carrier for therapeutic drugs. Minerals 2023, 13, 1136. [Google Scholar] [CrossRef]
- Gileva, A.; Trushina, D.; Yagolovich, A.; Gasparian, M.; Kurbanova, L.; Smirnov, I.; Burov, S.; Markvicheva, E. Doxorubicin-loaded polyelectrolyte multilayer capsules modified with antitumor DR5-specific TRAIL variant for targeted drug delivery to tumor cells. Nanomaterials 2023, 13, 902. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, M.; Shiokawa, K.; Araki, M.; Ashitaka, N.; Morigaki, K.; Kubota, T.; Nakahara, Y. Encapsulation of proteins into CaCO3 by phase transition from vaterite to calcite. Cryst. Growth Design 2010, 10, 4030–4037. [Google Scholar] [CrossRef]
- Zhao, D.; Wang, C.Q.; Zhuo, R.X.; Cheng, S.X. Modification of nanostructured calcium carbonate for efficient gene delivery. Colloids Surf. B Biointerfaces 2014, 118, 111–116. [Google Scholar] [CrossRef]
- Popova, V.; Poletaeva, Y.; Chubarov, A.; Dmitrienko, E. pH-responsible doxorubicin-loaded Fe3O4@CaCO3 nanocomposites for cancer treatment. Pharmaceutics 2023, 15, 771. [Google Scholar] [CrossRef] [PubMed]
- Nifontova, G.; Ramos-Gomes, F.; Baryshnikova, M.; Alves, F.; Nabiev, I.; Sukhanova, A. Cancer cell targeting with functionalized quantum dot-encoded polyelectrolyte microcapsules. Front. Chem. 2019, 7, 34. [Google Scholar] [CrossRef] [PubMed]
- Trushina, D.B.; Borodina, T.N.; Belyakov, S.; Antipina, M.N. Calcium carbonate vaterite particles for drug delivery: Advances and challenges. Mater. Today Adv. 2022, 14, 100214. [Google Scholar] [CrossRef]
- Ishikawa, F.; Murano, M.; Hiraishi, M.; Yamaguchi, T.; Tamai, I.; Tsuji, A. Insoluble powder formulation as an effective nasal drug delivery system. Pharm. Res. 2002, 19, 1097–1104. [Google Scholar] [CrossRef]
- Volodkin, D.V.; Larionova, N.I.; Sukhorukov, G.B. Protein encapsulation via porous CaCO3 microparticles templating. Biomacromolecules 2004, 5, 1962–1972. [Google Scholar] [CrossRef]
- Parakhonskiy, B.V.; Haase, A.; Antolini, R. Sub-micrometer vaterite containers: Synthesis, substance loading, and release. Angew. Chem. Intl. Ed. 2012, 51, 1195–1197. [Google Scholar] [CrossRef]
- Farzan, M.; Roth, R.; Québatte, G.; Schoelkopf, J.; Huwyler, J.; Puchkov, M. Loading of porous functionalized calcium carbonate microparticles: Distribution analysis with focused ion beam electron microscopy and mercury porosimetry. Pharmaceutics 2019, 11, 32. [Google Scholar] [CrossRef] [PubMed]
- Levy, C.L.; Matthews, G.P.; Laudone, G.M.; Beckett, S.; Turner, A.; Schoelkopf, J.; Gane, P.A.C. Mechanism of adsorption of actives onto microporous functionalized calcium carbonate (FCC). Adsorption 2017, 23, 603–612. [Google Scholar] [CrossRef]
- Binevski, P.V.; Balabushevich, N.G.; Uvarova, V.I.; Vikulina, A.S.; Volodkin, D. Bio-Friendly Encapsulation of superoxide dismutase into vaterite CaCO3 crystals. Enzyme activity, release mechanism, and perspectives for ophthalmology. Colloids Surf. B Biointerfaces 2019, 181, 437–449. [Google Scholar] [CrossRef] [PubMed]
- Feoktistova, N.A.; Balabushevich, N.G.; Skirtach, A.G.; Volodkin, D.; Vikulina, A.S. Inter-protein interactions govern protein loading into porous vaterite CaCO3 crystals. Phys. Chem. Chem. Phys. 2020, 22, 9713–9722. [Google Scholar] [CrossRef]
- Li, R.G.; Napoli, E.; Jorstad, I.S.; Bønsdorff, T.B.; Juzeniene, A.; Bruland, Ø.S.; Larsen, R.H.; Westrøm, S. Calcium carbonate microparticles as carriers of 224 Ra: Impact of specific activity in mice with intraperitoneal ovarian cancer. Curr. Radiopharm. 2020, 14, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Westrøm, S.; Malenge, M.; Jorstad, I.S.; Napoli, E.; Bruland, Ø.S.; Bønsdorff, T.B.; Larsen, R.H. Ra-224 labeling of calcium carbonate microparticles for internal α-therapy: Preparation, stability, and biodistribution in mice. J. Label. Compd. Radiopharm. 2018, 61, 472–486. [Google Scholar] [CrossRef] [PubMed]
- Feoktistova, N.A.; Vikulina, A.S.; Balabushevich, N.G.; Skirtach, A.G.; Volodkin, D. Bioactivity of catalase loaded into vaterite CaCO3 crystals via adsorption and co-synthesis. Mater. Des. 2020, 185, 108223. [Google Scholar] [CrossRef]
- Preisig, D.; Haid, D.; Varum, F.J.O.; Bravo, R.; Alles, R.; Huwyler, J.; Puchkov, M. Drug loading into porous calcium carbonate microparticles by solvent evaporation. Eur. J. Pharm. Biopharm. 2014, 87, 548–558. [Google Scholar] [CrossRef] [PubMed]
- Roth, R.; Schoelkopf, J.; Huwyler, J.; Puchkov, M. Functionalized calcium carbonate microparticles for the delivery of proteins. Eur. J. Pharm. Biopharm. 2018, 122, 96–103. [Google Scholar] [CrossRef]
- Ramalapa, B.; Crasson, O.; Vandevenne, M.; Gibaud, A.; Garcion, E.; Cordonnier, T.; Galleni, M.; Boury, F. Protein-polysaccharide complexes for enhanced protein delivery in hyaluronic acid templated calcium carbonate microparticles. J. Mater. Chem. B 2017, 5, 7360–7368. [Google Scholar] [CrossRef]
- Vikulina, A.S.; Feoktistova, N.A.; Balabushevich, N.G.; Skirtach, A.G.; Volodkin, D. The mechanism of catalase loading into porous vaterite CaCO3 crystals by co-synthesis. Phys. Chem. Chem. Phys. 2018, 20, 8822–8831. [Google Scholar] [CrossRef]
- Guo, Y.; Li, H.; Shi, W.; Zhang, J.; Feng, J.; Yang, X.; Wang, K.; Zhang, H.; Yang, L. Targeted delivery and pH-responsive release of doxorubicin to cancer cells using calcium carbonate/hyaluronate/glutamate mesoporous hollow spheres. J. Colloid Interface Sci. 2017, 502, 59–66. [Google Scholar] [CrossRef]
- Lu, J.; Jiao, Y.; Cao, G.; Liu, Z. Multimode CaCO3/pneumolysin antigen delivery systems for inducing efficient cellular immunity for anti-tumor immunotherapy. Chem. Eng. J. 2021, 420, 129746. [Google Scholar] [CrossRef]
- Balabushevich, N.G.; Kovalenko, E.A.; Le-Deygen, I.M.; Filatova, L.Y.; Volodkin, D.; Vikulina, A.S. Hybrid CaCO3-mucin crystals: Effective approach for loading and controlled release of cationic drugs. Mater. Des. 2019, 182, 108020. [Google Scholar] [CrossRef]
- Lin, J.; Huang, L.; Xiang, R.; Ou, H.; Li, X.; Chen, A.; Liu, Z. Blood compatibility evaluations of CaCO3 particles. Biomed. Mater. Res. 2021, 16, 055010. [Google Scholar] [CrossRef]
- Wang, P.; Kankala, R.K.; Fan, J.; Long, R.; Liu, Y.; Wang, S. Poly-L-ornithine/fucoidan-coated calcium carbonate microparticles by layer-by-layer self-assembly technique for cancer theranostics. J. Mater. Sci. Mater. Med. 2018, 29, 68. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Chen, S.; Yu, Q.; Hu, F.; Yuan, H. Taking advantage of the disadvantage: Employing the high aqueous instability of amorphous calcium carbonate to realize burst drug release within cancer cells. J. Mater. Chem. B 2017, 5, 2068–2073. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Sun, R.; Su, H.; Xu, H.; Zhang, L.; Huang, D.; Liang, Z.; Hu, Y.; Zhao, L.; Lian, X. Synthesis and characterization of porous CaCO3 microspheres templated by yeast cells and the application as pH value-sensitive anticancer drug carrier. Colloids Surf. B Biointerfaces 2021, 199, 111545. [Google Scholar] [CrossRef] [PubMed]
- Lybaert, L.; Ryu, K.A.; Nuhn, L.; De Rycke, R.; De Wever, O.; Chon, A.C.; Esser-Kahn, A.P.; De Geest, B.G. Cancer cell lysate entrapment in CaCO3 engineered with polymeric TLR-agonists: Immune-modulating microparticles in view of personalized antitumor vaccination. Chem. Mater. 2017, 29, 4209–4217. [Google Scholar] [CrossRef]
- Muslimov, A.R.; Antuganov, D.; Tarakanchikova, Y.V.; Karpov, T.E.; Zhukov, M.V.; Zyuzin, M.V.; Timin, A.S. An investigation of calcium carbonate core-shell particles for incorporation of 225Ac and sequester of daughter radionuclides: In vitro and in vivo studies. J. Control. Release 2021, 330, 726–737. [Google Scholar] [CrossRef]
- Kudryavtseva, V.L.; Zhao, L.; Tverdokhlebov, S.I.; Sukhorukov, G.B. Fabrication of PLA/CaCO3 hybrid micro-particles as carriers for water-soluble bioactive molecules. Colloids Surf. B Biointerfaces 2017, 157, 481–489. [Google Scholar] [CrossRef] [PubMed]
- Bewernitz, M.A.; Lovett, A.C.; Gower, L.B. Liquid–solid core-shell microcapsules of calcium carbonate coated emulsions and liposomes. Appl. Sci. 2020, 10, 8551. [Google Scholar] [CrossRef]
- Antipov, A.A.; Shchukin, D.; Fedutik, Y.; Petrov, A.I.; Sukhorukov, G.B.; Möhwald, H. Carbonate microparticles for hollow polyelectrolyte capsules fabrication. Colloids Surf. A Physicochem. Eng. Asp. 2003, 224, 175–183. [Google Scholar] [CrossRef]
- Szarpak, A.; Cui, D.; Dubreuil, F.; De Geest, B.G.; De Cock, L.J.; Picart, C.; Auzély-Velty, R. Designing hyaluronic acid-based layer-by-layer capsules as a carrier for intracellular drug delivery. Biomacromolecules 2010, 11, 713–720. [Google Scholar] [CrossRef] [PubMed]
- De Geest, B.G.; Vandenbroucke, R.E.; Guenther, A.M.; Sukhorukov, G.B.; Hennink, W.E.; Sanders, N.N.; Demeester, J.; De Smedt, S.C. Intracellularly degradable polyelectrolyte microcapsules. Adv. Mater. 2006, 18, 1005–1009. [Google Scholar] [CrossRef]
- Belbekhouche, S.; Charaabi, S.; Carbonnier, B. Glucose-sensitive capsules based on hydrogen-bonded (poly-vinylpyrrolidone/phenylboronic–modified alginate) system. Colloids Surf. B Biointerfaces 2019, 177, 416–424. [Google Scholar] [CrossRef] [PubMed]
- Trushina, D.B.; Bukreeva, T.V.; Borodina, T.N.; Belova, D.D.; Belyakov, S.; Antipina, M.N. Heat-driven size reduction of biodegradable polyelectrolyte multilayer hollow capsules assembled on CaCO3 template. Colloids Surf. B Biointerfaces 2018, 170, 312–321. [Google Scholar] [CrossRef] [PubMed]
- Navolokin, N.; Lomova, M.; Bucharskaya, A.; Godage, O.; Polukonova, N.; Shirokov, A.; Grinev, V.; Maslyakova, G. Antitumor effects of microencapsulated gratiola officinalis extract on breast carcinoma and hu-man cervical cancer cells in vitro. Materials 2023, 16, 1470. [Google Scholar] [CrossRef] [PubMed]
- Nehru, S.; Guru, A.; Pachaiappan, R.; Hatamleh, A.A.; Al-Dosary, M.A.; Arokiyaraj, S.; Sundaramurthy, A.; Arockiaraj, J. Co-encapsulation and release of apigenin and ascorbic acid in polyelectrolyte multilayer capsules for targeted polycystic ovary syndrome. Int. J. Pharm. 2023, 651, 123749. [Google Scholar] [CrossRef]
- Novoselova, M.V.; Loh, H.M.; Trushina, D.B.; Ketkar, A.; Abakumova, T.O.; Zatsepin, T.S.; Kakran, M.; Brzozowska, A.M.; Lau, H.H.; Gorin, D.A.; et al. Biodegradable polymeric multilayer capsules for therapy of lung cancer. ACS Appl. Mater. Interfaces 2020, 12, 5610–5623. [Google Scholar] [CrossRef]
- Petrov, A.I.; Volodkin, D.V.; Sukhorukov, G.B. Protein-calcium carbonate coprecipitation: A tool for protein encapsulation. Biotechnol. Prog. 2005, 21, 918–925. [Google Scholar] [CrossRef] [PubMed]
- Mihai, M.; Racovita, S.; Vasiliu, A.-L.; Doroftei, F.; Barbu-Mic, C.; Schwarz, S.; Steinbach, C.; Simon, F. Auto-template microcapsules of CaCO3/pectin and nonstoichiometric complexes as sustained tetracycline hydrochloride delivery carriers. ACS Appl. Mater. Interfaces 2017, 9, 37264–37278. [Google Scholar] [CrossRef]
- Flemke, J.; Maywald, M.; Sieber, V. Encapsulation of living E. coli cells in hollow polymer microspheres of highly defined size. Biomacromolecules 2013, 14, 207–214. [Google Scholar] [CrossRef]
- Sharma, V.; Vijay, J.; Ganesh, M.R.; Sundaramurthy, A. Multilayer capsules encapsulating nimbin and doxorubicin for cancer chemo-photothermal therapy. Int. J. Pharm. 2020, 582, 119350. [Google Scholar] [CrossRef]
- Maiorova, L.A.; Erokhina, S.I.; Pisani, M.; Barucca, G.; Marcaccio, M.; Koifman, O.I.; Salnikov, D.S.; Gromova, O.A.; Astolfi, P.; Ricci, V.; et al. Encapsulation of vitamin B12 into nanoengineered capsules and soft matter nanosystems for targeted delivery. Colloids Surf. B Biointerfaces 2019, 182, 110366. [Google Scholar] [CrossRef] [PubMed]
- Musin, E.V.; Kim, A.L.; Tikhonenko, S.A. Destruction of polyelectrolyte microcapsules formed on CaCO3 microparticles and the release of a protein included by the adsorption method. Polymers 2020, 12, 520. [Google Scholar] [CrossRef]
- De Temmerman, M.-L.; Rejman, J.; Grooten, J.; De Beer, T.; Vervaet, C.; Demeester, J.; De Smedt, S.C. Lyophilization of protein-loaded polyelectrolyte microcapsules. Pharm. Res. 2011, 28, 1765–1773. [Google Scholar] [CrossRef]
- Tarakanchikova, Y.V.; Muslimov, A.R.; Zyuzin, M.V.; Nazarenko, I.; Timin, A.S.; Sukhorukov, G.B.; Lepik, K.V. Layer-by-layer-assembled capsule size affects the efficiency of packaging and delivery of different genetic cargo. Part. Part. Syst. Charact. 2021, 38, 2000228. [Google Scholar] [CrossRef]
- Timin, A.S.; Muslimov, A.R.; Lepik, K.V.; Epifanovskaya, O.S.; Shakirova, A.I.; Mock, U.; Riecken, K.; Okilova, M.V.; Sergeev, V.S.; Afanasyev, B.V.; et al. Efficient gene editing via non-viral delivery of CRISPR–Cas9 system using polymeric and hybrid microcarriers. Nanomed. NBM 2018, 14, 97–108. [Google Scholar] [CrossRef]
- Lin, Y.-H.; Singuru, M.M.R.; Marpaung, D.S.S.; Liao, W.-C.; Chuang, M.-C. Ethylene glycol-manipulated syntheses of calcium carbonate particles and DNA capsules toward efficient ATP-responsive cargo release. ACS Appl. Bio Mater. 2023, 6, 3351–3360. [Google Scholar] [CrossRef]
- Prikhozhdenko, E.S.; Gusliakova, O.I.; Kulikov, O.A.; Mayorova, O.A.; Shushunova, N.A.; Abdurashitov, A.S.; Bratashov, D.N.; Pyataev, N.A.; Tuchin, V.V.; Gorin, D.A.; et al. Target delivery of drug carriers in mice kidney glomeruli via renal artery. J. Control. Release 2021, 329, 175–190. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Han, B.; Wang, Z.; Gao, C.; Peng, C.; Shen, J. Hollow chitosan-alginate multilayer microcapsules as drug delivery vehicle: Doxorubicin loading and in vitro and in vivo studies. Nanomed. NBM 2007, 3, 63–74. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Li, B. pH-controlled drug loading and release from biodegradable microcapsules. Nanomed. NBM 2008, 4, 302–310. [Google Scholar] [CrossRef] [PubMed]
- Lvov, Y.; Antipov, A.A.; Mamedov, A.; Möhwald, H.; Sukhorukov, G.B. Urease encapsulation in nanoorganized microshells. Nano Lett. 2001, 1, 125–128. [Google Scholar] [CrossRef]
- Finnegan, M.; Mallon, G.; Leach, A.; Themistou, E. Electrosprayed cysteine-functionalized degradable amphiphilic block copolymer microparticles for low pH-triggered drug delivery. Polym. Chem. 2019, 10, 5814–5820. [Google Scholar] [CrossRef]
- Nifontova, G.; Tsoi, T.; Karaulov, A.; Nabiev, I.; Sukhanova, A. Structure-function relationships in polymeric multilayer capsules designed for cancer drug delivery. Biomater. Sci. 2022, 10, 5092–5115. [Google Scholar] [CrossRef] [PubMed]
- Nifontova, G.; Zvaigzne, M.; Baryshnikova, M.; Korostylev, E.; Ramos-Gomes, F.; Alves, F.; Nabiev, I.; Sukhanova, A. Next-generation theranostic agents based on polyelectrolyte microcapsules encoded with semiconductor nanocrystals: Development and functional characterization. Nanoscale Res. 2018, 13, 30. [Google Scholar] [CrossRef] [PubMed]
- Ariga, K.; Lvov, Y.M.; Kawakami, K.; Ji, Q.; Hill, J.P. Layer-by-layer self-assembled shells for drug delivery. Adv. Drug Deliv. Rev. 2011, 63, 762–771. [Google Scholar] [CrossRef] [PubMed]
- Zheng, P.; Ding, B.; Shi, R.; Jiang, Z.; Xu, W.; Li, G.; Ding, J.; Chen, X. A multichannel Ca2+ nanomodulator for multilevel mitochondrial destruction-mediated cancer therapy. Adv. Mater. 2021, 33, 2007426. [Google Scholar] [CrossRef]
- Svenskaya, Y.; Garello, F.; Lengert, E.; Kozlova, A.; Verkhovskii, R.; Bitonto, V.; Ruggiero, M.R.; German, S.; Gorin, D.; Terreno, E. Biodegradable polyelectrolyte/magnetite capsules for MR imaging and magnetic targeting of tumors. Nanotheranostics 2021, 5, 362–377. [Google Scholar] [CrossRef]
- Borbora, A.; Manna, U. Impact of chemistry on the preparation and post-modification of multilayered hollow microcapsules. Chem. Commun. 2021, 57, 2110–2123. [Google Scholar] [CrossRef] [PubMed]
- Maleki Dizaj, S.; Sharifi, S.; Ahmadian, E.; Eftekhari, A.; Adibkia, K.; Lotfipour, F. An update on calcium carbonate nanoparticles as cancer drug/gene delivery system. Exp. Opin. Drug Deliv. 2019, 16, 331–345. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Luo, Z.; Li, M.; Qu, Q.; Ma, X.; Yu, S.-H.; Zhao, Y. A preloaded amorphous calcium carbonate/doxorubicin@silica nanoreactor for pH-responsive delivery of an anticancer drug. Angew. Chem. Intl. Ed. 2015, 54, 919–922. [Google Scholar] [CrossRef] [PubMed]
- Machtakova, M.; Thérien-Aubin, H.; Landfester, K. Polymer nano-systems for the encapsulation and delivery of active biomacromolecular therapeutic agents. Chem. Soc. Rev. 2022, 51, 128–152. [Google Scholar] [CrossRef]
- Som, A.; Raliya, R.; Tian, L.; Akers, W.; Ippolito, J.E.; Singamaneni, S.; Biswas, P.; Achilefu, S. Monodispersed calcium carbonate nanoparticles modulate local pH and inhibit tumor growth in vivo. Nanoscale 2016, 8, 12639–12647. [Google Scholar] [CrossRef] [PubMed]
- D’Amora, M.; Liendo, F.; Deorsola, F.A.; Bensaid, S.; Giordani, S. Toxicological profile of calcium carbonate nanoparticles for industrial applications. Colloids Surf. B Biointerfaces 2020, 190, 110947. [Google Scholar] [CrossRef]
- Borodina, T.; Marchenko, I.; Trushina, D.; Volkova, Y.; Shirinian, V.; Zavarzin, I.; Kondrakhin, E.; Kovalev, G.; Kovalchuk, M.; Bukreeva, T. A Novel formulation of zolpidem for direct nose-to-brain delivery: Synthesis, encapsulation and intranasal administration to mice. J. Pharm. Pharmacol. 2018, 70, 1164–1173. [Google Scholar] [CrossRef]
- Marchenko, I.; Borodina, T.; Trushina, D.; Rassokhina, I.; Volkova, Y.; Shirinian, V.; Zavarzin, I.; Gogin, A.; Bukreeva, T. Mesoporous particle-based microcontainers for intranasal delivery of imidazopyridine drugs. J. Microencapsul. 2018, 35, 657–666. [Google Scholar] [CrossRef] [PubMed]
- Gusliakova, O.; Atochina-Vasserman, E.N.; Sindeeva, O.; Sindeev, S.; Pinyaev, S.; Pyataev, N.; Revin, V.; Sukhorukov, G.B.; Gorin, D.; Gow, A.J. Use of submicron vaterite particles serves as an effective delivery vehicle to the respiratory portion of the lung. Front. Pharmacol. 2018, 9, 559. [Google Scholar] [CrossRef]
- Svenskaya, Y.I.; Genina, E.A.; Parakhonskiy, B.V.; Lengert, E.V.; Talnikova, E.E.; Terentyuk, G.S.; Utz, S.R.; Gorin, D.A.; Tuchin, V.V.; Sukhorukov, G.B. A simple non-invasive approach toward efficient transdermal drug delivery based on biodegradable particulate system. ACS Appl. Mater. Interfaces 2019, 11, 17270–17282. [Google Scholar] [CrossRef]
- Wang, E.Y.; Sarmadi, M.; Ying, B.; Jaklenec, A.; Langer, R. Recent advances in nano- and micro-scale carrier systems for controlled delivery of vaccines. Biomaterials 2023, 303, 122345. [Google Scholar] [CrossRef]
- He, H.; Lu, Y.; Qi, J.; Zhu, Q.; Chen, Z.; Wu, W. Adapting liposomes for oral drug delivery. Acta Pharm. Sin. B. 2019, 9, 36–48. [Google Scholar] [CrossRef]
- Vikulina, A.; Voronin, D.; Fakhrullin, R.; Vinokurov, V.; Volodkin, D. Naturally derived nano- and micro-drug delivery vehicles: Halloysite, vaterite and nanocellulose. New J. Chem. 2020, 44, 5638–5655. [Google Scholar] [CrossRef]
- Garg, V.; Narang, P.; Taneja, R. Antacids Revisited: Review on contemporary facts and relevance for self-management. J. Int. Med. Res. 2022, 50, 3000605221086457. [Google Scholar] [CrossRef]
Particle Type | Size | Cargo Type | Encapsulated Molecule | Results/Conclusions of the Cited Study | Shell Composition | Ref. |
---|---|---|---|---|---|---|
Core | 1 μm | Small molecule | Doxorubicin | The IC50 value of doxorubicin for HeLa cancer cells is 0.0113 μg/mL, much lower than that of the free doxorubicin (0.0801 μg/mL). | Hyaluronate/glutamate | [52] |
Core | 0.6–3.2 µm | - | - | The thermal expansion of vaterite is reported for the first time; vaterite is not converted to calcite in the dilatometric test. | - | [6] |
Core | 0.43 µm | Fluorescent dye | Rhodamine 6G | Submicron vaterite containers enable controlled loading and release of active substances via calcite recrystallization in water. | - | [40] |
Core | 0.52 µm | - | - | The optimal salt concentrations, reaction time, and organic additives for ensuring controllable and reliable CaCO3 particle design have been estimated. | - | [1] |
Core | 0.4–2.7 µm | - | - | Submicron vaterite particles have been synthesized by the drop precipitation method from saturated solutions of NaCO3 and CaCl2 in the presence of ethylene glycol with an EG-to-H20 ratio of 4:1. | - | [7] |
Core | n/a | Protein | BSA | Imaging the internal structure of functionalized CaCO3 using FIB-SEM combined with MIP has distinguished between open, blocked, and drug-laden pores. | - | [41] |
Core | 17.9 μm | Small molecule | Ibuprofen, nifedipine, losartan potassium, and metronidazole benzoate | Drug loading by solvent evaporation is simple, fast, and efficient. | - | [48] |
Core | 3.1–23.5 µm | Small molecule | Aspirin, vanillin | The mechanism of adsorption of active ingredients onto functionalized CaCO3 particles has been discovered, which could enable tailored loading without altering the efficacy of the ingredients when released. | - | [42] |
Core | 17.9 μm | Protein | Lysozyme, BSA | Functionalized CaCO3 particles are a suitable pharmaceutical excipient for the delivery of proteins, such as lysozyme, with a loading efficiency of over 90%. | - | [49] |
Core | 3.4 μm | Protein | Superoxide dismutase | Superoxide dismutase (SOD) can be efficiently loaded into vaterite CaCO3 crystals, with a content in the crystals as high as 380 mg/mL (10–2 M). SOD co-synthesis at pH 8.5 fully preserves SOD bioactivity. | - | [43] |
Core | 10 μm | Protein | Catalase, insulin, aprotinin | The loading of three therapeutic proteins (250 kDa catalase, 5.8 kDa insulin, and 6.5 kDa aprotinin) into crystals of different porosities have shown that protein loading capacity depends solely on inter-protein interactions in the bulk solution in the presence of crystals and within the crystals. | - | [44] |
Core | 0.8–1.6 μm | Small molecule | Doxorubicin | Vaterite CaCO3 crystals release drugs, the initial release as low as <10% within 24 h at pH 6. These vaterites exhibit prolonged drug release: ~40% over 8 days at pH 6. | - | [21] |
Core | 4–5 μm | Protein | Catalase | Extremely large capacity of loading by co-synthesis (~550 mg/mL) is explained by intermolecular protein interactions, i.e., formation of protein aggregates induced by CaCl2 during co-synthesis. | - | [51] |
Core | 1 μm | Protein | Ovalbumin, pneumolysin | Multimodal delivery systems for CaCO3/PLY antigens have been developed. OVA/CaCO3/PLY vaccine formulations promote antigen cross-presentation, boost cellular and humoral immune responses, and offer promising preventive and therapeutic antitumor efficacy. | - | [53] |
Core | 5.45 μm | Protein | β-lactamase | β-Lactamase can associate with hyaluronic acid and be successfully loaded into vaterite CaCO3 microparticles using the supercritical CO2 technology aided by the templating effect of hyaluronic acid on CaCO3. | - | [50] |
Core | 1.3 μm | - | - | Intravenous injection of CaCO3 particles at a dose of 50 mg/kg significantly disrupted red blood cells but did not induce visible abnormalities in the tissue structures of key organs. | - | [55] |
Core | 4–7 μm | Radionuclide | 224Ra | 224Ra-labeled CaCO3 microparticles are a promising agent for therapy against cancer dissemination in body cavities. A significant therapeutic effect has been obtained at specific activities from 0.4 to 4.6 kBq/mg. | - | [45] |
Core | 1–3, 3–15 μm | Radionuclide | 224Ra | 224Ra-labeled CaCO3 microparticles remain in the peritoneal cavity, with a modest distribution of 224Ra systemically, when administered at a relevant microparticle dose. | - | [46] |
Core | 0.2–1.1 μm | Nucleic acid | DNA | CaCO3/calcium phosphate (CaP)/DNA nanoparticles have a reduced size, better stability, and significantly higher gene transfection efficiency compared to CaCO3/DNA and CaP/DNA ones. | - | [34] |
Core/shell | 2 μm | Small molecule | Doxorubicin | Doxorubicin has been loaded into CaCO3 microparticles coated with poly-L-ornithine/fucoidan with a loading efficiency as high as 69.7%. Controlled release of doxorubicin significantly inhibits the proliferation of breast cancer cells. | Poly-L-ornithine/fucoidan | [56] |
Core/shell | 0.2 μm | Small molecule | Doxorubicin | PEG/oleic acid–amorphous calcium carbonate improves the stability of CaCO3-core microparticles in aqueous media and controls drug release in cancer cells, thereby achieving an anticancer efficacy comparable to that of free drugs. | Oleic acid/PEG | [57] |
Core/shell | 3 μm | Small molecule | Doxorubicin | CaCO3 microparticles loaded with herbal medicinal products exhibit excellent biocompatibility and pH sensitivity, which demonstrates their potential as effective drug carriers. | PDDA/PSS | [58] |
Core/shell | ∼10 μm | Protein | Ovalbumin, cancer cell lysate | CaCO3 microparticles are capable of delivering vaccines to cancer cell lysates and exhibit lower cytotoxicity and greatly enhanced cellular uptake leading to improved cross-presentation efficiency. | Poly(HPMA-APMA) with TLR7/8 agonists | [59] |
Core/shell | 0.65, 3.2 μm | Radionuclide | 225Ac | CaCO3 core-shell particles effectively retain large amounts of 225Ac and its daughter isotopes (221Fr and 213Bi). The kidney accumulation of 213Bi after administration of 225Ac encapsulated in CaCO3 core/shell particles was low, unlike with non-encapsulated 225Ac. | HSA/TA | [60] |
Core/shell | ∼2 μm | Protein | BSA | A CaCO3-to-pneumolysin (PLA) mass ratio of 0.8 is optimal in terms of a large protein payload of the microparticles and their stability against dissolution. Bioactive cargos remain intact in pores of PLA-coated CaCO3 microparticles. | PLA | [61] |
Core/shell | 2–4 μm | Fluorescent dye | Nile Red, rhodamine 110 | Oil-in-water emulsion droplets and phospholipid bilayer liposomes have been coated with CaCO3 to obtain core/shell particles accommodating both hydrophobic and hydrophilic active agents. | CaCO3 | [62] |
Core/shell, shell | 2–2.5 μm | Small molecule | Doxorubicin | Doxorubicin can be effectively incorporated into CaCO3 microbeads via co-precipitation during their synthesis and into polymer microcapsules via spontaneous loading in an alkaline medium with a Cl– counterion. | PAH/PSS/QD | [18] |
Shell | 4.75 μm | Protein | Lactalbumine, lysozyme, horseradish peroxidase, chymotrypsin | A new method of protein encapsulation by adsorption into microcapsules obtained through layer-by-layer deposition onto CaCO3 cores has been proposed. | - | [39] |
Shell | 5.4 μm | - | - | Calcium, cadmium, and manganese carbonate crystals have been used as core materials to fabricate hollow polyelectrolyte capsules using layer-by-layer assembly. | PAH/PSS | [63] |
Shell | 9 μm | - | - | The structure–property relationships have been evaluated for 16 types of capsules made of different biopolymers and the mechanism of capsule formation has been inferred. | PLL, PR, DA, COL/HA, CS, DS, HS | [15] |
Shell | 3–6 μm | Protein | Insulin | Insulin is released from the microcapsules faster at pH 9.0 and 7.4 than in acidic solutions due to the difference in PAH charge density. | PAH/PSS, PVS, DS | [20] |
Shell | 5 μm | Fluorescent dye | FITC-dextran | Hyaluronic acid (HA)/poly(L-lysine (PLL) and HA/poly(allylamine) (PAH) capsules are rapidly internalized into endo-/lysosomatic vesicles upon addition to a macrophage culture. | HA/PAH, PLL | [64] |
Shell | 3 μm | Fluorescent dye | FITC-dextran | Polyelectrolyte capsules containing an enzymatically or hydrolytically degradable polycation degrade spontaneously in VERO-1 cells. | pARG/DS, p(HPMA-DMAE)/PSS, PAH/PSS | [65] |
Shell | ∼1 μm | Fluorescent dye, protein | Rhodamine B, methylene blue, insulin | Polysaccharide-based glucose-receptive capsules have been made reactive to glucose by attaching a phenylboronic moiety to alginate. | Phenylboronic –modified alginate/PVPON | [66] |
Shell | 1.8–3.8 μm | - | - | Polyarginine/dextran sulfate (pArg/DS) capsules shrink and densify when heated, with their thermal response unaffected by the initial size, number of layers, or layer sequence. | pArg/DS | [67] |
Shell | 0.5 μm | Small molecule | Doxorubicin | Capsules loaded with doxorubicin and modified with DR5 are 2–3 times more cytotoxic than the capsules without doxorubicin. | pArg/DS | [32] |
Shell | 3–5 μm | Extract | Gratiola officinalis extract | Encapsulated extract kills 100% of SKBR-3 breast cancer cells and 34% of HeLa cervical cancer cells. | PAH/PSS/DS | [68] |
Shell | 4 μm | Small molecule | Apigenin, ascorbic acid | The encapsulation efficiency is 20% for both apigenin and ascorbic acid. The release rate is 32–35% within 2 h at physiological pH. | PAH/DS | [69] |
Shell | 0.25–0.5 μm | Small molecule | Gemcitabine, clodronate | Gemcitabine and clodronate encapsulated in biodegradable polymer multilayer capsules effectively target lung cancer. | pArg/DS | [70] |
Shell | 3.3–4.8 μm | Protein | BSA, chymotrypsin, lysozyme | α-Chymotrypsin retains ~85% of its original enzymatic activity upon encapsulation. | PAH/PSS | [71] |
Shell | 5.0–8.3 μm | Small molecule | Tetracycline hydrochloride | Polymer microcapsules have a pectin loading capacity greater than 220 mg/g. | PAH/pectin | [72] |
Shell | 5.0 μm | Cells | Escherichia coli | After encapsulation, ~40% of the cells remain alive. | PAH/PSS | [73] |
Shell | 4.5 μm | Small molecule | Doxorubicin, nimbin | The IC50 for THP-1 cells are 75 and 1.8 µM for nimbin and doxorubicin, respectively. Release of the drugs is remotely activated by NIR laser irradiation. | PAH/PMA/NR | [74] |
Shell | 5.0 μm | Small molecule | Vitamin B12 | Nanoengineered polymer capsules and soft lipid nanovectors are effective carriers for vitamin B12. | PAH/PSS | [75] |
Shell | 5.0 μm | Protein | BSA | A high concentration of NaCl causes considerable dissociation of poly(allylamine) (PAH), apparently due to the action of ionic force. | PAH/PSS | [76] |
Shell | 4.2–6.3 μm | - | - | A method of surface activation of microcapsules containing the monoclonal antibody trastuzumab has been developed. | PAH/PSS/QD | [36] |
Shell | 3–4 μm | Protein | Ovalbumin, horseradish peroxidase | Lyophilized microcapsules are candidate adjuvants for antigen delivery; higher immune activation in both in vitro and in vivo assays compared to free antigen has been shown. | pArg/DS | [77] |
Shell | 3 μm | Nucleic acid | G-quadruplex DNA, double stranded DNA | Poly(methacrylic acid)/poly(N-vinylpyrrolidone) (PMAA/PVPON)n multilayer hydrogel capsules can encapsulate and release ~450 kDa double-stranded DNA. | PMA/PVPON | [29] |
Shell | 0.65, 3.3 μm | Nucleic acid | mRNA, siRNA | Submicrometer-sized polymer capsules are more efficient in transferring siRNA than micrometer-sized ones used for eGFP mRNA transport. | pArg/DS | [78] |
Shell | ∼3 μm | Nucleic acid | mRNA, pDNA, plasmid | Microcarriers mediate more efficient transfection than a commercially available liposome-based transfection reagent (>70% vs. <50% for mRNA, >40% vs. 20% for plasmid DNA). | pArg/DS/SiO2 | [79] |
Shell | 1–4 μm | Fluorescent dye | Tetramethylrhodamine dextran | Among the four types of DNA capsules studied, the smallest ones with the most integral DNA envelope exhibit the lowest leakage, highest affinity for ATP, and better kinetics and trigger sensitivity. | PAH/DNA | [80] |
Shell | 2.84 μm | Labeled protein | BSA-Cy7 | The localization efficiency of the fluorescent dye in the target kidney after intra-arterial administration is 9 times higher than that in the other kidney and after intravenous injection. After 24 h, no microcapsules are observed in the target kidney. | pArg/DS | [81] |
Shell | 3–5 μm | Small molecule | Doxorubicin | Microcapsules intensely concentrate positively charged doxorubicin, subsequently releasing it in a controlled manner to effectively induce apoptosis of HepG2 tumor cells. | Chitosan/alginate | [82] |
Shell | 3–6 μm | Labeled protein | FITC-BSA | Substantially more BSA is loaded at pH 3.8 than at pH 5.0 (i.e., the pI of BSA), and the release of BSA is faster at a higher pH. | PLL/CS | [83] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biny, L.; Gerasimovich, E.; Karaulov, A.; Sukhanova, A.; Nabiev, I. Functionalized Calcium Carbonate-Based Microparticles as a Versatile Tool for Targeted Drug Delivery and Cancer Treatment. Pharmaceutics 2024, 16, 653. https://doi.org/10.3390/pharmaceutics16050653
Biny L, Gerasimovich E, Karaulov A, Sukhanova A, Nabiev I. Functionalized Calcium Carbonate-Based Microparticles as a Versatile Tool for Targeted Drug Delivery and Cancer Treatment. Pharmaceutics. 2024; 16(5):653. https://doi.org/10.3390/pharmaceutics16050653
Chicago/Turabian StyleBiny, Lara, Evgeniia Gerasimovich, Alexander Karaulov, Alyona Sukhanova, and Igor Nabiev. 2024. "Functionalized Calcium Carbonate-Based Microparticles as a Versatile Tool for Targeted Drug Delivery and Cancer Treatment" Pharmaceutics 16, no. 5: 653. https://doi.org/10.3390/pharmaceutics16050653
APA StyleBiny, L., Gerasimovich, E., Karaulov, A., Sukhanova, A., & Nabiev, I. (2024). Functionalized Calcium Carbonate-Based Microparticles as a Versatile Tool for Targeted Drug Delivery and Cancer Treatment. Pharmaceutics, 16(5), 653. https://doi.org/10.3390/pharmaceutics16050653