In Vitro and In Vivo Evaluation of the Effects of Drug 2c and Derivatives on Ovarian Cancer Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. Uptake Studies
2.3. Drug Synthesis
- Synthesis of VV1 (4-hydroxy-2,6-bis(4-nitrobenzylidene)cyclohexanol). To a solution of 2c (1) (0.152 g, 0.4 mmol) in a 1:9 MeOH/THF solution (25 mL), NaBH4 (0.015 g, 0.40 mmol) was added at 0 °C under stirring. After 4 h at rt, brine (50 mL) was added, and the resulting solution was extracted with diethyl ether. Evaporation of the solvent gave VV1 as a 3:2 mixture of cis/trans diastereoisomers. Yellowish solid, 93% yield. NMR spectra are given for the diastereoisomeric mixture. 1H NMR (400 MHz, DMSO-d6), δ 8.19, 8.17 (2d, ratio 3:2, 4H, o-NO2PhH), 7.57, 7.53 (2d, ratio 2:3, 4H, m-NO2PhH), 6.76, 6.74 (2s, ratio 2:3, 2H, 2 × CH = C), 5.82, 5.74 (2d, ratio 3:2, 1H, J = 4.7 Hz each, C(1)-OH), 5.05, 4.99 (2d, ratio 3:2, 1H, J = 4.0 Hz each, C(4)-OH), 4.74, 4.67 (2 bm, ratio 3:2, 1H, H-1), 3.87, 3.65 (2m, ratio 3:2, 1H, H-4), 2.95, 2.33 (2 dd, J = 13.7, 9.3 and 3.8 Hz, major diastereoisomer ring CH2), 2.73, 2.55 (dd, J = 13.3, 6.5, 3.3 Hz, minor diastereoisomer, ring CH2). 13C NMR (100 MHz, DMSO-d6), δ 146.08, 145.48, 145.09, 145.01, 144.59, 130.28, 130.25, 123.91, 123.85, 121.87, 120.83, 76.56, 75.49, 68.71, 68.14, 36.34, 35.18. ESI-MS, m/z: 383.1 [M + H]+. HRMS, m/z (negative ion) found: 381.1090 [M − H]−; Calcd. for C20H17N2O6: 381.1092.
- Coupling of 2c-OSu with amines (Supplementary Materials Figure S5). General procedure for the synthesis of compounds 2–12. To a solution of 2c-OSu (1a) [(3E, 5E)-3,5-bis[(4-nitrophenyl)methylidene]-4-oxocyclohexyl 2,5-dioxo-1-pyrrolidine-1-carboxylate] (0.520 g, 1.0 mmol) in anhydrous DCM, the amine partner (1.2 mmol) was added. The reaction mixture was stirred at 25 °C for 18 h, then was washed with 1N aq HCl or 5% aq. citric acid and brine. Evaporation of the solvent left a residue that was purified as indicated.
- [(3E, 5E)-3,5-bis[(4-nitrophenyl)methylidene]-4-oxocyclohexyl N-propylcarbamate (2). From 1a and n-propylamine, yellow solid, 75% yield after FC; 1H NMR (500 MHz, DMSO-d6), δ 8.28 (app. d, J = 8.7 Hz 4H, 2 × o-NO2PhH), 7.79 (s, 2H, 2 × CH = C), 7.78 (app. d, J = 8.7 Hz, 2 × m-NO2PhH), 7.05 (t, J = 5.6 Hz, 1H, CONH), 5.01 (s, 1H, CHOCO), 3.19 (m, 4H, 2 × ring CH2), 2.76 (app q, J = 7.4 Hz, 2H, CH2NH), 1.22 (sext, J = 7.4 Hz, 2H, CH2CH2CH3), 0.66 (t, J = 7.4 Hz, 3H, CH2CH2CH3) ppm; 13C NMR (125 MHz, DMSO-d6), δ 187.75, 155.65, 147.48, 141.99, 136.19, 135.95, 131.69, 124.07, 66.85, 42.26, 32.94, 22.88, 11.50 ppm. ESI-MS, m/z: 488.1 [M + Na]+.
- [(3E, 5E)-3,5-bis[(4-nitrophenyl)methylidene]-4-oxocyclohexyl N-[2-(2-hydroxyethoxy)ethyl]carbamate (3). From 2a and 2-(2-aminoethoxy)ethanol, light yellow solid, 65% yield after FC; 1H NMR (400 MHz, CDCl3), δ 8.29 (app. d, J = 8.7 Hz, 4H, 2 × o-NO2PhH), 7.91 (s, 2H, 2 × CH = C), 7.60 (4H, app. d, J = 8.7 Hz, 2 × m-NO2PhH), 5.17 (br, 1H, CHOCO), 5.03 (br, 1H, NH), 3.71 (m, 2H, CH2OH), 3.49 (2H, NHCH2CH2O), 3.52 (t, 2H, OCH2CH2OH), 3.30 (m, 2H, CH2NH), 3.26–3.13 (m, 4H, 2 × ring CH2) ppm; 13C NMR (100 MHz, CDCl3), δ 187.56, 155.38, 147.48, 141.54, 137.15, 134.43, 130.73, 123.77, 72.15, 69.86, 67.06, 61.60, 40.73, 33.18 ppm. ESI-MS, m/z: 534.2 [M + Na]+. HRMS, m/z, found: 535.1484; Calcd for [C25H25N3O9Na]+ 535.1483.
- [(3E, 5E)-3,5-bis[(4-nitrophenyl)methylidene]-4-oxocyclohexyl N-[(naphthalen-2-yl)methyl]carbamate (4). From 1a and 2-naphtylmethylamine, yellow-orange solid, 56% yield after FC; 1H NMR (400 MHz, DMSO-d6), δ 8.26 (d, J = 8.5 Hz, 4H, 2 × o-NO2PhH), 7.82-7.80 (m, 8H, 2 × CH = C, 2 × m-NO2PhH, NHCOO, 1 ArH), 7.72 (d, J = 8.3 Hz, 1H, ArH), 7.68 (m, 4H, ArH), 7.24 (d, J = 8.3 Hz, 1H, ArH), 5.09 (m, 1H, CHOCO), 4.19 (d, J = 5.9 Hz, 2H, NHCH2Ar), 3.25 (m, 4H, 2 × ring CH2) ppm; 13C NMR (100 MHz, DMSO-d6), δ 187.63, 155.94, 147.43, 141.94, 137.57, 136.26, 135.83, 133.12, 132.40, 131.66, 128.18, 127.85, 127.80, 126.48, 126.01, 125.89, 125.34, 124.04, 67.22, 44.18, 32.92 ppm; ESI-MS: 586.2 m/z [M + Na]+;
- [(3E, 5E)-3,5-bis[(4-nitrophenyl)methylidene]-4-oxocyclohexyl N-[(naphthalen-1-yl)methyl]carbamate (5). From 1a and 1-naphtylmethylamine, orange-red solid, 82% yield after FC; 1H NMR (500 MHz, DMSO-d6), δ 8.26 (app d, J = 8.5 Hz, 4H, 2 × o-NO2PhH), 7.96 (d, J = 8.5 Hz, 1H, ArH), 7.87 (d, J = 8.5 Hz, 1H, ArH), 7.81-7.73 (m, 5H, 2 × CH = C, NHCOO, 2 ArH), 7.44 (t, 1H, ArH), 7.31 (t, 1H, ArH), 7.21 (d, J = 7.0 Hz, 1H, ArH), 5.10 (bs, 1H, CHOCO), 4.49 (d, J = 5.8 Hz, 2H, ArCH2NH), 3.25 (m, 4H, 2 × ring CH2) ppm; 13C NMR (125 MHz, DMSO-d6), δ 187.63, 155.78, 147.46, 141.96, 136.26, 135.83, 135.05, 133.60, 131.67, 131.04, 128.87, 127.82, 126.45, 126.09, 125.65, 125.28, 124.06, 123.66, 66.22, 42.08, 32.91 ppm; ESI-MS: 586.2 [M + Na]+.
- [(3E, 5E)-3,5-bis[(4-nitrophenyl)methylidene]-4-oxocyclohexyl N-(naphthalen-1-yl)carbamate (6). From 1a and 1-naphthylamine in the ratio 1:1.5, light yellow solid, 61% yield after FC; 1H NMR (400 MHz, DMSO-d6) δ 9.46 (bs, CONH-Ar), 8.29 (app.d, 4H, 2 × o-NO2PhH), 7.88-7.80 (m, 7H, 2 × CH = C, 2 × m-NO2PhH, 1 ArH), 7.77 (d, J = 8.3 Hz, 1H, ArH), 7.70 (d, J = 8.3 Hz, 1H, ArH), 7.49–7.45 (m, 1H, ArH), 7.40–7.35 (m, 2H, ArH), 7.30 (d, J = 7.35 Hz, 1H, ArH), 5.17 (m, 1H, CHOCO), 3.32 (m, 4H, 2 × ring CH2) ppm; 13C NMR (100 MHz, DMSO-d6) δ 187.74, 154.46, 147.49, 142.01, 136.35, 135.88, 134.06, 133.75, 131.71, 128.62, 128.40, 126.38, 126.11, 125.86, 125.79, 124.08, 123.10, 122.26, 68.04, 32.74 ppm; ESI-MS: 572.2 m/z [M + Na]+.
- [(3E, 5E)-3,5-bis[(4-nitrophenyl)methylidene]-4-oxocyclohexyl N-(3-aminopropyl)carbamate (trifluoroacetate salt) (7). 1a and 1-[(tert-butoxycarbonyl)amino]-3-aminopropane [14] gave the corresponding N-Boc protected amine (7a); yellow solid, 82% yield after FC; 1H NMR (400 MHz, CDCl3): δ 8.29 (apparent d, J = 8.7 Hz, 4H, 2 × o-NO2PhH), 7.91 (s, 2H, 2 C = CH), 7.60 (app. d, J = 8.7 Hz, 4H, 2 × m-NO2PhH), 5.24 (br, 1H), 5.13 (br, 1H, CHOCO), 4.67 (br, 1H), 3.21–3.05 (m, 8H, 2 × CH2 ring and 2 × CH2NHCO), 1.55 (m, 2H, CH2cH2cH2), 1.42 (s, 9H, Boc) ppm; 13C NMR (100 MHz, CDCl3): δ 187.49, 156.42, 155.45, 147.52, 141.59, 137.19, 134.51, 130.72, 123.78, 79.48, 67.11, 37.46, 36.96, 33.26, 30.47, 28.34 ppm. N-Boc deprotection of 7a gave quantitatively the ammonium salt 7 as a yellow solid product that was washed on the filter with cold H2O; 1H NMR (400 MHz, DMSO-d6): δ 8.26 (app d, J = 8.7 Hz, 4H, 2 × o-NO2 PhH), 7.78 (s, 2H, 2 × C = CH), 7.77 (app. d, J = 8.7 Hz, 4H, 2 × m-NO2 PhH), 7.52 (broad, 3H, NH3+), 7.19 (t, J = 5.6 Hz, 1H, CONH), 5.02 (bs, 1H, CHOCO), 3.30–3.10 (m, 4H, 2 × CH2 ring), 2.87 (m, 2H, CH2NHCO), 2.48 (m, 2H, CH2NH3+), 1.51 (quint., J = 7.9 Hz, 2H, CH2cH2cH2) ppm; 13C NMR (100 MHz, DMSO-d6): 187.55, 155.76, 147.45, 141.92, 135.75, 131.65, 124.04, 67.09, 37.70, 37.05, 32.97, 27.88 ppm; ESI-MS, m/z: 481.2 [M + H]+.
- [(3E, 5E)-3,5-bis[(4-nitrophenyl)methylidene]-4-oxocyclohexyl N-(3-aminopropyl)carbamate (trifluoroacetate salt) (7). 1a and 1-[(tert-butoxycarbonyl)amino]-3-aminopropane [14] gave the corresponding N-Boc protected amine (7a); yellow solid, 82% yield after FC; 1H NMR (400 MHz, CDCl3), δ 8.29 (apparent d, J = 8.7 Hz, 4H, 2 × o-NO2PhH), 7.91 (s, 2H, 2 × CH = C), 7.60 (app. d, J = 8.7 Hz, 4H, 2 × m-NO2PhH), 5.24 (br, 1H, NH), 5.13 (br, 1H, CHOCO), 4.67 (br, 1H, NH), 3.21–3.05 (m, 8H, 2 × ring CH2, CH2NHBoc and CH2NHCO), 1.55 (m, 2H, CH2CH2CH2), 1.42 (s, 9H, Boc) ppm; 13C NMR (100 MHz, CDCl3), δ 187.49, 156.42, 155.45, 147.52, 141.59, 137.19, 134.51, 130.72, 123.78, 79.48, 67.11, 37.46, 36.96, 33.26, 30.47, 28.34 ppm. N-Boc deprotection of 7a gave quantitatively the ammonium salt 7 as a yellow solid product, that was washed on the filter with cold H2O; 1H NMR (400 MHz, DMSO-d6), δ 8.26 (app d, J = 8.7 Hz, 4H, 2 × o-NO2PhH), 7.78 (s, 2H, 2 × CH = C), 7.77 (app. d, J = 8.7 Hz, 4H, 2 × m-NO2 PhH), 7.52 (broad, 3H, NH3+), 7.19 (t, J = 5.6 Hz, 1H, CONH), 5.02 (bs, 1H, CHOCO), 3.30–3.10 (m, 4H, 2 × CH2 ring), 2.87 (m, 2H, CH2NHCO), 2.48 (m, 2H, CH2NH3+), 1.51 (quint., J = 7.9 Hz, 2H, CH2CH2CH2) ppm; 13C NMR (100 MHz, DMSO-d6), δ 187.55, 155.76, 147.45, 141.92, 135.75, 131.65, 124.04, 67.09, 37.70, 37.05, 32.97, 27.88 ppm; ESI-MS, m/z: 481.2 [MH]+. HRMS m/z, found: 481.1718; Calcd. for [C24H25N4O7]+: 481.1718.
- [(3E, 5E)-3,5-bis[(4-nitrophenyl)methylidene]-4-oxocyclohexyl N-(5-aminopentyl) carbamate (trifluoroacetate salt) (8). 1a and 1-[(tert-butoxycarbonyl)amino]-5-aminopentane [10] gave the corresponding N-Boc protected amine (8a) as a yellow solid, 86% yield after FC; 1H NMR (400 MHz, CDCl3), δ 8.27 (app d, J = 8.7 Hz, 4H, 2 × o-NO2PhH), 7.88 (s, 2H, 2 × CH = C), 7.58 (app d, 4H, J = 8.7 Hz, 2 × m-NO2PhH), 5.15 (bs, 1H, CHOCO), 4.72 (br, 1H, NH), 4.53 (br, 1H, NH), 3.25–3.01 (m, 8H, 2 × CH2 ring, CH2NHCO and CH2NHBoc), 1.43 (s, 9H, Boc), 1.33–1.18 (m, 6H, 3 × CH2 chain) ppm; 13C NMR (100 MHz, CDCl3), δ 187.52, 156.08, 155.25, 147.44, 141.58, 134.54, 130.71, 123.74, 78.86, 66.86, 40.71, 40.18, 33.16, 28.36, 23.67 ppm. N-Boc deprotection of 8a gave quantitatively the ammonium salt 8 as a yellow solid product that was washed on the filter with cold H2O. 1H NMR (400 MHz, DMSO-d6), δ 8.28 (app. d, J = 8.7 Hz, 4H, 2 × o-NO2PhH), 7.79 (s, 2H, 2 × CH = C), 7.78, (app. d, J = 8.7 Hz, 4H, 2 x m-NO2PhH), 7.56 (broad, 3H, NH3+), 7.05 (t, J = 5.6 Hz 1H, CONH), 4.99 (bs, 1H, CHOCO), 3.16 (m, 4H, 2 × ring CH2), 2.81–2.63 (m, 4H, 2 × chain CH2), 1.42–1.10 (m, 6H, 3 × chain CH2) ppm; 13C NMR (100 MHz, DMSO-d6), δ 187.68, 171.71, 155.64, 147.49, 141.97, 136.21, 135.90, 131.70, 124.08, 66.90, 39.10, 32.98, 26.98, 23.33 ppm. ESI-MS, m/z: 509.2 [M+]; 363.1 [M-146; C20H14N2O5]
- 3-[[(3E, 5E)-3,5-bis[(4-nitrophenyl)methylidene]-4-oxocyclohexyloxy carbonylamino]] propanoic acid (9). From 1a and β-alanine, yellow solid, triturated with EtOEt, 53% yield; 1H NMR (400 MHz, DMSO-d6), δ 12.10 (s, 1H, COOH), 8.28 (app d, J = 8.5 Hz, 4H, 2 × o-NO2PhH), 7.79 (s, 2H, 2 × CH = C), 7.78 (app. d, J = 8.7 Hz, 4H, 2 × m-NO2PhH), 7.11 (t, J = 5.4 Hz, 1H, NHCO), 5.02 (brs, 1H, CHOCO), 3.25-3.14 (m, 4H, 2 × CH2 ring), 3.01 (m, 2H, CH2NH), 2.21 (t, 2H, CH2COOH) ppm; 13C NMR (100 MHz, DMSO-d6), δ 187.72, 173.01, 155.53, 147.48, 141.98, 136.23, 135.88, 131.68, 124.09, 67.03, 55.36, 36.76, 34.29, 32.94 ppm. ESI-MS, m/z: 496.2 [M + H]+. HRMS, m/z, found 518.1171 [M + Na]+; calcd. for [C24H21N3O9Na]+: 518.1170.
- (2S)-2-[[(3E, 5E)-3,5-bis[(4-nitrophenyl)methylidene]-4-oxocyclohexyloxy carbonyl amino]]-3-phenylpropanoic acid (10). From 1a and L-phenylalanine, yellow solid, triturated with EtOEt, 75% yield; 1H NMR (500 MHz, CDCl3), δ 8.29–8.23 (2 app d, 4H, 2 × o-NO2PhH), 7.90, 7.85 (2s, 2H, 2 × CH = C), 7.56–7.52 (m, 4H, 2 × m-NO2PhH, J = 8.6 Hz), 7.27–7.20 (m, 5H, PhH), 5.13 (br, 1H, CHOCO), 5.06 (d, J = 7.5 Hz, 1H, NHCO), 4.55 (m, 1H, CH(NH)CO), 3.30–3.00 (m, 4H, 2 × ring CH2), 3.04–2.89 (m, 2H, PhCH2) ppm; 13C NMR (125 MHz, CDCl3), δ 187.38, 175.32, 154.75, 147.55, 141.49, 137.39, 135.38, 134.20, 130.72, 129.14, 128.67, 127.27, 123.80, 67.70, 54.41, 37.43, 35.15 ppm. ESI-MS: 594.1 [M + Na]+.
- (2S)-6-amino-2-[[(3E, 5E)-3,5-bis[(4-nitrophenyl)methylidene]-4-oxocyclohexyloxy carbonylamino]]hexanoic acid (11). From 1a and L-lysine, yellow solid, triturated with EtOEt, 75% yield; 1H NMR (400 MHz, DMSO-d6), δ 12.46 (br, 1H, COOH), 8.29 (4H, 2 × o-NO2PhH), 7.82–7.50 (m, 10H, 2 × CH = C, 2 × m-NO2PhH, NH3+ and NHCO), 5.05 (br, 1H, CHOCO), 4.18–3.61 (m, 1H, Lys α-CH), 3.44–2.95 (m, 4H, 2 × ring CH2), 2.69 (br, 2H, Lys ε-CH2), 1.72–1.23 (m, 6H, Lys β-CH2, δ-CH2, γ-CH2); 13C NMR (100 MHz, DMSO-d6), δ 187.17, 173.65, 155.34, 147.02, 141.60, 135.84, 135.38, 131.15, 123.64, 66.88, 53.53, 38.48, 32.35, 29.88, 26.43, 22.45. ESI-MS: m/z 554.2 [M + H]+.
- [(3E, 5E)-3,5-bis[(4-nitrophenyl)methylidene]-4-oxocyclohexyl N-[(1S)-1-carbamoyl-2-phenylethyl)carbamate (12). From 1a and L-phenylalaninamide, yellow solid, 63% yield after FC; 1H NMR (500 MHz, CDCl3), δ 8.29, 8.27 (2 app d, J = 8.4 Hz each, 4H, 2 × o-NO2PhH), 7.86 (s, 2H, CH = C), 7.58, (app d, 4H, J = 8.4 Hz each, m-NO2PhH), 7.21–7.08 (m, 5H, PhH), 5.36 (d, J = 6.1 Hz, NHCOO), 5.30, 5.26 (2 br s, 1H each, CONH2), 5.14 (brs, 1H, CHOCO), 4.28 (app q, J = 6.9 Hz, 1H, CH(NH)CO), 3.25–3.10 (ddd, part AB of an ABX, J = 2.4, 6.0, 16.4 Hz, 4H, 2 × ring CH2), 3.02 (dd, J = 6.0, 13.7 Hz, part A of an ABX, PhCHH), 2.89 (dd, part B of an ABX, J = 7.5 and 13.7 Hz, PhCHH) ppm; 13C NMR (125 MHz, CDCl3), δ 187.29, 137.05, 154.78, 147.49, 141.50, 137.36, 136.10, 134.23, 130.72, 129.16, 128.67, 127.13, 123.76, 67.69, 55.68, 38.71, 33.01 ppm; ESI-MS: 593.2 [M + Na]+.
- [(3E, 5E)-3,5-bis[(4-nitrophenyl)methylidene]-4-oxocyclohexyl N-[3-[(2S)-2-amino-3-phenylpropanamido]propyl]carbamate (trifluoroacetate salt) (13). HOBT (0.162 g, 1.2 mmol), EDC (0.230 g, 1.2 mmol), and TEA (0.16 mL, 1.2 mmol) were added in order to yield a solution of N-Boc-(L)Phe (2.0 mmol) in the minimum amount of DCM. After 30 min stirring at 25 °C, compound 7 was added (1.0 mmol), and the apparent pH was adjusted to 9 with Et3N. The reaction mixture was stirred overnight, and washed with 5% aq. citric acid, sat. aq. NaHCO3 and brine, and the solvent was evaporated giving a crude solid that was purified on column (eluent: CHCl3) giving compound 13a as a yellow solid, 61% yield after FC; 1H NMR (500 MHz, CDCl3), δ 8.28 (2d, J = 8.6, 4H, o-NO2PhH), 7.90 (s, 2H, 2 × CH = C), 7.60 (2d, J = 8.6 4H, m-NO2PhH), 7.25 (m, 5H, PhH), 6.03 (bt, J = 6.1 Hz, 1H, NHCO), 5.29 (t, J = 5.1 Hz, 1H, NHCOO), 5.11 (quint, J = 6.1 Hz, 1H, CHOCO), 4.95 (brs, 1H, NHBoc), 4.24 (m, 1H, CH(NH)CO), 3.17 (m, 4H, 2 × ring CH2), 3.12 (m, 2H, CH2NHCO), 3.02 (m, 2H, PhCH2), 2.94 (m, 2H, CH2NHCOO), 1.42 (m, 2H, CH2CH2CH2), 1.40 (s, 9H, Boc) ppm; 13C NMR (125 MHz, CDCl3), δ 187.46, 172.00, 155.49, 147.50, 141.58, 137.16, 136.53, 134.51, 130.74, 129.20, 128.64, 126.97, 123.77, 80.29, 67.11, 56.05, 38.45, 37.10, 35.78, 33.27, 29.68, 28.22 ppm; ESI-MS, m/z: 750.3 [M + Na]+; 650.1 [M + Na+ – CO2–C4H8]. N-Boc deprotection was carried out quantitatively as described above for 7 giving compound 13. 1H NMR (400 MHz, DMSO-d6), δ 8.27 (app. d, J = 8.8 Hz, 4H, 2 × o-NO2PhH), 8.18 (m, 1H, NHCO), 8.11 (brs, 3H, NH3+), 7.79 (s, 2H, 2 × CH = C), 7.78 (app. d, J = 8.8 Hz, 4H, 2 x m-NO2PhH), 7.26-7.13 (m, 5H, PhH), 7.04 (m, 1H, NHCOO), 5.01 (s, 1H, CHOCO), 3.83 (s, 1H, CH(NH)CO), 3.27-3.13 (m 4H, 2 × ring CH2), 2.99-2.84 (m, 4H, PhCH2 and CH2NHCO), 2.73 (m, 2H, CH2NHCOO), 1.29 (m, 2H, CH2CH2CH2) ppm; 13C NMR (100 MHz, DMSO-d6), δ 187.61, 168.06, 155.62, 147.45, 141.96, 136.23, 135.83, 135.36, 131.68, 129.80, 128.84, 127.46, 124.05, 66.97, 54.01, 38.26, 37.49, 36.77, 33.00, 29.25 ppm. ESI-MS: m/z 628.1 [M + H]+.
- [(3E, 5E)-3,5-bis[(4-nitrophenyl)methylidene]-4-oxocyclohexyl N-[3-[(2R)-2-amino-3-phenylpropanamido]propyl]carbamate (trifluoroacetate salt) (14). From 7 and N-Boc-(D)Phe, as described above for 13. Yield: 65%.
- [(3E, 5E)-3,5-bis[(4-nitrophenyl)methylidene]-4-oxocyclohexyl N-[3-[(2S)-2-amino-4-methylpentanamido]propyl]carbamate (trifluoroacetate salt) (15). N-Boc protected 15a was obtained from 7 and N-Boc-(L)Leu, as described above for 13. Yellow solid, 70% yield after FC; 1H NMR (500 MHz, DMSO-d6), δ 8.28 (app. d, J = 8.7 Hz, 4H, 2 × o-NO2PhH), 7.90 (s, 2H, 2 × CH = C), 7.60 (app d, J = 8.7 Hz, 4H, m-NO2PhH), 6.38 (bt, J = 6.1 Hz, 1H, NHCO), 5.46 (t, J = 5.0 Hz, 1H, NHCOO), 5.11 (quint, J = 6.0 Hz, 1H, CHOCO), 4.79 (brs, 1H, NHBoc), 4.01 (m, 1H, CHNHBoc), 3.23 (m, 2H, CH2NHCOO), 3.18 (m, 4H, 2 × ring CH2), 3.09 (m, 2H, CH2NHCO), 1.63 (overlapped, 1H, CH(CH3)2, 1.54 (m, 2H, CH2CH2CH2), 1.43 (overlapped m, 2H), 1.43 (s, 9H, Boc), 0.93 (2d overlapped, J = 6.0 Hz, 6H, CH(CH3)2) ppm; 13C NMR (125 MHz, DMSO-d6) δ 187.46, 173.53, 155.50, 147.53, 141.60, 137.19, 134.52, 130.73, 123.78, 80.13, 67.12, 53.35, 40.98, 37.01, 35.68, 33.32, 29.95, 28.25, 24.79, 22.89, 21.93 ppm; ESI-MS, m/z: 716.3 [M + Na]+. N-Boc deprotection of 15a gave the amine 15 as trifluoroacetate salt; 1H NMR (500 MHz), δ 8.32 (t, J = 5.5 Hz, 1H, NHCO), 8.28 (app d, J = 8.7 Hz, 4H, 2 × o-NO2PhH), 8.03 (brs, 3H, NH3+), 7.80 (s, 2H, 2 × CH = C), 7.79 (app d, J = 8.7 Hz, 4H, 2 × m-NO2PhH), 7.09 (t, J = 7.0 Hz, 1H, NHCOO), 5.02 (brm, 1H, CHOCO), 3.61 (br, 1H, CH(NH)CO), 3.27–3.15 (m, 4H, 2 × ring CH2), 3.02, 2.96 (2m, 2H, CH2NHCO), 2.84 (m, 2H, CH2NHCOO), 1.57–1.39 (m, 5H, CH(CH3)2 + CH2CH(CH3)2 + CH2CH2CH2), 0.83 (2d, J = 8.0 Hz, 6H, CH(CH3)2 ppm; 13C NMR (125 MHz, DMSO-d6), δ 187.67, 169.13, 155.65, 147.49, 141.98, 136.23, 135.88, 131.68, 124.08, 67.01, 51.43, 40.00, 38.34, 36.88, 32.97, 29.42, 24.07, 22.85, 22.40 ppm. ESI-MS, m/z: 594.2 [M + H]+;
- [(3E, 5E)-3,5-bis[(4-nitrophenyl)methylidene]-4-oxocyclohexyl (2S)-4-methylpentanoate (16). From 1 and N-Boc-(L)Leu, protected 16a was obtained after FC, yellow solid, 74% yield; 1H NMR (500 MHz, CDCl3), δ 8.29 (app d, J = 8.5 Hz, 4H, 2 × o-NO2PhH), 7.94 (s, 2H, 2 × CH = C), 7.59, 7.57 (2 app. d, J = 8.5 Hz each, 4H, 2 × m- NO2PhH), 5.28 (m, 1H, H-4), 4.84 (d, J = 8.0 Hz, 1H, NHBoc), 4.14 (m, 1H, CH(NH)CO), 3.27–3.08 (m, 4H, CH2 ring)), 1.55–1.50 (m, 2H, (CH3)2CHCH2)), 1.37 (s, 9H, Boc), 1.36 (overlapped, 1H, (CH3)2CH)), 0.85 (d, J = 6.5 Hz, 6H, (CH3)2CH) ppm; 13C NMR (125 MHz, CDCl3) δ 186.96, 172.79, 155.28, 147.62, 141.40, 137.67, 133.83, 130.71, 123.83, 80.03, 67.68, 52.09, 41.34, 32.73, 28.19, 24.81, 22.69, 21.84 ppm; ESI-MS, m/z 594.1 [M + H]+. N-Boc deprotection as described for 7 gave the amine 16 as a yellow solid that was purified by precipitation with hexane from an ethyl acetate solution; 1H NMR (400 MHz, DMSO-d6), δ 8.30-8.27 (broad, 3H, NH3+), 8.29, 8.28 (2 app d, J = 8.5 Hz, 4H, o-NO2PhH), 7.86, 7.84 (2brs, 2H, 2 × CH=C), 7.81, 7.77 (2 app d, J = 8.5 Hz, 4H, 2 × m-NO2PhH), 5.38 (brm, 1H, CHOCO), 3.79 (brt, J = 6.3 Hz, 1H, CHNH3+), [3.39 (dt, J = 3.1 and 17.4, 1H), 3.33 (dt, J = 2.9 and 17.7, 1H), 3.20 (dt, J = 3.7 and 17.7, 1H), 3.19 (dd, J = 4.2 and 17.4 Hz, 1H), 2 × ring CH2), 1.44–1.29 (m, 3H, CHCH2), 0.70, 0.69 (2d, J = 6.1 Hz, 6H, (CH3)2CH)) ppm; 13C NMR (100 MHz, DMSO-d6), δ 187.05, 169.79, 147.54, 141.83, 135.01, 131.77, 124.05, 69.52, 50.77, 32.49, 32.07, 24.32, 22.71, 21.96 ppm; ESI-MS, m/z 494.2 [M + H]+. HRMS, m/z, found: 494.1923; calcd for [C26H28N3O7]+: 494.1922.
- [(3E, 5E)-3,5-bis[(4-nitrophenyl)methylidene]-4-oxocyclohexyl (2S)-2-amino-3-phenylpropanoate (17). From 1 and N-Boc-(L)Phe, protected 17a was obtained after FC as a yellow solid, 68% yield; 1H NMR (400 MHz, CDCl3), δ: 8.31, 8.29 (2 app. d, J = 8.7 Hz, 4H, 2 × o-NO2PhH), 7.91 (2s, 2H, 2 × CH = C), 7.57 (2 app. d, J = 8.7 Hz, 4H, 2 × m-NO2PhH), 7.11 (m, 3H, PhH), 7.01 (m, 2H, PhH), 5.19 (brm, 1H, CHOCO), 4.84 (d, J = 8.2 Hz, 1H, NHBoc), 4.45 (q, J = 6.1 Hz, 1H, CH(NH)CO), 3.19–2.90 (m, 6H, CH2Ph and 2 × ring CH2), 1.37 (s, 9H, Boc) ppm; 13C NMR (100 MHz, CDCl3), δ 186.91, 171.36, 154.99, 147.50, 141.56, 137.49, 135.37, 133.73, 130.73, 129.06, 128.37, 127.12, 123.82, 80.27, 67.89, 54.37, 38.07, 32.62, 27.99 ppm. ESI-MS, m/z 628.3 [M + H]+; N-Boc deprotection gave 17 as a yellow solid that was purified by precipitation with hexane from an ethyl acetate solution; 1H NMR (400 MHz, DMSO-d6), δ, ppm: 8.34–8.27 (overlapped, 3H, NH3+), 8.33, 8.29 (2 app d, J = 8.7 Hz, 4H, 2 × o-NO2PhH), 7.79 (brs, 2H, 2 × CH = C), 7.78, 7.76 (2 app d, J = 8.7 Hz, 4H, 2 × m-NO2PhH), 7.09–6.99 (2m, 5H, PhH), 5.21 (brm, 1H, CHOCO), 4.18 (brs, 1H, CHNH3+), 3.31 (dt, J = 3.5 and 17.0, 1H), 3.20 (dt, J = 4.0 and 16.3, 1H), 3.12 (dd, J = 6.1 and 16.6 Hz, 1H), 2.94 (dd, J = 6.2 and 14.4 Hz, 1H), 2.89 (dd, J = 5.8 and 16.6 Hz, 1H), 2.82 (dd, J = 8.2 and 14.5 Hz, 1H); 13C NMR (100 MHz, DMSO-d6), δ, ppm: 186.91, 168.97, 147.60, 141.83, 136.58, 134.81, 131.81, 129.48, 128.86, 127.57, 124.08, 69.55, 53.33, 36.53, 32.3; ESI-MS, m/z 529.2 [M + H]+.
2.4. Cell Viability
2.5. Cell Number
2.6. Apoptosis
2.7. Necrosis
2.8. Autophagy
2.9. Cell Cycle Analysis
2.10. IC50
2.11. Proteasome Activity
2.12. siRNA Transfection
2.13. Western Blot Analysis
2.14. RT-PCR
2.15. Patient Derived Organoids (PDO)
2.16. In Vivo Tests
2.17. Mathematical Modelling of 2c Effects on Tumor Growth In Vivo
2.18. Molecular Modelling
2.19. Statistical Analysis
3. Results
3.1. Uptake Studies
3.2. Cell Viability, Cell Number
3.3. Apoptosis, Necrosis, Autophagy and Cell Cycle
3.4. Effect of 2c In Vivo and in Patient-Derived Cells
3.5. 2c Relation with Proteasome Activity and UCHL5
3.6. In Silico Docking of 2c to Deubiquitinase UCHL5
3.7. In Silico Modelling of Covalent Complexes
3.8. 2c Derivatives
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef]
- Ushijima, K. Treatment for recurrent ovarian cancer-at first relapse. J. Oncol. 2010, 2010, 497429. [Google Scholar] [CrossRef] [PubMed]
- Webb, P.M.; Jordan, S.J. Epidemiology of epithelial ovarian cancer. Best. Pract. Res. Clin. Obstet. Gynaecol. 2017, 41, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Prat, J.; D’Angelo, E.; Espinosa, I. Ovarian carcinomas: At least five different diseases with distinct histological features and molecular genetics. Hum. Pathol. 2018, 80, 11–27. [Google Scholar] [CrossRef] [PubMed]
- Reid, B.M.; Permuth, J.B.; Sellers, T.A. Epidemiology of ovarian cancer: A review. Cancer Biol. Med. 2017, 14, 9–32. [Google Scholar] [PubMed]
- Cersosimo, U.; Sgorbissa, A.; Foti, C.; Drioli, S.; Angelica, R.; Tomasella, A.; Picco, R.; Semrau, M.S.; Storici, P.; Benedetti, F.; et al. Synthesis, characterization, and optimization for in vivo delivery of a nonselective isopeptidase inhibitor as new antineoplastic agent. J. Med. Chem. 2015, 58, 1691–1704. [Google Scholar] [CrossRef] [PubMed]
- French, M.E.; Koehler, C.F.; Hunter, T. Emerging functions of branched ubiquitin chains. Cell Discov. 2021, 7, 6. [Google Scholar] [CrossRef] [PubMed]
- Ji, C.H.; Kwon, Y.T. Crosstalk and Interplay between the Ubiquitin-Proteasome System and Autophagy. Mol. Cells 2017, 40, 441–449. [Google Scholar] [CrossRef]
- Iuliano, L.; Dalla, E.; Picco, R.; Mallavarapu, S.; Minisini, M.; Malavasi, E.; Brancolini, C. Proteotoxic stress-induced apoptosis in cancer cells: Understanding the susceptibility and enhancing the potency. Cell Death. Discov. 2022, 8, 407. [Google Scholar] [CrossRef]
- Ciotti, S.; Sgarra, R.; Sgorbissa, A.; Penzo, C.; Tomasella, A.; Casarsa, F.; Benedetti, F.; Berti, F.; Manfioletti, G.; Brancolini, C. The binding landscape of a partially-selective isopeptidase inhibitor with potent pro-death activity, based on the bis(arylidene)cyclohexanone scaffold. Cell Death. Dis. 2018, 9, 184. [Google Scholar] [CrossRef]
- Tierno, D.; Azzalini, E.; Farra, R.; Drioli, S.; Felluga, F.; Lazzarino, M.; Grassi, G.; Dapas, B.; Bonin, S. Nanomechanical Characterization of Ovarian Cancer Cell Lines as a Marker of Response to 2c Treatment. Int. J. Mol. Sci. 2023, 24, 7230. [Google Scholar] [CrossRef] [PubMed]
- Domcke, S.; Sinha, R.; Levine, D.A.; Sander, C.; Schultz, N. Evaluating cell lines as tumour models by comparison of genomic profiles. Nat. Commun. 2013, 4, 2126. [Google Scholar] [CrossRef] [PubMed]
- Balduit, A.; Agostinis, C.; Mangogna, A.; Maggi, V.; Zito, G.; Romano, F.; Romano, A.; Ceccherini, R.; Grassi, G.; Bonin, S.; et al. The Extracellular Matrix Influences Ovarian Carcinoma Cells’ Sensitivity to Cisplatinum: A First Step towards Personalized Medicine. Cancers 2020, 12, 1175. [Google Scholar] [CrossRef] [PubMed]
- Amirbekyan, K.; Duchemin, N.; Benedetti, E.; Joseph, R.; Colon, A.; Markarian, S.A.; Bethge, L.; Vonhoff, S.; Klussmann, S.; Cossy, J.; et al. Design, Synthesis, and Binding Affinity Evaluation of Hoechst 33258 Derivatives for the Development of Sequence-Specific DNA-Based Asymmetric Catalysts. ACS Catal. 2016, 6, 3096–3105. [Google Scholar] [CrossRef]
- Inman, M.; Dexter, H.L.; Moody, C.J. Total Synthesis of the Cyclic Dodecapeptides Wewakazole and Wewakazole B. Org. Lett. 2017, 19, 3454–3457. [Google Scholar] [CrossRef] [PubMed]
- Grassi, G.; Scaggiante, B.; Farra, R.; Dapas, B.; Agostini, F.; Baiz, D.; Rosso, N.; Tiribelli, C. The expression levels of the translational factors eEF1A 1/2 correlate with cell growth but not apoptosis in hepatocellular carcinoma cell lines with different differentiation grade. Biochimie 2007, 89, 1544–1552. [Google Scholar] [CrossRef]
- Baiz, D.; Pozzato, G.; Dapas, B.; Farra, R.; Scaggiante, B.; Grassi, M.; Uxa, L.; Giansante, C.; Zennaro, C.; Guarnieri, G.; et al. Bortezomib arrests the proliferation of hepatocellular carcinoma cells HepG2 and JHH6 by differentially affecting E2F1, p21 and p27 levels. Biochimie 2009, 91, 373–382. [Google Scholar] [CrossRef] [PubMed]
- Perrone, F.; Craparo, E.F.; Cemazar, M.; Kamensek, U.; Drago, S.E.; Dapas, B.; Scaggiante, B.; Zanconati, F.; Bonazza, D.; Grassi, M.; et al. Targeted delivery of siRNAs against hepatocellular carcinoma-related genes by a galactosylated polyaspartamide copolymer. J. Control Release 2021, 330, 1132–1151. [Google Scholar] [CrossRef] [PubMed]
- Tonon, F.; Cemazar, M.; Kamensek, U.; Zennaro, C.; Pozzato, G.; Caserta, S.; Ascione, F.; Grassi, M.; Guido, S.; Ferrari, C.; et al. 5-Azacytidine Downregulates the Proliferation and Migration of Hepatocellular Carcinoma Cells In Vitro and In Vivo by Targeting miR-139-5p/ROCK2 Pathway. Cancers 2022, 14, 1630. [Google Scholar] [CrossRef] [PubMed]
- Dapas, B.; Farra, R.; Grassi, M.; Giansante, C.; Fiotti, N.; Uxa, L.; Rainaldi, G.; Mercatanti, A.; Colombatti, A.; Spessotto, P.; et al. Role of E2F1-cyclin E1-cyclin E2 circuit in human coronary smooth muscle cell proliferation and therapeutic potential of its downregulation by siRNAs. Mol. Med. 2009, 15, 297–306. [Google Scholar] [CrossRef]
- Kopper, O.; de Witte, C.J.; Lohmussaar, K.; Valle-Inclan, J.E.; Hami, N.; Kester, L.; Balgobind, A.V.; Korving, J.; Proost, N.; Begthel, H.; et al. An organoid platform for ovarian cancer captures intra- and interpatient heterogeneity. Nat. Med. 2019, 25, 838–849. [Google Scholar] [CrossRef] [PubMed]
- Maiti, T.K.; Permaul, M.; Boudreaux, D.A.; Mahanic, C.; Mauney, S.; Das, C. Crystal structure of the catalytic domain of UCHL5, a proteasome-associated human deubiquitinating enzyme, reveals an unproductive form of the enzyme. FEBS J. 2011, 278, 4917–4926. [Google Scholar] [CrossRef] [PubMed]
- Iuliano, L.; Drioli, S.; Pignochino, Y.; Cafiero, C.M.; Minisini, M.; D’Este, F.; Picco, R.; Dalla, E.; Giordano, G.; Grignani, G.; et al. Enhancing Proteotoxic Stress in Leiomyosarcoma Cells Triggers Mitochondrial Dysfunctions, Cell Death, and Antitumor Activity in vivo. Mol. Cancer Ther. 2021, 20, 1039–1051. [Google Scholar] [CrossRef] [PubMed]
- Farra, R.; Dapas, B.; Grassi, M.; Benedetti, F.; Grassi, G. E2F1 as a molecular drug target in ovarian cancer. Expert. Opin. Ther. Targets 2019, 23, 161–164. [Google Scholar] [CrossRef] [PubMed]
- Baiz, D.; Dapas, B.; Farra, R.; Scaggiante, B.; Pozzato, G.; Zanconati, F.; Fiotti, N.; Consoloni, L.; Chiaretti, S.; Grassi, G. Bortezomib effect on E2F and cyclin family members in human hepatocellular carcinoma cell lines. World J. Gastroenterol. 2014, 20, 795–803. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.K.; Brindisi, M. Organic carbamates in drug design and medicinal chemistry. J. Med. Chem. 2015, 58, 2895–2940. [Google Scholar] [CrossRef]
- Spears, N.; Lopes, F.; Stefansdottir, A.; Rossi, V.; De, F.M.; Anderson, R.A.; Klinger, F.G. Ovarian damage from chemotherapy and current approaches to its protection. Hum. Reprod. Update 2019, 25, 673–693. [Google Scholar] [CrossRef]
- Farra, R.; Maruna, M.; Perrone, F.; Grassi, M.; Benedetti, F.; Maddaloni, M.; El, B.M.; Parisi, S.; Rizzolio, F.; Forte, G.; et al. Strategies for Delivery of siRNAs to Ovarian Cancer Cells. Pharmaceutics 2019, 11, 547. [Google Scholar] [CrossRef] [PubMed]
- Brancolini, C.; Iuliano, L. Proteotoxic Stress and Cell Death in Cancer Cells. Cancers 2020, 12, 2385. [Google Scholar] [CrossRef]
- Li, Y.; Li, S.; Wu, H. Ubiquitination-Proteasome System (UPS) and Autophagy Two Main Protein Degradation Machineries in Response to Cell Stress. Cells 2022, 11, 851. [Google Scholar] [CrossRef]
- Suh, D.S.; Yoon, M.S.; Choi, K.U.; Kim, J.Y. Significance of E2F-1 overexpression in epithelial ovarian cancer. Int. J. Gynecol. Cancer 2008, 18, 492–498. [Google Scholar] [CrossRef] [PubMed]
- De, M.T.; Bijsmans, I.T.; Van de Vijver, K.K.; Bekaert, S.; Oosting, J.; Van, C.W.; van, E.M.; Sieben, N.L. E2Fs mediate a fundamental cell-cycle deregulation in high-grade serous ovarian carcinomas. J. Pathol. 2009, 217, 14–20. [Google Scholar]
Compound | Derivatization | IC50 μM OV/Ku | % Activity vs. 2c OV/Ku |
---|---|---|---|
1 | H | 6.22 ± 0.36/5.9 ± 0.41 | 100/100 |
2 | 5.26 ± 1.71/7.89 ± 1.66 | 118/75 | |
3 | 6.47 ± 0.83/5.91 ± 0.69 | 96/100 | |
4 | 13.98 ± 3.37/5.21 ± 1.9 | 44/113 | |
5 | 19.49 ± 0.67/7.8 ± 0.42 | 32/76 | |
6 | 0/12.31 ± 2.07 | 0/48 | |
7 | 6.45 ± 1.04/10 ± 0.39 | 96/59 | |
8 | 10.45 ± 0.69/7.95 ± 3.8 | 60/74 | |
9 | 12.4 ± 0.76/50.7 ± 9.27 | 50/12 | |
10 | 0/0 | 0/0 | |
11 | 7.5 ± 0.4/6.1 ± 0.2 | 83/97 | |
12 | 5.5 ± 1.8/6.7 ± 2.3 | 113/88 | |
13 | 6.43 ± 0.32/0 | 97/0 | |
14 | 14.82 ± 0.74/0 | 42/0 | |
15 | 6.02 ± 1/9.51 ± 0.99 | 103/62 | |
16 | 9.82 ± 1.62/11.4 ± 0.97 | 63/52 | |
17 | 9.31 ± 0.6/11.47 ± 0.28 | 67/51 | |
18 | 15.2 ± 1.2/8.7 ± 1.29 | 41/68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maddaloni, M.; Farra, R.; Dapas, B.; Felluga, F.; Benedetti, F.; Berti, F.; Drioli, S.; Vidali, M.; Cemazar, M.; Kamensek, U.; et al. In Vitro and In Vivo Evaluation of the Effects of Drug 2c and Derivatives on Ovarian Cancer Cells. Pharmaceutics 2024, 16, 664. https://doi.org/10.3390/pharmaceutics16050664
Maddaloni M, Farra R, Dapas B, Felluga F, Benedetti F, Berti F, Drioli S, Vidali M, Cemazar M, Kamensek U, et al. In Vitro and In Vivo Evaluation of the Effects of Drug 2c and Derivatives on Ovarian Cancer Cells. Pharmaceutics. 2024; 16(5):664. https://doi.org/10.3390/pharmaceutics16050664
Chicago/Turabian StyleMaddaloni, Marianna, Rossella Farra, Barbara Dapas, Fulvia Felluga, Fabio Benedetti, Federico Berti, Sara Drioli, Mattia Vidali, Maja Cemazar, Urska Kamensek, and et al. 2024. "In Vitro and In Vivo Evaluation of the Effects of Drug 2c and Derivatives on Ovarian Cancer Cells" Pharmaceutics 16, no. 5: 664. https://doi.org/10.3390/pharmaceutics16050664
APA StyleMaddaloni, M., Farra, R., Dapas, B., Felluga, F., Benedetti, F., Berti, F., Drioli, S., Vidali, M., Cemazar, M., Kamensek, U., Brancolini, C., Murano, E., Maremonti, F., Grassi, M., Biasin, A., Rizzolio, F., Cavarzerani, E., Scaggiante, B., Bulla, R., ... Grassi, G. (2024). In Vitro and In Vivo Evaluation of the Effects of Drug 2c and Derivatives on Ovarian Cancer Cells. Pharmaceutics, 16(5), 664. https://doi.org/10.3390/pharmaceutics16050664