Gold Nanoparticles: Tunable Characteristics and Potential for Nasal Drug Delivery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Gold Urchin-like Nanocrystals (GNUs)
2.3. Characterization of GNUs
2.4. Gold Colloidal Dispersions in HFA134a
2.5. Shot Weight Measurements
2.6. GNU Integrity in pMDI Formulation
2.7. Nasal Deposition of Aerosolized GNUs
2.8. RPMI 2650 Cell Culture Maintenance
2.9. In Vitro Cytotoxicity of GNUs
3. Results and Discussion
3.1. Characterization of GNUs
3.2. GNU Integrity in a pMDI Formulation
3.3. Regional Nasal Deposition of Aerosolized GNUs
3.4. In Vitro Cytotoxicity of GNU Formulation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Üzer, A.; Yalçın, U.; Can, Z.; Erçağ, E.; Apak, R. Indirect Determination of Pentaerythritol Tetranitrate (PETN) with a gold nanoparticles-based colorimetric sensor. Talanta 2017, 175, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Betzer, O.; Fan, Y.; Gao, Y.; Shen, M.; Sadan, T.; Popovtzer, R.; Shi, X. Multifunctional Dendrimer-Entrapped Gold Nanoparticles for Labeling and Tracking T Cells Via Dual-Modal Computed Tomography and Fluorescence Imaging. Biomacromolecules 2020, 21, 1587–1595. [Google Scholar] [CrossRef] [PubMed]
- Betzer, O.; Perets, N.; Angel, A.; Motiei, M.; Sadan, T.; Yadid, G.; Offen, D.; Popovtzer, R. In Vivo Neuroimaging of Exosomes Using Gold Nanoparticles. ACS Nano 2017, 11, 10883–10893. [Google Scholar] [CrossRef] [PubMed]
- Yi, C.; Liu, D.; Fong, C.C.; Zhang, J.; Yang, M. Gold Nanoparticles Promote Osteogenic Differentiation of Mesenchymal Stem Cells through p38 MAPK Pathway. ACS Nano 2010, 4, 6439–6448. [Google Scholar] [CrossRef] [PubMed]
- Coelho, S.C.; Reis, D.P.; Pereira, M.C.; Coelho, M.A.N. Doxorubicin and Varlitinib Delivery by Functionalized Gold Nanoparticles Against Human Pancreatic Adenocarcinoma. Pharmaceutics 2019, 11, 551. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Wang, G.; Alves, C.S.; Tomas, H.; Xiong, Z.; Shen, M.; Rodrigues, J.; Shi, X. Multifunctional Dendrimer-Entrapped Gold Nanoparticles Conjugated with Doxorubicin for pH-Responsive Drug Delivery and Targeted Computed Tomography Imaging. Langmuir 2018, 34, 12428–12435. [Google Scholar] [CrossRef]
- Orza, A.; Soritau, O.; Tomuleasa, C.; Olenic, L.; Florea, A.; Pana, O.; Bratu, I.; Pall, E.; Florian, S.; Casciano, D.; et al. Reversing chemoresistance of malignant glioma stem cells using gold nanoparticles. Int. J. Nanomed. 2013, 8, 689–702. [Google Scholar] [CrossRef] [PubMed]
- Balfourier, A.; Luciani, N.; Wang, G.; Lelong, G.; Ersen, O.; Khelfa, A.; Alloyeau, D.; Gazeau, F.; Carn, F. Unexpected intracellular biodegradation and recrystallization of gold nanoparticles. Proc. Natl. Acad. Sci. USA 2020, 117, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Dreaden, E.C.; Alkilany, A.M.; Huang, X.; Murphy, C.J.; El-Sayed, M.A. The golden age: Gold nanoparticles for biomedicine. Chem. Soc. Rev. 2012, 41, 2740–2779. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.R.K.; Wu, Y.; El-Sayed, M.A. Gold-Nanoparticle-Assisted Plasmonic Photothermal Therapy Advances Toward Clinical Application. J. Phys. Chem. C 2019, 123, 15375–15393. [Google Scholar] [CrossRef]
- Ong, Z.Y.; Chen, S.; Nabavi, E.; Regoutz, A.; Payne, D.J.; Elson, D.S.; Dexter, D.T.; Dunlop, I.E.; Porter, A.E. Multibranched Gold Nanoparticles with Intrinsic LAT-1 Targeting Capabilities for Selective Photothermal Therapy of Breast Cancer. ACS Appl. Mater. Interfaces 2017, 9, 39259–39270. [Google Scholar] [CrossRef] [PubMed]
- Khongkow, M.; Yata, T.; Boonrungsiman, S.; Ruktanonchai, U.R.; Graham, D.; Namdee, K. Surface modification of gold nanoparticles with neuron-targeted exosome for enhanced blood-brain barrier penetration. Sci. Rep. 2019, 9, 8278. [Google Scholar] [CrossRef] [PubMed]
- Ye, D.; Zhang, X.; Yue, Y.; Raliya, R.; Biswas, P.; Taylor, S.; Tai, Y.C.; Rubin, J.B.; Liu, Y.; Chen, H. Focused ultrasound combined with microbubble-mediated intranasal delivery of gold nanoclusters to the brain. J. Control Release 2018, 286, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Gallardo-Toledo, E.; Tapia-Arellano, A.; Celis, F.; Sinai, T.; Campos, M.; Kogan, M.J.; Sintov, A.C. Intranasal administration of gold nanoparticles designed to target the central nervous system: Fabrication and comparison between nanospheres and nanoprisms. Int. J. Pharm. 2020, 590, 119957. [Google Scholar] [CrossRef] [PubMed]
- Yin, P.; Li, H.; Ke, C.; Cao, G.; Xin, X.; Hu, J.; Cai, X.; Li, L.; Liu, X.; Du, B. Intranasal Delivery of Immunotherapeutic Nanoformulations for Treatment of Glioma Through in situ Activation of Immune Response. Int. J. Nanomed. 2020, 15, 1499–1515. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Tang, S.; Yu, Y.; Lv, Y.; Wang, A.; Yan, X.; Li, N.; Sha, C.; Sun, K.; Li, Y. Intranasal Delivery of Temozolomide-Conjugated Gold Nanoparticles Functionalized with Anti-EphA3 for Glioblastoma Targeting. Mol. Pharm. 2021, 18, 915–927. [Google Scholar] [CrossRef] [PubMed]
- Ganger, S.; Schindowski, K. Tailoring Formulations for Intranasal Nose-to-Brain Delivery: A Review on Architecture, Physico-Chemical Characteristics and Mucociliary Clearance of the Nasal Olfactory Mucosa. Pharmaceutics 2018, 10, 116. [Google Scholar] [CrossRef] [PubMed]
- Salem, H.F.; Kharshoum, R.M.; Abou-Taleb, H.A.; Naguib, D.M. Brain targeting of resveratrol through intranasal lipid vesicles labelled with gold nanoparticles: In vivo evaluation and bioaccumulation investigation using computed tomography and histopathological examination. J. Drug Target. 2019, 27, 1127–1134. [Google Scholar] [CrossRef]
- Patchin, E.S.; Anderson, D.S.; Silva, R.M.; Uyeminami, D.L.; Scott, G.M.; Guo, T.; Van Winkle, L.S.; Pinkerton, K.E. Size-Dependent Deposition, Translocation, and Microglial Activation of Inhaled Silver Nanoparticles in the Rodent Nose and Brain. Environ. Health Perspect. 2016, 124, 1870–1875. [Google Scholar] [CrossRef]
- Illum, L. Is nose-to-brain transport of drugs in man a reality? J. Pharm. Pharmacol. 2004, 56, 3–17. [Google Scholar] [CrossRef]
- Turkevich, J.; Stevenson, P.C.; Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 1951, 11, 55. [Google Scholar] [CrossRef]
- Frens, G. Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions. Nat. Phys. Sci. 1973, 241, 20–22. [Google Scholar] [CrossRef]
- Perrault, S.D.; Chan, W.C. Synthesis and Surface Modification of Highly Monodispersed, Spherical Gold Nanoparticles of 50-200 nm. J. Am. Chem. Soc. 2009, 131, 17042–17043. [Google Scholar] [CrossRef] [PubMed]
- Jauregui-Gomez, D.; Bermejo-Gallardo, O.M.; Moreno-Medrano, E.D.; Perez-Garcia, M.G.; Ceja, I.; Soto, V.; Carvajal-Ramos, F.; Gutierrez-Becerra, A. Freeze-drying storage method based on pectin for gold nanoparticles. Nanomater. Nanotechnol. 2017, 7, 184798041769732. [Google Scholar] [CrossRef]
- Rennie, C.E.; Gouder, K.A.; Taylor, D.J.; Tolley, N.S.; Schroter, R.C.; Doorly, D.J. Nasal inspiratory flow: At rest and sniffing. Int. Forum Allergy Rhinol. 2011, 1, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Johnson, M.R.; Matida, E.A.; Kherani, S.; Marsan, J. Creation of a standardized geometry of the human nasal cavity. J. Appl. Physiol. 2009, 106, 784–795. [Google Scholar] [CrossRef]
- Hughes, R.; Watterson, J.; Dickens, C.; Ward, D.; Banaszek, A. Development of a nasal cast model to test medicinal nasal devices. Proc. Inst. Mech. Eng. H. 2008, 222, 1013–1022. [Google Scholar] [CrossRef]
- Schroeter, J.D.; Tewksbury, E.W.; Wong, B.A.; Kimbell, J.S. Experimental Measurements and Computational Predictions of Regional Particle Deposition in a Sectional Nasal Model. J. Aerosol Med. Pulm. Drug Deliv. 2015, 28, 20–29. [Google Scholar] [CrossRef]
- Liu, X.; Atwater, M.; Wang, J.; Huo, Q. Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids Surf. B Biointerfaces 2007, 58, 3–7. [Google Scholar] [CrossRef]
- Haiss, W.; Thanh, N.T.; Aveyard, J.; Fernig, D.G. Determination of Size and Concentration of Gold Nanoparticles from UV-Vis Spectra. Anal. Chem. 2007, 79, 4215–4221. [Google Scholar] [CrossRef]
- Liu, T.; Han, L.L.; Du, C.M.; Yu, Z.Y. Redox potentials of dopamine and its supramolecular complex with aspartic acid. Russian J. Phys. Chem. A 2014, 88, 1085–1090. [Google Scholar] [CrossRef]
- Yoo, S.; Nam, D.H.; Singh, T.I.; Leem, G.; Lee, S. Effect of reducing agents on the synthesis of anisotropic gold nanoparticles. Nano Converg. 2022, 9, 5. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, W.; Zhao, L.; Rong, L.; Lan, S.; Sun, H.; Zhang, H.; Yang, B. Hydroquinone-Assisted Synthesis of Branched Au-Ag Nanoparticles with Polydopamine Coating as Highly Efficient Photothermal Agents. ACS Appl. Mater. Interfaces 2015, 7, 11613–11623. [Google Scholar] [CrossRef]
- Du, S.; Luo, Y.; Liao, Z.; Zhang, W.; Li, X.; Liang, T.; Zuo, F.; Ding, K. New insights into the formation mechanism of gold nanoparticles using dopamine as a reducing agent. J. Colloid. Interface Sci. 2018, 523, 27–34. [Google Scholar] [CrossRef]
- Yuan, H.; Ma, W.H.; Chen, C.C.; Zhao, J.C.; Liu, J.W.; Zhu, H.Y.; Gao, X.P. Shape and SPR Evolution of Thorny Gold Nanoparticles Promoted by Silver Ions. Chem. Mater. 2007, 19, 1592–1600. [Google Scholar] [CrossRef]
- Personick, M.L.; Langille, M.R.; Zhang, J.; Mirkin, C.A. Shape Control of Gold Nanoparticles by Silver Underpotential Deposition. Nano Lett. 2011, 11, 3394–3398. [Google Scholar] [CrossRef] [PubMed]
- Atta, S.; Beetz, M.; Fabris, L. Understanding the role of AgNO3 concentration and seed morphology in the achievement of tunable shape control in gold nanostars. Nanoscale 2019, 11, 2946–2958. [Google Scholar] [CrossRef]
- Zhang, Q.F.; Jing, H.; Li, G.G.; Lin, Y.; Blom, D.A.; Wang, H. Intertwining Roles of Silver Ions, Surfactants, and Reducing Agents in Gold Nanorod Overgrowth: Pathway Switch between Silver Underpotential Deposition and Gold-Silver Codeposition. Chem. Mater. 2016, 28, 2728–2741. [Google Scholar] [CrossRef]
- Yeh, Y.C.; Creran, B.; Rotello, V.M. Gold nanoparticles: Preparation, properties, and applications in bionanotechnology. Nanoscale 2012, 4, 1871–1880. [Google Scholar] [CrossRef]
- Gubicza, J.; Lábár, J.L.; Quynh, L.M.; Nam, N.H.; Luong, N.H. Evolution of size and shape of gold nanoparticles during long-time aging. Mater. Chem. Phys. 2013, 138, 449–453. [Google Scholar] [CrossRef]
- Trenkenschuh, E.; Friess, W. Freeze-drying of nanoparticles: How to overcome colloidal instability by formulation and process optimization. Eur. J. Pharm. Biopharm. 2021, 165, 345–360. [Google Scholar] [CrossRef] [PubMed]
- Buttini, F.; Miozzi, M.; Balducci, A.G.; Royall, P.G.; Brambilla, G.; Colombo, P.; Bettini, R.; Forbes, B. Differences in physical chemistry and dissolution rate of solid particle aerosols from solution pressurised inhalers. Int. J. Pharm. 2014, 465, 42–51. [Google Scholar] [CrossRef] [PubMed]
- FDA. Guidance for Industry: Nasal Spray and Inhalation Solution, Suspension, and Spray Drug Products-Chemistry, Manufacturing, and Controls Documentation; Food and Drug Administration: Rockville, MD, USA, 2002. Available online: https://www.fda.gov/media/70857/download (accessed on 19 February 2024).
- Doughty, D.V.; Hsu, W.; Dalby, R.N. Automated actuation of nasal spray products: Effect of hand-related variability on the in vitro performance of Flonase nasal spray. Drug Dev. Ind. Pharm. 2014, 40, 711–718. [Google Scholar] [CrossRef] [PubMed]
- Stein, S.W.; Sheth, P.; Younis, U.S.; Mogalian, E.; Myrdal, P.B. Modeling and Understanding Combination pMDI Formulations with Both Dissolved and Suspended Drugs. Mol. Pharm. 2015, 12, 3455–3467. [Google Scholar] [CrossRef] [PubMed]
- Duke, D.J.; Nguyen, D.T.; Dos Reis, L.G.; Silva, D.M.; Neild, A.; Edgington-Mitchell, D.; Young, P.M.; Honnery, D.R. Increasing the fine particle fraction of pressurised metered dose inhaler solutions with novel actuator shapes. Int. J. Pharm. 2021, 597, 120341. [Google Scholar] [CrossRef] [PubMed]
- Duke, D.J.; Scott, H.N.; Kusangaya, A.J.; Kastengren, A.L.; Matusik, K.; Young, P.; Lewis, D.; Honnery, D. Drug distribution transients in solution and suspension-based pressurised metered dose inhaler sprays. Int. J. Pharm. 2019, 566, 463–475. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.; Duke, D.; Honnery, D. Effect of nozzle features on pMDI sprays. In Proceedings of the IX Australian Conference on Laser Diagnostics, Adelaide, Australia, 2–4 December 2019. [Google Scholar]
- Chierici, V.; Cavalieri, L.; Piraino, A.; Paleari, D.; Quarta, E.; Sonvico, F.; Melani, A.S.; Buttini, F. Consequences of not-shaking and shake-fire delays on the emitted dose of some commercial solution and suspension pressurized metered dose inhalers. Expert. Opin. Drug Deliv. 2020, 17, 1025–1039. [Google Scholar] [CrossRef] [PubMed]
- Melani, A.S.; Bonavia, M.; Cilenti, V.; Cinti, C.; Lodi, M.; Martucci, P.; Serra, M.; Scichilone, N.; Sestini, P.; Aliani, M.; et al. Inhaler mishandling remains common in real life and is associated with reduced disease control. Respir. Med. 2011, 105, 930–938. [Google Scholar] [CrossRef]
- Siu, J.; van Strien, J.; Campbell, R.; Roberts, P.; Tingle, M.D.; Inthavong, K.; Douglas, R.G. Comparison of Sinus Deposition from an Aqueous Nasal Spray and Pressurised MDI in a Post-Endoscopic Sinus Surgery Nasal Replica. Pharm. Res. 2022, 39, 317–327. [Google Scholar] [CrossRef]
- Rangaraj, N.; Pailla, S.R.; Sampathi, S. Insight into pulmonary drug delivery: Mechanism of drug deposition to device characterization and regulatory requirements. Pulm. Pharmacol. Ther. 2019, 54, 1–21. [Google Scholar] [CrossRef]
- Suman, J.D.; Laube, B.L.; Dalby, R. Comparison of Nasal Deposition and Clearance of Aerosol Generated by Nebulizer and an Aqueous Spray Pump. Pharm. Res. 1999, 16, 1648–1652. [Google Scholar] [CrossRef] [PubMed]
- Djupesland, P.G.; Skretting, A. Nasal Deposition and Clearance in Man: Comparison of a Bidirectional Powder Device and a Traditional Liquid Spray Pump. J. Aerosol Med. Pulm. Drug Deliv. 2012, 25, 280–289. [Google Scholar] [CrossRef] [PubMed]
- Murnane, D.; Hutter, V.; Harang, M. Pharmaceutical aerosols and pulmonary drug delivery. In Aerosol Science: Technology and Applications; Colbeck, I., Lazaridis, M., Eds.; John Wiley & Sons Ltd.: Chichester, UK, 2014; pp. 221–269. [Google Scholar]
- Li, B.; Feng, Y. In Silico Study to Enhance Delivery Efficiency of Charged Nanoscale Nasal Spray Aerosols to the Olfactory Region Using External Magnetic Fields. Bioengineering 2022, 9, 40. [Google Scholar] [CrossRef]
- Vachhani, S.; Kleinstreuer, C. Numerical analysis of enhanced nano-drug delivery to the olfactory bulb. Aerosol Sci. Techol. 2021, 55, 1343–1358. [Google Scholar] [CrossRef]
- Garcia, G.J.; Schroeter, J.D.; Kimbell, J.S. Olfactory deposition of inhaled nanoparticles in humans. Inhal. Toxicol. 2015, 27, 394–403. [Google Scholar] [CrossRef] [PubMed]
- Inthavong, K.; Fung, M.C.; Yang, W.; Tu, J. Measurements of Droplet Size Distribution and Analysis of Nasal Spray Atomization from Different Actuation Pressure. J. Aerosol Med. Pulm. Drug Deliv. 2015, 28, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Young, P.M.; Murphy, S.; Fletcher, D.F.; Long, E.; Lewis, D.; Church, T.; Traini, D. High-Speed Laser Image Analysis of Plume Angles for Pressurised Metered Dose Inhalers: The Effect of Nozzle Geometry. AAPS PharmSciTech 2017, 18, 782–789. [Google Scholar] [CrossRef]
- Manniello, M.D.; Hosseini, S.; Alfaifi, A.; Esmaeili, A.R.; Kolanjiyil, A.V.; Walenga, R.; Babiskin, A.; Sandell, D.; Mohammadi, R.; Schuman, T.; et al. In vitro evaluation of regional nasal drug delivery using multiple anatomical nasal replicas of adult human subjects and two nasal sprays. Int. J. Pharm. 2021, 593, 120103. [Google Scholar] [CrossRef] [PubMed]
- Myrdal, P.B.; Sheth, P.; Stein, S.W. Advances in Metered Dose Inhaler Technology: Formulation Development. AAPS PharmSciTech 2014, 15, 434–455. [Google Scholar] [CrossRef]
- Moore, T.L.; Rodriguez-Lorenzo, L.; Hirsch, V.; Balog, S.; Urban, D.; Jud, C.; Rothen-Rutishauser, B.; Lattuada, M.; Petri-Fink, A. Nanoparticle colloidal stability in cell culture media and impact on cellular interactions. Chem. Soc. Rev. 2015, 44, 6287–6305. [Google Scholar] [CrossRef]
- Albanese, A.; Chan, W.C. Effect of Gold Nanoparticle Aggregation on Cell Uptake and Toxicity. ACS Nano 2011, 5, 5478–5489. [Google Scholar] [CrossRef] [PubMed]
- Carnovale, C.; Bryant, G.; Shukla, R.; Bansal, V. Identifying Trends in Gold Nanoparticle Toxicity and Uptake: Size, Shape, Capping Ligand, and Biological Corona. ACS Omega 2019, 4, 242–256. [Google Scholar] [CrossRef]
- Mrvová, N.; Škandík, M.; Kuniaková, M.; Račková, L. Modulation of BV-2 microglia functions by novel quercetin pivaloyl ester. Neurochem. Int. 2015, 90, 246–254. [Google Scholar] [CrossRef] [PubMed]
- Maaz, A. Aerosolised Nanoparticles for Nose-to-Brain Drug Delivery (NTBDD). Ph.D. Thesis, University of Bath, Bath, UK, 2022. Available online: https://researchportal.bath.ac.uk/en/studentTheses/aerosolised-nanoparticles-for-nose-to-brain-drug-delivery-ntbdd (accessed on 19 February 2024).
Reagent (Concentration) | Volume Added | |
---|---|---|
Reaction medium | Milli-Q H2O | 10 mL |
Catalysts | Au seeds (1.4 × 10−6 mM) | 60 µL |
Gold salt | HAuCl4 (100 mM) | 20 µL |
Shape directing agent | AgNO3 (0.1 mM) | 100 µL |
Stabilizing agent | mPEG-SH (1.7 mM) | 80 µL |
Reducing agent | DA (15 mM) | 300 µL |
Cryoprotectant | Pectin (0.25% w/v) | 0.14 mL |
NP Size (nm) | PDI | Zeta Potential (mV) | |
---|---|---|---|
Gold seeds used | 20.1 ± 0.5 | 0.49 ± 0.003 | −22.9 ± 1.0 |
GNUs before lyophilization | 98.6 ± 0.6 | 0.06 ± 0.01 | −10.0 ± 0.6 |
Reconstituted GNUs after lyophilization in water | 169.9 ± 0.8 | 0.21 ± 0.005 | −35.9 ± 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maaz, A.; Blagbrough, I.S.; De Bank, P.A. Gold Nanoparticles: Tunable Characteristics and Potential for Nasal Drug Delivery. Pharmaceutics 2024, 16, 669. https://doi.org/10.3390/pharmaceutics16050669
Maaz A, Blagbrough IS, De Bank PA. Gold Nanoparticles: Tunable Characteristics and Potential for Nasal Drug Delivery. Pharmaceutics. 2024; 16(5):669. https://doi.org/10.3390/pharmaceutics16050669
Chicago/Turabian StyleMaaz, Aida, Ian S. Blagbrough, and Paul A. De Bank. 2024. "Gold Nanoparticles: Tunable Characteristics and Potential for Nasal Drug Delivery" Pharmaceutics 16, no. 5: 669. https://doi.org/10.3390/pharmaceutics16050669
APA StyleMaaz, A., Blagbrough, I. S., & De Bank, P. A. (2024). Gold Nanoparticles: Tunable Characteristics and Potential for Nasal Drug Delivery. Pharmaceutics, 16(5), 669. https://doi.org/10.3390/pharmaceutics16050669