Poly(acrylic acid)/Poly(vinyl alcohol) Microarray Patches for Continuous Transdermal Delivery of Levodopa and Carbidopa: In Vitro and In Vivo Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Silicone Ring for MAP Casting
2.3. Effect of Polymer Addition on LD/CD Chemical Stability
2.4. Fabrication of Dissolving MAPs Loaded with LD and CD
2.5. Characterisation of Fabricated Dissolving MAPs
2.5.1. Visual Characterisation of Fabricated Dissolving MAPs
2.5.2. Physical Characterisation of Formulated Dissolving MAPs
2.5.3. Dissolution Studies of Formulated Dissolving MAPs
2.5.4. Determination of Dissolving MAPs’ Drug Content
2.5.5. Thermogravimetric Analysis
2.5.6. Ex Vivo Skin Permeation Studies Using Dermatomed Neonatal Porcine Skin
2.5.7. In Vivo Pharmacokinetic Studies Using Healthy Sprague–Dawley® Rats
2.5.8. Interpretation of MAP Relative Bioavailability
2.6. Pharmaceutical Analysis
2.6.1. In Vitro and Ex Vivo Sample Analysis via HPLC–UV
2.6.2. In Vivo Sample Analysis via HPLC–Fluorescence
2.7. Statistical Analysis
3. Results and Discussion
3.1. Stability Investigation of the LD/CD MAP ‘Drug-Containing’ Layer
3.2. Visual Characterisations of Formulated LD/CD Dissolving MAPs
3.3. Physical Characterisations of the Formulated LD/CD Dissolving MAPs
3.4. Dissolution Studies of the Formulated LD/CD Dissolving MAPs
3.5. Determination of the Drug Content of the Formulated LD/CD Dissolving MAPs
3.6. Determination of the Water Content of the LD/CD Dissolving MAP Final Product
3.7. Ex Vivo Skin Permeation Studies Using Dermatomed Neonatal Porcine Skin
3.8. In Vivo Pharmacokinetic Studies Using Healthy Sprague–Dawley® Rats
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Selvaraj, S.; Piramanayagam, S. Impact of gene mutation in the development of Parkinson’s disease. Genes Dis. 2019, 6, 120–128. [Google Scholar] [CrossRef]
- Braak, H.; Braak, E. Pathoanatomy of Parkinson’s disease. J. Neurol. 2000, 247, II3–II10. [Google Scholar] [CrossRef] [PubMed]
- Davie, C.A. A review of Parkinson’s disease. Br. Med. Bull. 2008, 86, 109–127. [Google Scholar] [CrossRef] [PubMed]
- Tambasco, N.; Romoli, M.; Calabresi, P. Levodopa in Parkinson’s disease: Current status and future developments. Curr. Neuropharmacol. 2018, 16, 1239–1252. [Google Scholar] [CrossRef] [PubMed]
- Koller, W.C.; Rueda, M.G. Mechanism of action of dopaminergic agents in Parkinson’s disease. Neurology 1998, 50, S11. [Google Scholar] [CrossRef] [PubMed]
- Pham, D.Q.; Nogid, A. Rotigotine transdermal system for the treatment of Parkinson’s disease. Clin. Ther. 2008, 30, 813–824. [Google Scholar] [CrossRef] [PubMed]
- Hagell, P. Self-reported health in people with Parkinson’s disease left untreated at diagnosis. J. Neurol. Neurosurg. Psychiatry 2007, 78, 442. [Google Scholar] [CrossRef] [PubMed]
- LeWitt, P.A.; Nyholm, D. New developments in levodopa therapy. Neurology 2004, 62, S9–S16. [Google Scholar] [CrossRef]
- Contin, M.; Martinelli, P. Pharmacokinetics of levodopa. J. Neurol. 2010, 257, 253–261. [Google Scholar] [CrossRef]
- Reichmann, H. Transdermal delivery of dopamine receptor agonists. Park. Relat. Disord. 2009, 15, S93–S96. [Google Scholar] [CrossRef]
- Urso, D.; Chaudhuri, K.R.; Qamar, M.A.; Jenner, P. Improving the delivery of levodopa in Parkinson’s disease: A review of approved and emerging therapies. CNS Drugs 2020, 34, 1149–1163. [Google Scholar] [CrossRef] [PubMed]
- Jankovic, J.; Schwartz, K.; Linden, C.V. Comparison of Sinemet CR4 and standard Sinemet: Double blind and long-term open trial in Parkinsonian patients with fluctuations. Mov. Disord. 1989, 4, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Poewe, W.; Antonini, A. Novel formulations and modes of delivery of levodopa. Mov. Disord. 2015, 30, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Zibetti, M.; Merola, A.; Ricchi, V.; Marchisio, A.; Artusi, C.A.; Rizzi, L.; Montanaro, E.; Reggio, D.; De Angelis, C.; Rizzone, M.; et al. Long-term duodenal levodopa infusion in Parkinson’s disease: A 3-year motor and cognitive follow-up study. J. Neurol. 2013, 260, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Udd, M.; Lyytinen, J.; Eerola-Rautio, J.; Kenttämies, A.; Lindström, O.; Kylänpää, L.; Pekkonen, E. Problems related to levodopa-carbidopa intestinal gel treatment in advanced Parkinson's disease. Brain Behav. 2017, 7, e00737. [Google Scholar] [CrossRef] [PubMed]
- Donnelly, R.F.; Singh, T.R.R.; Woolfson, A.D. Microneedle-based drug delivery systems: Microfabrication, drug delivery, and safety. Drug Deliv. 2010, 17, 187–207. [Google Scholar] [CrossRef] [PubMed]
- Paredes, A.J.; Volpe-Zanutto, F.; Permana, A.D.; Murphy, A.J.; Picco, C.J.; Vora, L.K.; Coulter, J.A.; Donnelly, R.F. Novel tip-loaded dissolving and implantable microneedle array patches for sustained release of finasteride. Int. J. Pharm. 2021, 606, 120885. [Google Scholar] [CrossRef]
- Larrañeta, E.; Lutton, R.E.M.; Woolfson, A.D.; Donnelly, R.F. Microneedle arrays as transdermal and intradermal drug delivery systems: Materials science, manufacture and commercial development. Mater. Sci. Eng. R: Rep. 2016, 104, 1–32. [Google Scholar] [CrossRef]
- Lee, J.W.; Prausnitz, M.R. Drug delivery using microneedle patches: Not just for skin. Expert Opin. Drug Deliv. 2018, 15, 541–543. [Google Scholar] [CrossRef]
- Donnelly, R.F.; Singh, T.R.R.; Morrow, D.I.J.; Woolfson, A.D. Microneedle-mediated Transdermal and Intradermal Drug Delivery; Wiley-Blackwell: London, UK, 2012; p. 232. [Google Scholar]
- Donnelly, R.F.; Larrañeta, E. Microarray patches: Potentially useful delivery systems for long-acting nanosuspensions. Drug Discov. Today 2018, 23, 1026–1033. [Google Scholar] [CrossRef]
- Vora, L.K.; Courtenay, A.J.; Tekko, I.A.; Larrañeta, E.; Donnelly, R.F. Pullulan-based dissolving microneedle arrays for enhanced transdermal delivery of small and large biomolecules. Int. J. Biol. Macromol. 2020, 146, 290–298. [Google Scholar] [CrossRef] [PubMed]
- Arya, J.; Prausnitz, M.R. Microneedle patches for vaccination in developing countries. J. Control. Release 2016, 240, 135–141. [Google Scholar] [CrossRef]
- Kim, Y.-C.; Park, J.-H.; Prausnitz, M.R. Microneedles for drug and vaccine delivery. Adv. Drug Deliv. Rev. 2012, 64, 1547–1568. [Google Scholar] [CrossRef]
- McAlister, E.; Dutton, B.; Vora, L.K.; Zhao, L.; Ripolin, A.; Zahari, D.S.Z.B.P.H.; Quinn, H.L.; Tekko, I.A.; Courtenay, A.J.; Kelly, S.A.; et al. Directly compressed tablets: A novel drug-containing reservoir combined with hydrogel-forming microneedle arrays for transdermal drug delivery. Adv. Healthc. Mater. 2021, 10, 2001256. [Google Scholar] [CrossRef]
- Paredes, A.J.; Permana, A.D.; Volpe-Zanutto, F.; Amir, M.N.; Vora, L.K.; Tekko, I.A.; Akhavein, N.; Weber, A.D.; Larrañeta, E.; Donnelly, R.F. Ring inserts as a useful strategy to prepare tip-loaded microneedles for long-acting drug delivery with application in HIV pre-exposure prophylaxis. Mater. Des. 2022, 224, 111416. [Google Scholar] [CrossRef]
- Donnelly, R.F.; Moffatt, K.; Alkilani, A.Z.; Vicente-Pérez, E.M.; Barry, J.; McCrudden, M.T.C.; Woolfson, A.D. Hydrogel-forming microneedle arrays can be effectively inserted in skin by self-application: A pilot study centred on pharmacist intervention and a patient information leaflet. Pharm. Res. 2014, 31, 1989–1999. [Google Scholar] [CrossRef] [PubMed]
- Larrañeta, E.; Moore, J.; Vicente-Pérez, E.M.; González-Vázquez, P.; Lutton, R.; Woolfson, A.D.; Donnelly, R.F. A proposed model membrane and test method for microneedle insertion studies. Int. J. Pharm. 2014, 472, 65–73. [Google Scholar] [CrossRef]
- Lutton, R.E.M.; Larrañeta, E.; Kearney, M.-C.; Boyd, P.; Woolfson, A.D.; Donnelly, R.F. A novel scalable manufacturing process for the production of hydrogel-forming microneedle arrays. Int. J. Pharm. 2015, 494, 417–429. [Google Scholar] [CrossRef]
- Jacobi, U.; Kaiser, M.; Toll, R.; Mangelsdorf, S.; Audring, H.; Otberg, N.; Sterry, W.; Lademann, J. Porcine ear skin: An in vitro model for human skin. Ski. Res. Technol. 2007, 13, 19–24. [Google Scholar] [CrossRef]
- Simon, G.A.; Maibach, H.I. The pig as an experimental animal model of percutaneous permeation in man: Qualitative and quantitative observations—An overview. Ski. Pharmacol. Appl. Ski. Physiol. 2000, 13, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Tekko, I.A.; Chen, G.; Domínguez-Robles, J.; Thakur, R.R.S.; Hamdan, I.M.; Vora, L.; Larrañeta, E.; McElnay, J.C.; McCarthy, H.O.; Rooney, M.; et al. Development and characterisation of novel poly (vinyl alcohol)/poly (vinyl pyrrolidone)-based hydrogel-forming microneedle arrays for enhanced and sustained transdermal delivery of methotrexate. Int. J. Pharm. 2020, 586, 119580. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Shentu, J.Z.; Wu, L.H.; Dou, J.; Xu, Q.Y.; Zhou, H.L.; Wu, G.L.; Huang, M.Z.; Hu, X.J.; Chen, J.C. Relative bioavailability and pharmacokinetic comparison of two different enteric formulations of omeprazole. J. Zhejiang Univ. Sci. B 2012, 13, 348–355. [Google Scholar] [CrossRef]
- Choudhary, A.N.; Chaudhary, A.; Dutta, K.K. Forced degradation study and validation of a RP-HPLC method for simultaneous estimation for drug content and release of Llevodopa, carbidopa and entacapone in combined dosage form. Pharma Innov. 2018, 7, 109–122. [Google Scholar]
- Kankkunen, T.; Huupponen, I.; Lahtinen, K.; Sundell, M.; Ekman, K.; Kontturi, K.; Hirvonen, J. Improved stability and release control of levodopa and metaraminol using ion-exchange fibers and transdermal iontophoresis. Eur. J. Pharm. Sci. 2002, 16, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.R.; Caudill, C.L.; Tumbleston, J.R.; Bloomquist, C.J.; Moga, K.A.; Ermoshkin, A.; Shirvanyants, D.; Mecham, S.J.; Luft, J.C.; DeSimone, J.M. Single-step fabrication of computationally designed microneedles by continuous liquid interface production. PLoS ONE 2016, 11, e0162518. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.F.; Cheng, J.W.; Liu, J.X.; Zhu, Y.F. Dissolving graphene/poly(acrylic acid) microneedles for potential transdermal drug delivery and photothermal therapy. J. Nanosci. Nanotechnol. 2019, 19, 2453–2459. [Google Scholar] [CrossRef] [PubMed]
- Cordeiro, A.S.; Tekko, I.A.; Jomaa, M.H.; Vora, L.K.; McAlister, E.; Volpe-Zanutto, F.; Nethery, M.; Baine, P.T.; Mitchell, N.; McNeill, D.W.; et al. Two-photon polymerisation 3D printing of microneedle array templates with versatile designs: Application in the development of polymeric drug delivery systems. Pharm. Res. 2020, 37, 174. [Google Scholar] [CrossRef] [PubMed]
- Bal, S.M.; Kruithof, A.C.; Zwier, R.; Dietz, E.; Bouwstra, J.A.; Lademann, J.; Meinke, M.C. Influence of microneedle shape on the transport of a fluorescent dye into human skin in vivo. J. Control. Release 2010, 147, 218–224. [Google Scholar] [CrossRef]
- Moffatt, K.; Tekko, I.A.; Vora, L.K.; Volpe-Zanutto, F.; Hutton, A.R.J.; Mistilis, J.; Jarrahian, C.; Akhavein, N.; Weber, A.D.; McCarthy, H.O.; et al. Development and Evaluation of Dissolving Microarray Patches for Co-administered and Repeated Intradermal Delivery of Long-acting Rilpivirine and Cabotegravir Nanosuspensions for Paediatric HIV Antiretroviral Therapy. Pharm. Res. 2023, 40, 1673–1696. [Google Scholar] [CrossRef]
- Tekko, I.A.; Permana, A.D.; Vora, L.K.; Hatahet, T.; McCarthy, H.O.; Donnelly, R.F. Localised and sustained intradermal delivery of methotrexate using nanocrystal-loaded microneedle arrays: Potential for enhanced treatment of psoriasis. Eur. J. Pharm. Sci. 2020, 152, 105469. [Google Scholar] [CrossRef]
- Zhang, C.; Vora, L.K.; Tekko, I.A.; Volpe-Zanutto, F.; Peng, K.; Paredes, A.J.; McCarthy, H.O.; Donnelly, R.F. Development of dissolving microneedles for intradermal delivery of the long-acting antiretroviral drug bictegravir. Int. J. Pharm. 2023, 642, 123108. [Google Scholar] [CrossRef]
- Mc Crudden, M.T.C.; Larrañeta, E.; Clark, A.; Jarrahian, C.; Rein-Weston, A.; Lachau-Durand, S.; Niemeijer, N.; Williams, P.; Haeck, C.; McCarthy, H.O.; et al. Design, formulation and evaluation of novel dissolving microarray patches containing a long-acting rilpivirine nanosuspension. J. Control. Release 2018, 292, 119–129. [Google Scholar] [CrossRef]
- Vora, L.K.; Donnelly, R.F.; Larrañeta, E.; González-Vázquez, P.; Thakur, R.R.S.; Vavia, P.R. Novel bilayer dissolving microneedle arrays with concentrated PLGA nano-microparticles for targeted intradermal delivery: Proof of concept. J. Control. Release 2017, 265, 93–101. [Google Scholar] [CrossRef]
- Donnelly, R.F.; Majithiya, R.; Singh, T.R.R.; Morrow, D.I.J.; Garland, M.J.; Demir, Y.K.; Migalska, K.; Ryan, E.; Gillen, D.; Scott, C.J.; et al. Design, optimization and characterisation of polymeric microneedle arrays prepared by a novel laser-based micromoulding technique. Pharm. Res. 2011, 28, 41–57. [Google Scholar] [CrossRef]
- Scheuplein, R.J. Mechanism of percutaneous absorption: II. transient diffusion and the relative importance of various routes of skin penetration. J. Investig. Dermatol. 1967, 48, 79–88. [Google Scholar] [CrossRef]
- Garland, M.J.; Migalska, K.; Tuan-Mahmood, T.-M.; Raghu Raj Singh, T.; Majithija, R.; Caffarel-Salvador, E.; McCrudden, C.M.; McCarthy, H.O.; David Woolfson, A.; Donnelly, R.F. Influence of skin model on in vitro performance of drug-loaded soluble microneedle arrays. Int. J. Pharm. 2012, 434, 80–89. [Google Scholar] [CrossRef]
- Anjani, Q.K.; Sabri, A.H.B.; Utomo, E.; Domínguez-Robles, J.; Donnelly, R.F. Elucidating the impact of surfactants on the performance of dissolving microneedle array patches. Mol. Pharm. 2022, 19, 1191–1208. [Google Scholar] [CrossRef]
- Nutt, J.G.; Woodward, W.R. Levodopa pharmacokinetics and pharmacodynamics in fluctuating parkinsonian patients. Neurology 1986, 36, 739–744. [Google Scholar] [CrossRef] [PubMed]
- Reyna, D.; Bejster, I.; Chadderdon, A.; Harteg, C.; Kurnia Anjani, Q.; Hidayat Bin Sabri, A.; Brown, A.N.; Drusano, G.L.; Westover, J.; Bart Tarbet, E.; et al. A five-day treatment course of zanamivir for the flu with a single, self-administered, painless microneedle array patch: Revolutionizing delivery of poorly membrane-permeable therapeutics. Int. J. Pharm. 2023, 641, 123081. [Google Scholar] [CrossRef] [PubMed]
- Li, Y. Dissolving Microarray Patch-Mediated Transdermal Delivery of Anti-Parkinson’s Agents. Ph.D. Thesis, Queen’s University Belfast, Belfast, UK, 2023. [Google Scholar]
Cohort | Dose |
---|---|
LD/CD MAP cohort | 22 mg/kg LD, 6 mg/kg CD (estimated dose based on ex vivo studies) |
LD/CD oral gavage | 22 mg/kg LD, 6 mg/kg CD |
Excipients | Percentage Composition (w/w) | pH |
---|---|---|
LD | 20% | 3.72 |
CD | 5% | |
PAA 250 kDa (35% w/w solution) | 2.4% | |
PVA 9–10 kDa (40% w/w solution) | 39.6% | |
Deionised water | 33% |
Parameter | LD/CD MAP | Oral Gavage | |
---|---|---|---|
LD | Cmax (μg/mL) | 1.016 ± 0.639 | 2.129 ± 0.727 |
Tmax (hour) | 72 | 30 | |
AUC (μg·h/mL) | 149.400 ± 21.970 | 179.500 ± 14.390 |
Parameter | LD/CD MAP | Oral Gavage | |
---|---|---|---|
CD | Cmax (μg/mL) | 1.871 ± 1.232 | 6.443 ± 0.601 |
Tmax (hour) | 48 | 6 | |
AUC (μg·h/mL) | 232.900 ± 29.070 | 309.500 ± 28.250 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Vora, L.K.; Wang, J.; Sabri, A.H.B.; Graham, A.; McCarthy, H.O.; Donnelly, R.F. Poly(acrylic acid)/Poly(vinyl alcohol) Microarray Patches for Continuous Transdermal Delivery of Levodopa and Carbidopa: In Vitro and In Vivo Studies. Pharmaceutics 2024, 16, 676. https://doi.org/10.3390/pharmaceutics16050676
Li Y, Vora LK, Wang J, Sabri AHB, Graham A, McCarthy HO, Donnelly RF. Poly(acrylic acid)/Poly(vinyl alcohol) Microarray Patches for Continuous Transdermal Delivery of Levodopa and Carbidopa: In Vitro and In Vivo Studies. Pharmaceutics. 2024; 16(5):676. https://doi.org/10.3390/pharmaceutics16050676
Chicago/Turabian StyleLi, Yaocun, Lalitkumar K. Vora, Jiawen Wang, Akmal Hidayat Bin Sabri, Andrew Graham, Helen O. McCarthy, and Ryan F. Donnelly. 2024. "Poly(acrylic acid)/Poly(vinyl alcohol) Microarray Patches for Continuous Transdermal Delivery of Levodopa and Carbidopa: In Vitro and In Vivo Studies" Pharmaceutics 16, no. 5: 676. https://doi.org/10.3390/pharmaceutics16050676
APA StyleLi, Y., Vora, L. K., Wang, J., Sabri, A. H. B., Graham, A., McCarthy, H. O., & Donnelly, R. F. (2024). Poly(acrylic acid)/Poly(vinyl alcohol) Microarray Patches for Continuous Transdermal Delivery of Levodopa and Carbidopa: In Vitro and In Vivo Studies. Pharmaceutics, 16(5), 676. https://doi.org/10.3390/pharmaceutics16050676