Suitable Promoter for DNA Vaccination Using a pDNA Ternary Complex
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Construction of pDNA
2.3. Preparation of the pDNA Ternary Complex
2.4. Physicochemical Properties of the Complex
2.5. Cell Culture
2.6. In Vitro Transfection Experiments
2.7. Animals
2.8. In Vivo Transfection Experiments
2.9. Vaccination
2.10. Statistical Analysis
3. Results
3.1. Physicochemical Properties of the pDNA Ternary Complex
3.2. In Vitro Transfection Activity of the pDNA Ternary Complexes in DC2.4 Cells
3.3. In Vitro Time-Dependent Transfection Activity of the pDNA Ternary Complexes in DC2.4 Cells
3.4. In Vivo Transfection Activity of the pDNA Ternary Complexes
3.5. Time-Dependent Transfection Activity of the pDNA Ternary Complex In Vivo
3.6. Immune-Induction Effect of the pDNA Ternary Complex
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, B.; Jeang, J.; Yang, A.; Wu, T.C.; Hung, C.F. DNA vaccine for cancer immunotherapy. Hum. Vaccines Immunother. 2014, 10, 3153–3164. [Google Scholar] [CrossRef] [PubMed]
- Lopes, A.; Vandermeulen, G.; Preat, V. Cancer DNA vaccines: Current preclinical and clinical developments and future perspectives. J. Exp. Clin. Cancer Res. 2019, 38, 146. [Google Scholar] [CrossRef] [PubMed]
- Sang, M.; Wang, L.; Ding, C.; Zhou, X.; Wang, B.; Wang, L.; Lian, Y.; Shan, B. Melanoma-associated antigen genes—An update. Cancer Lett. 2011, 302, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, S.A.; Yang, J.C.; Sherry, R.M.; Hwu, P.; Topalian, S.L.; Schwartzentruber, D.J.; Restifo, N.P.; Haworth, L.R.; Seipp, C.A.; Freezer, L.J.; et al. Inability to immunize patients with metastatic melanoma using plasmid DNA encoding the gp100 melanoma-melanocyte antigen. Hum. Gene Ther. 2003, 14, 709–714. [Google Scholar] [CrossRef]
- Zaneti, A.B.; Yamamoto, M.M.; Sulczewski, F.B.; Almeida, B.D.S.; Souza, H.F.S.; Ferreira, N.S.; Maeda, D.L.N.F.; Sales, N.S.; Rosa, D.S.; Ferreira, L.C.S.; et al. Dendritic cell targeting using a DNA vaccine induces specific antibodies and CD4+ T cells to the dengue virus envelope protein domain III. Front. Immunol. 2019, 10, 59. [Google Scholar] [CrossRef] [PubMed]
- Garu, A.; Moku, G.; Gulla, S.K.; Chaudhuri, A. Genetic immunization with in vivo dendritic cell-targeting liposomal DNA vaccine carrier induces long-lasting antitumor immune response. Mol. Ther. 2016, 24, 385–397. [Google Scholar] [CrossRef] [PubMed]
- McCluskie, M.J.; Brazolot Millan, C.L.; Gramzinski, R.A.; Robinson, H.L.; Santoro, J.C.; Fuller, J.T.; Widera, G.; Haynes, J.R.; Purcell, R.H.; Davis, H.L. Route and method of delivery of DNA vaccine influence immune responses in mice and non-human primates. Mol. Med. 1999, 5, 287–300. [Google Scholar] [CrossRef] [PubMed]
- Kurosaki, T.; Kodama, Y.; Muro, T.; Higuchi, N.; Nakamura, T.; Kitahara, T.; Miyakoda, M.; Yui, K.; Sasaki, H. Secure splenic delivery of plasmid DNA and its application to DNA vaccine. Biol. Pharm. Bull. 2013, 36, 1800–1806. [Google Scholar] [CrossRef]
- Qin, J.Y.; Zhang, L.; Clift, K.L.; Hulur, I.; Xiang, A.P.; Ren, B.Z.; Lahn, B.T. Systematic comparison of constitutive promoters and the doxycycline-inducible promoter. PLoS ONE 2010, 5, e10611. [Google Scholar] [CrossRef]
- Chung, S.; Andersson, T.; Sonntag, K.C.; Björklund, L.; Isacson, O.; Kim, K.S. Analysis of different promoter systems for efficient transgene expression in mouse embryonic stem cell lines. Stem Cells 2002, 20, 139–145. [Google Scholar] [CrossRef]
- Fiszer-Kierzkowska, A.; Vydra, N.; Wysocka-Wycisk, A.; Kronekova, Z.; Jarzab, M.; Lisowska, K.M.; Krawczyk, Z. Liposome-based DNA carriers may induce cellular stress response and change gene expression pattern in transfected cells. BMC Mol. Biol. 2011, 12, 27. [Google Scholar] [CrossRef] [PubMed]
- Norrman, K.; Fischer, Y.; Bonnamy, B.; Wolfhagen Sand, F.; Ravassard, P.; Semb, H. Quantitative Comparison of Constitutive Promoters in Human ES cells. PLoS ONE 2010, 5, e12413. [Google Scholar] [CrossRef] [PubMed]
- Zuniga, R.A.; Gutierrez-Gonzalez, M.; Collazo, N.; Sotelo, P.H.; Ribeiro, C.H.; Altamirano, C.; Lorenzo, C.; Aguillon, J.C.; Molina, M.C. Development of a new promoter to avoid the silencing of genes in the production of recombinant antibodies in Chinese hamster ovary cells. J. Biol. Eng. 2019, 13, 59. [Google Scholar] [CrossRef] [PubMed]
- Martello, E.; Gillingham, E.L.; Phalkey, R.; Vardavas, C.; Nikitara, K.; Bakonyi, T.; Gossner, C.M.; Leonardi-Bee, J. Systematic review on the non-vectorial transmission of Tick-borne encephalitis virus (TBEv). Ticks Tick-Borne Dis. 2022, 13, 102028. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Z.Q.; Spitalnik, S.L.; Cheng, J.; Erikson, J.; Wojczyk, B.; Ertl, H.C. Immune responses to nucleic acid vaccines to rabies virus. Virology 1995, 209, 569–579. [Google Scholar] [CrossRef]
- Mizushima, S.; Nagata, S. pEF-BOS, a powerful mammalian expression vector. Nucleic Acids Res. 1990, 18, 5322. [Google Scholar] [CrossRef] [PubMed]
- Uchiyama, K.; Watanabe, D.; Hayasaka, M.; Hanaoka, K. A novel imprinted transgene located near a repetitive element that exhibits allelic imbalance in DNA methylation during early development. Dev. Growth Differ. 2014, 56, 653–668. [Google Scholar] [CrossRef] [PubMed]
- Boshart, M.; Weber, F.; Jahn, G.; Dorsch-Häsler, K.; Fleckenstein, B.; Schaffner, W. A very strong Enhancer is located upstream of an immediate early gene of human Cytomegalovirus. Cell 1985, 41, 521–530. [Google Scholar] [CrossRef] [PubMed]
- Gray, S.J.; Foti, S.B.; Schwartz, J.W.; Bachaboina, L.; Taylor-Blake, B.; Coleman, J.; Ehlers, M.D.; Zylka, M.J.; McCown, T.J.; Samulski, R.J. Optimizing promoters for recombinant adeno-associated virus-mediated gene expression in the peripheral and central nervous system using self-complementary vectors. Hum. Gene Ther. 2011, 22, 1143–1153. [Google Scholar] [CrossRef]
- Kodama, Y.; Nakamura, T.; Kurosaki, T.; Egashira, K.; Mine, T.; Nakagawa, H.; Muro, T.; Kitahara, T.; Higuchi, N.; Sasaki, H. Biodegradable nanoparticles composed of dendrigraft poly-L-lysine for gene delivery. Eur. Pharm. Biopharm. 2014, 87, 472–479. [Google Scholar] [CrossRef]
- Peng, S.F.; Tseng, M.T.; Ho, Y.C.; Wei, M.C.; Liao, Z.X.; Sung, H.W. Mechanisms of cellular uptake and intracellular trafficking with chitosan/DNA/poly(γ-glutamic acid) complexes as a gene delivery vector. Biomaterials 2011, 32, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Kraal, G. Cells in the marginal zone of the spleen. Int. Rev. Cytol. 1992, 132, 31–74. [Google Scholar] [PubMed]
- Kodama, Y.; Tokunaga, A.; Hashizume, J.; Nakagawa, H.; Harasawa, H.; Kurosaki, T.; Nakamura, T.; Nishida, K.; Nakashima, M.; Hashida, M.; et al. Evaluation of transgene expression characteristics and DNA vaccination against melanoma metastasis of an intravenously injected ternary complex with biodegradable dendrigraft poly-L-lysine in mice. Drug Deliv. 2021, 28, 542–549. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, K.; Ishii, Y.; Matsuo, K.; Yoshinaga, T.; Akashi, M.; Mukai, Y.; Yoshioka, Y.; Okada, N.; Nakagawa, S. The utility of poly(γ-glutamic acid) nanoparticles as antigen delivery carriers in dendritic cell-based cancer immunotherapy. Biol. Pharm. Bull. 2010, 33, 2003–2007. [Google Scholar] [CrossRef] [PubMed]
- Cherif, M.S.; Shuaibu, M.N.; Kurosaki, T.; Helegbe, G.K.; Kikuchi, M.; Yanagi, T.; Tsuboi, T.; Sasaki, H.; Hirayama, K. Immunogenicity of novel nanoparticle-coated MSP-1 C-terminus malaria DNA vaccine using different routes of administration. Vaccine 2011, 29, 9038–9050. [Google Scholar] [CrossRef]
- Haruyama, N.; Cho, A.; Kulkarni, A.B. Overview: Engineering transgenic constructs and mice. Curr. Protoc. Cell Biol. 2009, 42, 19.10.1–19.10.9. [Google Scholar] [CrossRef] [PubMed]
- Ochiai, H.; Harashima, H.; Kamiya, H. Silencing of exogenous DNA in cultured cells. Biol. Pharm. Bull. 2006, 29, 1294–1296. [Google Scholar] [CrossRef] [PubMed]
- Papagatsias, T.; Rozis, G.; Athanasopoulos, T.; Gotch, F.; Dickson, G.; Patterson, S. Activity of different vaccine-associated promoter elements in human dendritic cells. Immunol. Lett. 2008, 115, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Moulin, V.; Morgan, M.E.; Eleveld-Trancikova, D.E.; Haanen, J.B.A.G.; Wielders, E.; Looman, M.W.G.; Janssen, R.A.J.; Figdor, C.G.; Jansen, B.J.H.; Adema, G.J. Targeting dendritic cells with antigen via dendritic cell-associated promoters. Cancer Gene Ther. 2012, 19, 303–311. [Google Scholar] [CrossRef]
- Zarrin, A.A.; Malkin, L.; Fong, I.; Luk, K.D.; Ghose, A.; Berinstein, N.L. Comparison of CMV, RSV, SV40 viral and Vlambda1 cellular promoters in B and T lymphoid and non-lymphoid cell lines. Biochim. Biophys. Acta 1999, 1446, 135–139. [Google Scholar] [CrossRef]
- Dou, Y.; Lin, Y.; Wang, T.Y.; Wang, X.Y.; Jia, Y.L.; Zhao, C.P. The CAG promoter maintains high-level transgene expression in HEK293 cells. FEBS Open Bio 2021, 11, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Seita, Y.; Tsukiyama, T.; Azami, T.; Kobayashi, K.; Iwatani, C.; Tsuchiya, H.; Nakaya, M.; Tanabe, H.; Hitoshi, S.; Miyoshi, H.; et al. Comprehensive evaluation of ubiquitous promoters suitable for the generation of transgenic cynomolgus monkeys. Biol. Reprod. 2019, 100, 1440–1452. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Reznikoff, G.; Dranoff, G.; Rock, K.L. Cloned dendritic cells can present exogenous antigens on both MHC class I and class II molecules. J. Immunol. 1997, 158, 2723–2730. [Google Scholar] [CrossRef]
- Matouk, C.C.; Marsden, P.A. Epigenetic regulation of vascular endothelial gene expression. Circ. Res. 2008, 102, 873–887. [Google Scholar] [CrossRef] [PubMed]
- Kevin, H.; Elien De, S.; Nick, G.; Paul, D. Prolonged in vivo expression and anti-tumor response of DNAbased anti-HER2 antibodies. Oncotarget 2018, 8, 13623–13636. [Google Scholar]
- Watanabe, M.; Sakaguchi, M.; Kinoshita, R.; Kaku, H.; Ariyoshi, Y.; Ueki, H.; Tanimoto, R.; Ebara, S.; Ochiai, K.; Futami, J.; et al. A novel gene expression system strongly enhances the anticancer effects of a REIC/Dkk-3-encoding adenoviral vector. Oncol. Rep. 2014, 31, 1089–1095. [Google Scholar] [CrossRef]
- Hodges, B.L.; Taylor, K.M.; Joseph, M.F.; Bourgeois, S.A.; Scheule, R.K. Long-term transgene expression from plasmid DNA gene therapy vectors is negatively affected by CpG dinucleotides. Mol. Ther. 2004, 10, 269–278. [Google Scholar] [CrossRef] [PubMed]
- Hyde, S.C.; Pringle, I.A.; Abdullah, S.; Lawton, A.E.; Davies, L.A.; Varathalingam, A.; Nunez-Alonso, G.; Green, A.M.; Bazzani, R.P.; Sumner-Jones, S.G.; et al. CpG-free plasmids confer reduced inflammation and sustained pulmonary gene expression. Nat. Biotechnol. 2008, 26, 549–551. [Google Scholar] [CrossRef] [PubMed]
- Miura, N.; Shaheen, S.M.; Akita, H.; Nakamura, T.; Harashima, H. A KALA-modified lipid nanoparticle containing CpG-free plasmid DNA as a potential DNA vaccine carrier for antigen presentation and as an immune-stimulative adjuvant. Nucleic Acids Res. 2015, 43, 1317–1331. [Google Scholar] [CrossRef]
- Choi, T.; Huang, M.; Gorman, C.; Jaenisch, R. A generic intron increases gene expression in transgenic mice. Mol. Cell Biol. 1991, 11, 3070–3074. [Google Scholar]
- Huynh, C.Q.; Zieler, H. Construction of modular and versatile plasmid vectors for the high-level expression of single or multiple genes in insects and insect cell lines. J. Mol. Biol. 1999, 288, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Choi, D.; Choi, M.J.; Jeong, J.H.; Kim, W.J.; Oh, S.; Kim, Y.H.; Bull, D.A.; Kim, S.W. Hypoxia-inducible gene expression system using the erythropoietin enhancer and 3′-untranslated region for the VEGF gene therapy. J. Control Release 2006, 115, 113–119. [Google Scholar] [CrossRef] [PubMed]
Complexes | Size (nm) | ζ-Potential (mV) |
---|---|---|
pSV40-Luc | 140.7 ± 3.2 | −29.1 ± 0.7 |
pEF1-Luc | 143.0 ± 2.6 | −27.7 ± 0.7 |
pCMV-Luc | 147.5 ± 3.6 | −29.7 ± 0.4 |
pCBh-Luc | 142.7 ± 1.2 | −29.5 ± 1.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurosaki, T.; Nakamura, H.; Sasaki, H.; Kodama, Y. Suitable Promoter for DNA Vaccination Using a pDNA Ternary Complex. Pharmaceutics 2024, 16, 679. https://doi.org/10.3390/pharmaceutics16050679
Kurosaki T, Nakamura H, Sasaki H, Kodama Y. Suitable Promoter for DNA Vaccination Using a pDNA Ternary Complex. Pharmaceutics. 2024; 16(5):679. https://doi.org/10.3390/pharmaceutics16050679
Chicago/Turabian StyleKurosaki, Tomoaki, Hiroki Nakamura, Hitoshi Sasaki, and Yukinobu Kodama. 2024. "Suitable Promoter for DNA Vaccination Using a pDNA Ternary Complex" Pharmaceutics 16, no. 5: 679. https://doi.org/10.3390/pharmaceutics16050679
APA StyleKurosaki, T., Nakamura, H., Sasaki, H., & Kodama, Y. (2024). Suitable Promoter for DNA Vaccination Using a pDNA Ternary Complex. Pharmaceutics, 16(5), 679. https://doi.org/10.3390/pharmaceutics16050679