Formulation of a Novel Hesperetin-Loaded Nanoemulsion and Its Promising Effect on Osteogenesis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Nanoemulsion Development and Characterization
2.1.1. Nanoemulsion Preparation
2.1.2. Droplet Size, Polydispersity Index, and Zeta Potential
2.1.3. Analytic Methodology for Hesperetin Quantification
2.1.4. Encapsulation Efficiency
2.1.5. In Vitro Release Assay
2.2. In Vitro Analyses in Osteoblasts Saos-2-like
2.2.1. Cell Culture
2.2.2. Cytotoxicity Assay
2.2.3. Cell Proliferation Analysis
2.2.4. Mineralized Nodules Formation
2.2.5. Bone Metabolism Gene Expression Quantification
2.2.6. Collagen Production by Picrosirius Red
2.2.7. Alkaline Phosphatase Activity
2.3. Statistical Analyses
3. Results
3.1. Nanoemulsion Development and Characterization
3.1.1. Droplet Size, Polydispersity Index, and Zeta Potential
3.1.2. Encapsulation Efficiency
3.1.3. In Vitro Release Assay
3.2. In Vitro Analyses in Osteoblasts Saos-2-like
3.2.1. Cytotoxicity
3.2.2. IC50 Value
3.2.3. Cell Proliferation Analysis
3.2.4. Mineralized Nodules Formation
3.2.5. Bone Metabolism Gene Expression Quantification
3.2.6. Collagen Production by Picrosirius Red
3.2.7. Alkaline Phosphatase Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yu, B.; Wang, C.Y. Osteoporosis and periodontal diseases—An update on their association and mechanistic links. Periodontology 2022, 89, 99–113. [Google Scholar] [CrossRef] [PubMed]
- Karaguzel, G.; Holick, M.F. Diagnosis and treatment of osteopenia. Rev. Endocr. Metab. Disord. 2010, 11, 237–251. [Google Scholar] [CrossRef]
- Izzotti, A.; Menini, M.; Pulliero, A.; Dini, G.; Cartiglia, C.; Pera, P.; Baldi, D. Biphosphonates-associated osteonecrosis of the jaw: The role of gene-environment interaction. J. Prev. Med. Hyg. 2013, 54, 138–145. [Google Scholar]
- De Jong, W.H.; Borm, P.J. Drug delivery and nanoparticles: Applications and hazards. Int. J. Nanomed. 2008, 3, 133–149. [Google Scholar] [CrossRef] [PubMed]
- Ramos, M.A.d.S.; dos Santos, K.C.; da Silva, P.B.; de Toledo, L.G.; Marena, G.D.; Rodero, C.F.; de Camargo, B.A.F.; Fortunato, G.C.; Bauab, T.M.; Chorilli, M. Nanotechnological strategies for systemic microbial infections treatment: A review. Int. J. Pharm. 2020, 589, 11978. [Google Scholar] [CrossRef] [PubMed]
- Lotfipour, F.; Abdollahi, S.; Jelvehgari, M.; Valizadeh, H.; Hassan, M.; Milani, M. Study of antimicrobial effects of vancomycin loaded PLGA nanoparticles against enterococcus clinical isolates. Drug Res. 2014, 64, 348–352. [Google Scholar] [CrossRef]
- Bonifácio, B.V.; Silva, P.B.; Ramos, M.A.; Negri, K.M.; Bauab, T.M.; Chorilli, M. Nanotechnology-based drug delivery systems and herbal medicines: A review. Int. J. Nanomed. 2014, 9, 1–15. [Google Scholar] [CrossRef] [PubMed]
- de Souza, A.L.R.; Kiill, C.P.; dos Santos, F.K.; da Luz, G.M.; e Silva, H.R.; Chorilli, M.; Gremiao, M.P.D. Nanotechnology-based drug delivery systems for dermato mycosis treatment. Curr. Nanosci. 2012, 8, 512–519. [Google Scholar] [CrossRef]
- Sato, M.R.; da Silva, P.B.; de Souza, R.A.; dos Santos, K.C.; Chorilli, M. Recent advances in nanoparticle carriers for coordination complexes. Curr. Top. Med. Chem. 2015, 15, 287–297. [Google Scholar] [CrossRef]
- Duarte, J.L.; Oliveira, A.E.M.d.F.M.; Pinto, M.C.; Chorilli, M. Botanical insecticide–based nanosystems for the control of Aedes (Stegomyia) aegypti larvae. Environ. Sci. Pollut. Res. 2020, 27, 28737–28748. [Google Scholar] [CrossRef]
- Pandey, P.; Gulati, N.; Makhija, M.; Purohit, D.; Dureja, H. Nanoemulsion: A novel drug delivery approach for enhancement of bioavailability. Recent Patents Nanotechnol. 2020, 14, 276–293. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.H.; Cheng, L.C.; Doyle, P.S. Nanoemulsion-loaded capsules for controlled delivery of lipophilic active ingredients. Adv. Sci. 2020, 7, 2001677. [Google Scholar] [CrossRef] [PubMed]
- Cassidy, A.; Minihane, A.M. The role of metabolism (and the microbiome) in defining the clinical efficacy of dietary flavonoids. Am. J. Clin. Nutr. 2017, 105, 10–22. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, T.; Ikram, M.; Ullah, R.; Rehman, S.U.; Kim, M.O. Hesperetin, a citrus flavonoid, attenuates LPS-induced neuroinflammation, apoptosis and memory impairments by modulating TLR4/NF-κB signaling. Nutrients 2019, 11, 648. [Google Scholar] [CrossRef] [PubMed]
- Nones, J.; E-Spohr, T.C.; Gomes, F.C. Hesperidin, a flavone glycoside, as mediator of neuronal survival. Neurochem. Res. 2011, 36, 1776–1784. [Google Scholar] [CrossRef]
- Ahmad, S.; Alam, K.; Hossain, M.M.; Fatima, M.; Firdaus, F.; Zafeer, M.F.; Arif, Z.; Ahmed, M.; Nafees, K.A. Anti-arthritogenic and cardioprotective action of hesperidin and daidzein in collagen-induced rheumatoid arthritis. Mol. Cell Biochem. 2016, 423, 115–127. [Google Scholar] [CrossRef] [PubMed]
- Nobakht, M.; Trueman, S.J.; Wallace, H.M.; Brooks, P.R.; Streeter, K.J.; Katouli, M. Antibacterial properties of flavonoids from kino of the eucalypt tree, Corymbia torelliana. Plants 2017, 6, 39. [Google Scholar] [CrossRef]
- Rothwell, J.A.; Knaze, V.; Zamora-Ros, R. Polyphenols: Dietary assessment and role in the prevention of cancers. Curr. Opin. Clin. Nutr. Metab. Care 2017, 20, 512–521. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, A.d.C.; Fideles, S.O.M.; Reis, C.H.B.; Bellini, M.Z.; Pereira, E.d.S.B.M.; Pilon, J.P.G.; de Marchi, M.; Detregiachi, C.R.P.; Flato, U.A.P.; Trazzi, B.F.d.M.; et al. Therapeutic effects of citrus flavonoids neohesperidin, hesperidin and its aglycone, hesperetin on bone health. Biomolecules 2022, 12, 626. [Google Scholar] [CrossRef]
- Trzeciakiewicz, A.; Habauzit, V.; Mercier, S.; Lebecque, P.; Davicco, M.-J.; Coxam, V.; Demigne, C.; Horcajada, M.-N. Hesperetin stimulates differentiation of primary rat osteoblasts involving the BMP signalingng pathway. J. Nutr. Biochem. 2010, 21, 424–431. [Google Scholar] [CrossRef]
- Xue, D.; Chen, E.; Zhang, W.; Gao, X.; Wang, S.; Zheng, Q.; Pan, Z.; Li, H.; Liu, L. The role of hesperetin osteogenesis of human mesenchymal stem cells and its function in bone regeneration. Oncotarget 2017, 8, 21031–21043. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y.; Lee, J.-Y.; Park, Y.-D.; Kang, K.L.; Lee, J.-C.; Heo, J.S. Hesperetin alleviates the inhibitory effects of high glucose on the osteoblastic differentiation of periodontal ligament stem cells. PLoS ONE 2013, 8, e67504. [Google Scholar] [CrossRef] [PubMed]
- Trzeciakiewicz, A.; Habauzit, V.; Mercier, S.; Barron, D.; Urpi-Sarda, M.; Manach, C.; Offord, E.; Horcajada, M.-N. Molecular mechanism of hesperetin-7-O-glucuronide, the main circulating metabolite of hesperidin, involved in osteoblast differentiation. J. Agric. Food Chem. 2009, 58, 668–675. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Zheng, J.; Yang, Y.; Ni, L.; Chen, H.; Yu, D. Hesperetin alleviated glucocorticoid-induced inhibition of osteogenic differentiation of BMSCs through regulating the ERK signaling pathway. Med. Mol. Morphol. 2021, 54, 1–7. [Google Scholar] [CrossRef]
- Wolfram, J.; Scott, B.; Boom, K.; Shen, J.; Borsoi, C.; Suri, K.; Grande, R.; Fresta, M.; Celia, C.; Zhao, Y.; et al. Hesperetin Liposomes for Cancer Therapy. Curr. Drug Deliv. 2016, 13, 711–719. [Google Scholar] [CrossRef] [PubMed]
- Bouchemal, K.; Briançon, S.; Perrier, E.; Fessi, H. Nano-emulsion formulation using spontaneous emulsification: Solvent, oil and surfactant optimization. Int. J. Pharm. 2004, 280, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Bonifácio, B.V.; Carvalho, F.A.; Mota, L.d.O.; da Silva, P.B.; de Souza, L.P.; Vilegas, W.; Chorilli, M.; dos Santos, A.G.; Bauab, T.M. Anti-Candida sp. activity of Astronium urundeuva derivatives free and loaded into a nanostructured lipid system. Chem. Pap. 2024, 78, 973–979. [Google Scholar] [CrossRef]
- Tanomaru-Filho, M.; Andrade, A.S.; Rodrigues, E.M.; Viola, K.S.; Faria, G.; Camilleri, J.; Guerreiro-Tanomaru, J.M. Biocompatibility and mineralized nodule formation of Neo MTA Plus and an experimental tricalcium silicate cement containing tantalum oxide. Int. Endod. J. 2017, 50, 31–39. [Google Scholar] [CrossRef]
- Kara, S.; Gencer, B.; Karaca, T.; Tufan, H.A.; Arikan, S.; Ersan, I.; Karaboga, I.; Hanci, V. Protective effect of hesperetin and naringenin against apoptosis in ischemia/reperfusion-induced retinal injury in rats. Sci. World J. 2014, 2014, 797824. [Google Scholar] [CrossRef]
- Huacho, P.M.M.; Nogueira, M.N.M.; Basso, F.G.; Jafelicci Junior, M.; Francisconi, R.S.; Spolidorio, D.M.P. Analyses of Biofilm on Implant Abutment Surfaces Coating with Diamond-Like Carbon and Biocompatibility. Braz. Dent J. 2017, 28, 317–323. [Google Scholar] [CrossRef]
- Lin, Z.; Zheng, K.; Zhong, J.; Zheng, X. Advances in microneedle-based therapy for bone disorders. Biomed. Pharmacother. 2023, 165, 115013. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.; Khan, N.R.; Subhan, Z.; Mehmood, S.; Amin, A.; Rabbani, I.; -Rehman, F.-U.; Basit, H.M.; Syed, H.K.; Khan, I.U.; et al. Novel curcumin-encapsulated α-tocopherol nanoemulsion system and its potential application for wound healing in diabetic animals. BioMed Res. Int. 2022, 2022, 7669255. [Google Scholar] [CrossRef] [PubMed]
- McClements, D.J. Advances in edible nanoemulsions: Digestion, bioavailability, and potential toxicity. Prog. Lipid Res. 2021, 81, 101081. [Google Scholar] [CrossRef] [PubMed]
- Marwa, A.; Iskandarsyah Jufri, M. Nanoemulsion curcumin injection showed significant anti-inflammatory activities on carrageenan-induced paw edema in Sprague-Dawley rats. Heliyon 2023, 9, e15457. [Google Scholar] [CrossRef]
- Bosly, H.A.E. Evaluation of larvicidal enhanced activity of sandalwood oil via nano-emulsion against Culex pipiens and Ades aegypti. Saudi. J. Biol. Sci. 2022, 29, 103455. [Google Scholar] [CrossRef] [PubMed]
- Algahtani, M.S.; Ahmad, M.Z.; Ahmad, J. Investigation of Factors Influencing Formation of Nanoemulsion by Spontaneous Emulsification: Impact on Droplet Size, Polydispersity Index, and Stability. Bioengineering 2022, 9, 384. [Google Scholar] [CrossRef]
- Kelmann, R.G.; Kuminek, G.; Teixeira, H.F.; Koester, L.S. Carbamazepine parenteral nanoemulsions prepared by spontaneous emulsification process. Int. J. Pharm. 2007, 342, 231–239. [Google Scholar] [CrossRef]
- Hvattum, E.; Yip, W.L.; Grace, D.; Dyrstad, K. Characterization of polysorbate 80 with liquid chromatography mass spectrometry and nuclear magnetic resonance spectroscopy: Specific determination of oxidation products of thermally oxidized polysorbate 80. J. Pharm. Biomed. Anal. 2012, 62, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Kozuch, B.; Weber, J.; Buske, J.; Mäder, K.; Garidel, P.; Diederichs, T. Comparative Stability Study of Polysorbate 20 and Polysorbate 80 Related to Oxidative Degradation. Pharmaceutics 2023, 15, 2332. [Google Scholar] [CrossRef]
- Lu, J.; Benjamin, M.M.; Korshin, G.V.; Gallard, H. Reactions of the flavonoid hesperetin with chlorine: A spectroscopic study of the reaction pathways. Environ. Sci. Technol. 2004, 38, 4603–4611. [Google Scholar] [CrossRef]
- Gu, S.-F.; Wang, L.-Y.; Tian, Y.-J.; Zhou, Z.-X.; Tang, J.-B.; Liu, X.-R.; Jiang, H.-P.; Shen, Y.-Q. Enhanced water solubility, antioxidant activity, and oral absorption of hesperetin by D-α-tocopheryl polyethylene glycol 1000 succinate and phosphatidylcholine. J. Zhejiang Univ. Sci. B. 2019, 20, 273–281. [Google Scholar] [CrossRef]
- Clogston, J.D.; Patri, A.K. Zeta potential measurement. Methods Mol. Biol. 2011, 697, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Laxmi, M.; Bhardwaj, A.; Mehta, S.; Mehta, A. Development and characterization of nanoemulsion as carrier for the enhancement of bioavailability of artemether. Artif. Cells Nanomed. Biotechnol. 2015, 43, 334–344. [Google Scholar] [CrossRef]
- Duranoğlu, D.; Uzunoglu, D.; Mansuroglu, B.; Arasoglu, T.; Derman, S. Synthesis of hesperetin-loaded PLGA nanoparticles by two different experimental design methods and biological evaluation of optimized nanoparticles. Nanotechnology 2018, 29, 395603. [Google Scholar] [CrossRef]
- García-Melero, J.; López-Mitjavila, J.J.; García-Celma, M.J.; Rodriguez-Abreu, C.; Grijalvo, S. Rosmarinic acid-loaded polymeric nanoparticles prepared by low-energy nano-emulsion templating: Formulation, biophysical characterization, and in vitro studies. Materials 2022, 15, 4572. [Google Scholar] [CrossRef]
- Miastkowska, M.; Śliwa, P. Influence of Terpene Type on the Release from an O/W Nanoemulsion: Experimental and Theoretical Studies. Molecules 2020, 25, 2747. [Google Scholar] [CrossRef]
- Ling, J.K.U.; Chan, Y.S.; Nandong, J. Insights into the release mechanisms of antioxidants from nanoemulsion droplets. J. Food Sci. Technol. 2022, 59, 1677–1691. [Google Scholar] [CrossRef]
- Narawi, M.M.; Chiu, H.I.; Yong, Y.K.; Zain, N.N.M.; Ramachandran, M.R.; Tham, C.L.C.L.; Samsurrijal, S.F.; Lim, V. Biocompatible Nutmeg Oil-Loaded Nanoemulsion as Phyto-Repellent. Front. Pharmacol. 2020, 11, 214. [Google Scholar] [CrossRef] [PubMed]
- Diedrich, C.; Zittlau, I.C.; Khalil, N.M.; Leontowich, A.F.G.; de Freitas, R.A.; Badea, I.; Mainardes, R.M. Optimized Chitosan-Based Nanoemulsion Improves Luteolin Release. Pharmaceutics 2023, 15, 1592. [Google Scholar] [CrossRef]
- Santamaría, E.; Maestro, A.; González, C. Use of Double Gelled Microspheres to Improve Release Control of Cinnamon-Loaded Nanoemulsions. Molecules 2024, 29, 158. [Google Scholar] [CrossRef]
- Duarte, J.L.; Di Filippo, L.D.; Oliveira, A.E.M.d.F.M.; Sábio, R.M.; Marena, G.D.; Bauab, T.M.; Duque, C.; Corbel, V.; Chorilli, M. Development and characterization of potential larvicidal nanoemulsions against Aedes aegypti. Beilstein J. Nanotechnol. 2024, 15, 104–114. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Eral, H.B.; Hatton, T.A.; Doyle, P.S. Nanoemulsions: Formation, properties and applications. Soft Matter 2016, 12, 2826–2841. [Google Scholar] [CrossRef] [PubMed]
- Rashed, M.M.A.; You, L.; Ghaleb, A.D.S.; Du, Y. Two-phase extraction processes, physicochemical characteristics, and autoxidation inhibition of the essential oil nanoemulsion of Citrus reticulata blanco (tangerine) leaves. Foods 2022, 12, 57. [Google Scholar] [CrossRef]
- Vaz, G.; Clementino, A.; Mitsou, E.; Ferrari, E.; Buttini, F.; Sissa, C.; Xenakis, A.; Sonvico, F.; Dora, C.L. In vitro Evaluation of Curcumin- and Quercetin-Loaded Nanoemulsions for Intranasal Administration: Effect of Surface Charge and Viscosity. Pharmaceutics 2022, 14, 194. [Google Scholar] [CrossRef]
- Bagherpour, I.; Yaghtin, A.; Naghib, S.M.; Molaabasi, F. Synthesis and investigation on microstructural, mechanical features of mesoporous hardystonite/reduced graphene oxide nanocomposite for medical applications. Front. Bioeng. Biotechnol. 2023, 11, 1073435. [Google Scholar] [CrossRef] [PubMed]
- Meng, S.; Zhang, Z.; Rouabhia, M. Accelerated osteoblast mineralization on a conductive substrate by multiple electrical stimulation. J. Bone Miner. Metab. 2011, 29, 535–544. [Google Scholar] [CrossRef] [PubMed]
- Alipour, M.; Sharifi, S.; Samiei, M.; Shahi, S.; Aghazadeh, M.; Dizaj, S.M. Synthesis, characterization, and evaluation of Hesperetin nanocrystals for regenerative dentistry. Sci. Rep. 2023, 13, 2076. [Google Scholar] [CrossRef]
- Bellows, C.G.; Aubin, J.E.; Heersche, J.N. Initiation, and progression of mineralization of bone nodules formed in vitro: The role of alkaline phosphatase and organic phosphate. Bone Miner. 1991, 14, 27–40. [Google Scholar] [CrossRef]
- Kushwaha, A.C.; Mohanbhai, S.J.; Sardoiwala, M.N.; Jaganathan, M.; Karmakar, S.; Choudhury, S.R. Nanoemulsified Genistein and Vitamin D Mediated Epigenetic Regulation to Inhibit Osteoporosis. ACS Biomater. Sci. Eng. 2022, 8, 3810–3818. [Google Scholar] [CrossRef]
- Komori, T. Runx2, an inducer of osteoblast and chondrocyte differentiation. Histochem. Cell Biol. 2018, 149, 313–323. [Google Scholar] [CrossRef]
- Meyer, M.B.; Benkusky, N.A.; Pike, J.W. The RUNX2 cistrome in osteoblasts: Characterization, down-regulation following differentiation, and relationship to gene expression. J. Biol. Chem. 2014, 289, 16016–16031. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zhang, L.; Xuan, K.; Hu, C.; Liu, S.; Liao, L.; Li, B.; Jin, F.; Shi, S.; Jin, Y. Alpl prevents bone ageing sensitivity by specifically regulating senescence and differentiation in mesenchymal stem cells. Bone Res. 2018, 6, 27. [Google Scholar] [CrossRef] [PubMed]
- Yao, H.; Zou, Y.; Yang, K.; Yin, L.; Liu, Y.; Li, R. TGFβ1 induces bone formation from BMP9-activated Bone Mesenchymal Stem Cells, with possible involvement of non-canonical pathways. Int. J. Med. Sci. 2020, 17, 1692–1703. [Google Scholar] [CrossRef]
- Geiser, A.G.; Hummel, C.W.; Draper, M.W.; Henck, J.W.; Cohen, I.R.; Rudmann, D.G.; Donnelly, K.B.; Adrian, M.D.; Shepherd, T.A.; Wallace, O.B.; et al. A new selective estrogen receptor modulator with potent uterine antagonist activity, agonist activity in bone, and minimal ovarian stimulation. Endocrinology 2005, 146, 4524–4535. [Google Scholar] [CrossRef] [PubMed]
- Ambroszkiewicz, J.; Gajewska, J.; Mazur, J.; Kuśmierska, K.; Klemarczyk, W.; Rowicka, G.; Strucińska, M.; Chełchowska, M. Dietary Intake and Circulating Amino Acid Concentrations in Relation with Bone Metabolism Markers in Children Following Vegetarian and Omnivorous Diets. Nutrients 2023, 15, 1376. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Wang, J.; Yang, F.; Shao, Y.; Zhang, X.; Dai, K. Modification and evaluation of micro-nano structured porous bacterial cellulose scaffold for bone tissue engineering. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 75, 1034–1041. [Google Scholar] [CrossRef]
Time (Days) | Droplet Size (nm) | Polydispersity Index | Zeta Potential (mV) | |
---|---|---|---|---|
1 | 88.79 ± 0.09 | 0.276 ± 0.003 | −13.27 ± 2.7 | |
7 | 88.26 ± 0.75 | 0.273 ± 0.006 | −17.37 ± 1.7 | |
HT-NE | 21 | 89.01 ± 1.15 | 0.266 ± 0.003 | −14.97 ± 0.6 |
90 | 82.11 ± 3.89 | 0.584 ± 0.035 | −4.75 ± 0.1 | |
Blank NE | 1 | 97.86 ± 0.50 | 0.278 ± 0.003 | −26.9 ± 2.4 |
NE | |||
---|---|---|---|
Model | k | R2 | n |
Zeroth order | 0.0205 | 0.8827 | |
First order | 0.2142 | 0.9545 | |
Higuchi | 28.88 | 0.9438 | |
Hixson–Crowel | 0.0585 | 0.9699 | |
Korsmeyer–Peppas | 18.21 | 0.9912 | 0.7485 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mancim-Imbriani, M.J.; Duarte, J.L.; Di Filippo, L.D.; Durão, L.P.L.; Chorilli, M.; Palomari Spolidorio, D.M.; Maquera-Huacho, P.M. Formulation of a Novel Hesperetin-Loaded Nanoemulsion and Its Promising Effect on Osteogenesis. Pharmaceutics 2024, 16, 698. https://doi.org/10.3390/pharmaceutics16060698
Mancim-Imbriani MJ, Duarte JL, Di Filippo LD, Durão LPL, Chorilli M, Palomari Spolidorio DM, Maquera-Huacho PM. Formulation of a Novel Hesperetin-Loaded Nanoemulsion and Its Promising Effect on Osteogenesis. Pharmaceutics. 2024; 16(6):698. https://doi.org/10.3390/pharmaceutics16060698
Chicago/Turabian StyleMancim-Imbriani, Maria Júlia, Jonatas Lobato Duarte, Leonardo Delello Di Filippo, Letícia Pereira Lima Durão, Marlus Chorilli, Denise Madalena Palomari Spolidorio, and Patricia Milagros Maquera-Huacho. 2024. "Formulation of a Novel Hesperetin-Loaded Nanoemulsion and Its Promising Effect on Osteogenesis" Pharmaceutics 16, no. 6: 698. https://doi.org/10.3390/pharmaceutics16060698
APA StyleMancim-Imbriani, M. J., Duarte, J. L., Di Filippo, L. D., Durão, L. P. L., Chorilli, M., Palomari Spolidorio, D. M., & Maquera-Huacho, P. M. (2024). Formulation of a Novel Hesperetin-Loaded Nanoemulsion and Its Promising Effect on Osteogenesis. Pharmaceutics, 16(6), 698. https://doi.org/10.3390/pharmaceutics16060698