Complex Emulsions as an Innovative Pharmaceutical Dosage form in Addressing the Issues of Multi-Drug Therapy and Polypharmacy Challenges
Abstract
:1. Introduction
2. The Rise of Droplet Microfluidic Technologies in Drug Delivery
2.1. Principles and Advantages of Droplet Microfluidic Systems
- (a)
- Precision and Control:
- (b)
- Versatility:
2.2. Co-Encapsulation in Double Emulsions
Method | Inner Fluid (IF) | Middle Fluid (MF) | Outer Fluid (OF) | Advantages | Reference |
---|---|---|---|---|---|
Membrane emulsification | A total of 10 mg Epirubicin, 5.8% (w/v) glucose solution | A total of 500 mg tetra-glycerine-condensated ricinoleate in iodized poppy seed oil | A total of 5 mL of normal saline and 50 mg of poloxamer-188. | Uniform size with large volume production capabilities | [49] |
10BSH in 5% glucose solution | Iodized poppy seed oil with polyoxyl-40 castor oil (HCO40) | Saline solution with surfactant | No side effects with facile preparation methodology | [50] | |
Vitamin B12 in 0.1 M NaCl | Trans-Resveratrol in 20% ethanol | Miglyol 812 with 5% PGPR and 0.5% CMC in 0.1 M NaCl | High stability and feasible preparation | [44] | |
Agitation | Vitamin C with NaCl and gelatine in deionized water | Xanthoxylin (GX-50) in propylene glycol with 5% PGPR containing Olive oil | GA-NaCMC (6:1) in deionized water | Complex coacervation based synthesis of microcapsules | [40] |
Amounts of 0.584 g NaCl, 0.04 g sodium azide, 0.441 g sodium caseinate, and 44.1 mg Hydroxytyrosol dissolved in 100 mL distilled water | Amounts of 94% perilla oil with 6% PGPR | Amounts of 0.584 g NaCl, 0.04 g sodium azide, and 0.5 g sodium caseinate in 100 mL distilled water | Gelation-based stabilization of emulsions | [51] | |
A total of 20%, w/w Insulin in 0.1 mol/L HCl pH 7 | 1 mg/mL Quercetin with 5% PGPR in soybean oil | A total of 2% (w/v) Tween 80 or lectin or pectin | Increased stability and sustained release | [43] | |
Amounts of 80 mg Epigallocatechin-3-Gallate in 2% (w/v) saccharose and different levels of gelatine (0%, 1%, 3%, 5%, and 10% w/v) dispersed in distilled water adjusted to pH 5.5. | A total of 40 mg/mL Quercetin ethanol solution with 5% PGPR in corn oil | A total of 1.5% (w/v) of gliadin nanoparticles in distilled water adjusted to pH 5.5 | Controlled release and increased bioaccessibility | [42] | |
A total of 500 μg/mL of arbutin, 3% of gelatine (w/v) and 3% of NaCl (w/v) | A total of 500 μg/mL of coumaric acid and 8% of PGPR (v/v) in olive oil | Whey protein concentrate (WPC) alone, WPC–gum Arabic (GA) or WPC–high methoxyl pectin (PEC) complex | Protein–polysaccharide complex stabilization and Sustained release properties | [45] | |
A total of 0.5 mg mL−1 Vitamin B2 | Amount of 20% (w/w) Vitamin E with 8% PGPR in soybean oil | WPC isolate or WPC–pectin or WPC–k-carrageenan | Controlled release with pH resistance | [52] | |
Amounts of 10.0 wt.% Collagen peptide, 0.6 wt.% Flaxseed gum (FG)in 100 mM NaCl solution. | Amounts of 0.1 wt.% Astaxanthin, rice barn wax (RBX) (0–7.0 wt.%), and 2.0 wt.% PGPR in soybean oil | FG/WPI complexes (1.0 wt.%) in 100 mM NaCl | Increased bioavailability and chemical stability | [53] | |
Microfluidics | Glucagon-like peptide-1 20 mg of PLGA + CS-CPP or 200 μg of PSi + CS-CPP | A total of 0.5 mg dipeptidyl peptidase 4 of DPP4 inhibitor was added into 1 mL of 4% of HPMC-AS dissolved in ethyl acetate | A total of 2% Pluronic F127 in sucrose solution (100 mOsm L−1) | Controlled release with improved bioavailability and retention | [24] |
A total of 2 mg/mL Doxorubicin Hydrochloride | A total of 67 μg/mL Paclitaxel in molten lipid (Witepsol H15, Sasol) | A total of 10 wt.% PVA | Solvent-free encapsulation with biodegradable carrier | [54] | |
Nile Red in Hexadecane | DAPI with monomer N-isopropylacrylamide (NIPAm, 10 wt.%), the crosslinker N,N′-methylenebisacrylamide (BIS, 0.2 wt.%), the surfactant Brij 35 (5 wt.%), and the photoinitiator 2,2′-azobis (2-methylpropionamidine) dihydrochloride (0.08 wt.%) | A total of 4 wt.% Span 83 in soybean oil | Stimulus-responsive delivery of multiple drugs | [38] | |
Catechin (1 mg/mL) was dissolved in water pH 3 | Nile Red PDMS60-b-PDMAEMA50 copolymer (5 mg/mL) was dissolved in 3 mL of oil (miglyol®812, or isopropyl myristate) | Sucrose (1 mg/mL) were dissolved in water | Low pH drug encapsulation | [55] | |
A total of 3 mg Indocyanine Green (ICG) and 2% (w/v) synthesized DOX–ADA solution | 10% (w/v) PLGA solution in dichloromethane | A total of 10% (w/v) PVA in ultrapure water | Chemo- and photothermal response with sustained drug release | [56] | |
Silver nanoparticles 0.5% sodium alginate and 10% (w/v) PVA | Oil Red O with DCM with 20% (w/v) PLGA (50:50) | A total of 10% (w/v) PVA and 4% calcium chloride (CaCl2) | Core-shell-structured microparticles | [57] | |
A mixture of soybean oil and benzyl benzoate (1:1, v/v) containing free curcumin/ (3 mg/mL), Rhodamine B-loaded PLGA nanoparticles (3 mg/mL), terephthalaldehyde (2.4 wt.%), and PGPR (8.0%, w/v) | Chitosan (2.0%, w/v), F127 (1.5%, w/v), and HEC (2.0%, w/v) | Soybean oil containing PGPR (8.0%, w/v) | Sequential drug release with burst release and sustained release profiles | [58] | |
Doxorubicin (1 mg mL−1) and 10% sucrose | Oregon-Green-dye-labelled paclitaxel (green, 40 µg mL−1) in the soybean oil layer | A total of 10% PEGDA, 2% PVA, and photoinitiator/2% Span80 in mineral oil | Multi-stimuli such as chemical dissolution, mechanical stress, and osmotic pressure | [59] | |
Curcumin-loaded PLGA nanoparticles (20 mg mL−1) or dexamethasone-loaded PLGA nanoparticles (20 mg mL−1) with 2 wt.% PEG aqueous solution | Ethyl acetate and dichloromethane (4 : 1, v/v) containing curcumin (300 μg mL−1), dexamethasone (300 μg mL−1), and enteric HPMCAS-HF (100 mg mL−1) | A total of 2 wt.% PVA aqueous solution | Sequential burst–sustained drug release | [32] | |
FITC-Dextran pH 7.4 | PLGA dissolved in chloroform or dichloromethane with the addition of Nile Red (100 µg mL−1) | A total of 2 wt.% PVA aqueous solution | Mechanical-stress-induced dual drug release | [60] | |
A total of 15% (w/v) photo-crosslinkable GelMa, including the drug DOX hydrochloride (500 μg mL−1) | A total of 10% (w/v) PLGA and Camptothecine (500 μg mL−1) dissolved in DCM | A total of 2 wt.% PVA aqueous solution | Sustained drug release with improved cell viability | [61] |
3. Compartmentalized Complex Emulsions for Multi-Drug Delivery
3.1. Concept and Significance
Type of Emulsions | Formulation | Compartment One | Compartment Two | Reference |
---|---|---|---|---|
Nested emulsions | OF—47.5 wt.% glycerol and 5 wt.% PVA MF—molten fatty acid glycerides IF—50 wt.% glycerol | Wright stain | Rhodamine B | [73] |
OF—2 wt.% F108 and 10 wt.% PVA (2:1, v/v) MF—ETPTA with HMPP solution (1 v%) IF—2 wt.% F-108 | Cell 1 | Cell 2 | [64,74] | |
OF—PVA solution MF—chloroform and hexanes (36:64 v/v) with 10 mg mL−1 PEG(5000)-b-PLA(5000) IF—PEG solution | FITX-Dextran | PEG | [75] | |
OF—10 wt.% PVA, (Mw 13,000–23,000) MF—chloroform and hexane (38:62, v/v %) with 5 mg/mL PEG-b-PLA IF—10 wt.% PEG (Mw 6000) | Polymersomes | Polymersomes | [63] | |
OF—5% (w/v) PGPR90, soybean oil MF—1% (w/v) Pluronic F127, 5% (w/v) glycerol, 1.3% (w/v) NIPAM monomer, 0.77% (w/v) MBA crosslinker, and 0.6% (w/v) APS initiator. IF—5% (w/v) PGPR90, soybean oil | Sudan III | Unlabelled | [76] | |
OF—0.5 wt.% F108 MF—Styrene—Octanol (95-5, v/v%) IF—0.5 wt.% F108 | Gold nanoparticles | Gold nanoparticles | [25] | |
OF—2% (w/v) PVA MF—10% (w/v) PLGA dissolved in DCM IF—15% (w/v) photo-crosslinkable GelMa | Doxorubicin | Camptothecine | [61] | |
Layered emulsions | OF 1—2 wt.% PEG, 8 wt.% PVA and 0.5 wt.% Pluronic® F-68/OF 2—10 wt.% PVA with 1.0 wt.% F-68 MF—chloroform and hexane (36:64, v/v) containing 5 mg mL−1 egg PC IF—8 wt.% PEG and 2 wt.% PVA | Cell-free expression system | Cell-free expression system | [71] |
OF1 and OF2—A 10 w/w% PVA (Mw 13,000–23,000 g mol−1) MF—ETPTA with 0.2 w/w% HMPP and chloroform solutions containing either for MF 1—12 w/w% PLA (Mw 15,000 g mol−1) or for MF 2—17 w/w% PCL (Mn 45,000 g mol−1) IF1 and IF2—A 10 w/w% PVA (Mw 13,000–23,000 g mol−1) | 8-hydroxyl-1,3,6-pyrenetrisulfonic acid, trisodium salt | Sulforhodamine B | [63,67] | |
O1/W2/O3/W4/O5 quadruple emulsions W2 and W4 are deionized water with surfactant 0.5% (w/v) Pluronic F-127 and 10% (w/v) glycerine O1 and O3 are the mixture of soybean oil (SO) and benzyl benzoate (BB) with VSO:VBB = 46:54, containing 2% (w/v) and 4% (w/v) PGPR, respectively; O5 and collection solution are SO containing 5% (w/v) PGPR | LR3000 | Sudan Black | [68] | |
O1/W1/O2/W2 triple emulsion O1—α-pinene in innermost oil phase W1—an aqueous solution of 2% PVA for the ultrathin water layer, O2—ETPTA as the second oil phase, and W2—aqueous solution of 10% PVA as the continuous phase | Fluorescein | Nile Red and α-pinene | [77] |
3.2. Mechanisms of Drug Encapsulation and Release
Emulsion-Type | Release Profile | Trigger | Active | Reference |
---|---|---|---|---|
W/W/W | Sustained | Diffusion | Streptavidin and platelet-derived growth factor-BB | [82] |
W/O/W | Burst | Temperature | Doxorubicin and Paclitaxel | [54] |
W/O/W | Burst and sustained | pH | Curcumin and Dexamethasone | [32] |
W/O/W | Sustained | Osmotic pressure and Mechanical | Indocyanine green and Nile Red | [81] |
W/O/W | Sustained | pH (or) Photothermal | Doxorubicin & Indocyanine green | [56] |
W/O/W | Prolonged | Hydrolysis (or) Mechanical | transforming growth factor-β3 | [60] |
W/O/W/O | Burst | Osmotic pressure | Doxorubicin and Paclitaxel | [59] |
W/O/W/O/W | Burst | Hydrolysis (or) Osmotic pressure | 8-hydroxyl-1,3,6-pyrenetrisulfonic acid, trisodium salt & sulforhodamine B | [67] |
W/O/W/O/W | Burst | pH and Temperature | LR3000 and Sudan Black | [68] |
W/O/W | Sustained | Hydrolysis | Doxorubicin and Camptothecine | [61] |
W/O/W | Continuous (or) On and off | Photo responsive | Doxorubicin | [86] |
W/O/W | Burst | Ultrasound | hexametaphosphate | [85] |
O/W/O | Sustained | pH (or) Temperature | Vitamin B12 | [83] |
W/O/W | Continuous (or) On and off | Temperature | FITC-Dextran | [84] |
W/O/W/O/W/O/W | Burst | Degradation | 8-hydroxyl-1,3,6-pyrenetrisulfonic acid, trisodium salt | [63] |
W/O/W | Burst | Temperature | RITC-Dextran | [80] |
Nested W/O/W | Accumulated | Temperature | FITC-Dextran and RITC Dextran | [66] |
Nested W/O/W | Burst | Temperature | Inner core release | [76] |
Nested W/O/W | Burst | Osmotic pressure | Gold nanoparticles | [25] |
O/W/O | Sustained | Glucose | FITC-Insulin (or) Rhodamine B | [89] |
4. Challenges and Possibilities in Designing Complex, Emulsions-Based Formulations
- (a)
- Leakage of Drugs:
- (b)
- Enhanced Stability
- (c)
- Formulation
- (d)
- Scalability
5. Future Directions and Conclusions
5.1. Role of Complex Emulsions in Simplifying Regimens
5.2. Major Hurdles
Funding
Conflicts of Interest
Abbreviations
APS | Ammonium persulfate |
DCM | dichloromethane |
eggPC | l-α-phosphatidylcholine |
ETPTA | Ethoxylated trimethylolpropane triacrylate |
GelMa | Gelatin methacryloyl |
HMPP | 2-hydroxy-2-methylpropiophenone |
HEC | hydroxyethyl cellulose |
HPMC-AS | hydroxypropyl methylcellulose acetate succinate |
MBA | N,N′-methylenebisacrylamide |
NIPAM | N-isopropylacrylamide |
PEGDA | poly(ethylene glycol) diacrylate |
PVA | poly (vinyl alcohol) |
PEG | poly (ethylene glycol) |
PLA | poly (lactic acid) |
PCL | poly (caprolactone) |
PLGA | poly (lactic-co-glycolic acid) |
PGPR90 | polyglycerol polyri-cinoleate |
PEG(5000)-b-PLA(5000) | poly-(ethylene glycol)-b-poly(lactic acid) |
References
- Van Wilder, L.; Devleesschauwer, B.; Clays, E.; Pype, P.; Vandepitte, S.; De Smedt, D. Polypharmacy and Health-Related Quality of Life/Psychological Distress among Patients with Chronic Disease. Prev. Chronic Dis. 2022, 19, E50. [Google Scholar] [CrossRef] [PubMed]
- Masnoon, N.; Shakib, S.; Kalisch-Ellett, L.; Caughey, G.E. What Is Polypharmacy? A Systematic Review of Definitions. BMC Geriatr. 2017, 17, 230. [Google Scholar] [CrossRef] [PubMed]
- Sinha, A.; Mukherjee, S.; Tripathi, S.; Dutta, S. Issues and Challenges of Polypharmacy in the Elderly: A Review of Contemporary Indian Literature. J. Fam. Med. Prim. Care 2021, 10, 3544–3547. [Google Scholar] [CrossRef] [PubMed]
- Farrell, B.; French Merkley, V.; Ingar, N. Reducing Pill Burden and Helping with Medication Awareness to Improve Adherence. Can. Pharm. J. CPJ 2013, 146, 262. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhang, M.-J.; Chu, L.-Y. Microfluidic Approach for Encapsulation via Double Emulsions. Curr. Opin. Pharmacol. 2014, 18, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Trinh, T.N.D.; Do, H.D.K.; Nam, N.N.; Dan, T.T.; Trinh, K.T.L.; Lee, N.Y. Droplet-Based Microfluidics: Applications in Pharmaceuticals. Pharmaceuticals 2023, 16, 937. [Google Scholar] [CrossRef] [PubMed]
- Shao, C.; Chi, J.; Shang, L.; Fan, Q.; Ye, F. Droplet Microfluidics-Based Biomedical Microcarriers. Acta Biomater. 2022, 138, 21–33. [Google Scholar] [CrossRef] [PubMed]
- Anna, S.L. Droplets and Bubbles in Microfluidic Devices. Annu. Rev. Fluid Mech. 2016, 48, 285–309. [Google Scholar] [CrossRef]
- Dluska, E.; Markowska-Radomska, A.; Metera, A.; Tudek, B.; Kosicki, K. Multiple Emulsions as Effective Platforms for Controlled Anti-Cancer Drug Delivery. Nanomedicine 2017, 12, 2183–2197. [Google Scholar] [CrossRef]
- Zhao, C.-X. Multiphase Flow Microfluidics for the Production of Single or Multiple Emulsions for Drug Delivery. Adv. Drug Deliv. Rev. 2013, 65, 1420–1446. [Google Scholar] [CrossRef]
- Martins, J.P.; Santos, H.A. Microfluidics as a Tool for the Synthesis of Advanced Drug Delivery Systems; Springer: Cham, Switzerland, 2023; pp. 321–364. [Google Scholar]
- Ren, L.; Liu, S.; Zhong, J.; Zhang, L. Revolutionizing Targeting Precision: Microfluidics-Enabled Smart Microcapsules for Tailored Delivery and Controlled Release. Lab. Chip. 2024, 24, 1367–1393. [Google Scholar] [CrossRef] [PubMed]
- Baroud, C.N.; Willaime, H. Multiphase Flows in Microfluidics. C. R. Phys. 2004, 5, 547–555. [Google Scholar] [CrossRef]
- Vladisavljević, G.T. Recent Advances in the Production of Controllable Multiple Emulsions Using Microfabricated Devices. Particuology 2016, 24, 1–17. [Google Scholar] [CrossRef]
- Vladisavljević, G.T.; Al Nuumani, R.; Nabavi, S.A. Microfluidic Production of Multiple Emulsions. Micromachines 2017, 8, 75. [Google Scholar] [CrossRef]
- Wang, W.; Li, B.Y.; Zhang, M.J.; Su, Y.Y.; Pan, D.W.; Liu, Z.; Ju, X.J.; Xie, R.; Faraj, Y.; Chu, L.Y. Microfluidic Emulsification Techniques for Controllable Emulsion Production and Functional Microparticle Synthesis. Chem. Eng. J. 2023, 452, 139277. [Google Scholar] [CrossRef]
- Kim, J.W.; Han, S.H.; Choi, Y.H.; Hamonangan, W.M.; Oh, Y.; Kim, S.H. Recent Advances in the Microfluidic Production of Functional Microcapsules by Multiple-Emulsion Templating. Lab Chip 2022, 22, 2259–2291. [Google Scholar] [CrossRef] [PubMed]
- Hu, P.C.; Li, S.; Malmstadt, N. Microfluidic Fabrication of Asymmetric Giant Lipid Vesicles. ACS Appl. Mater. Interfaces 2011, 3, 1434–1440. [Google Scholar] [CrossRef] [PubMed]
- Ito, M.; Uehara, M.; Wakui, R.; Shiota, M.; Kuroiwa, T. Preparation Characteristics of Water-in-Oil Emulsion Using Olive Oil as a Continuous Phase in Microchannel Emulsification. Jpn. J. Food Eng. 2017, 18, 103–111. [Google Scholar] [CrossRef]
- Yandrapalli, N.; Robinson, T.; Antonietti, M.; Kumru, B. Graphitic Carbon Nitride Stabilizers Meet Microfluidics: From Stable Emulsions to Photoinduced Synthesis of Hollow Polymer Spheres. Small 2020, 16, 2001180. [Google Scholar] [CrossRef]
- Shin, S.J.; Hong, J.S.; Lee, K.H.; Lee, S.H. Oil-Free Generation of Small Polymeric Particles Using a Coaxial Microfluidic Channel. Langmuir 2009, 25, 12361–12366. [Google Scholar] [CrossRef]
- Yandrapalli, N.; Petit, J.; Bäumchen, O.; Robinson, T. Surfactant-Free Production of Biomimetic Giant Unilamellar Vesicles Using PDMS-Based Microfluidics. Commun. Chem. 2021, 4, 100. [Google Scholar] [CrossRef] [PubMed]
- Ho, C.S.; Kim, J.W.; Weitz, D.A. Microfluidic Fabrication of Monodisperse Biocompatible and Biodegradable Polymersomes with Controlled Permeability. J. Am. Chem. Soc. 2008, 130, 9543–9549. [Google Scholar] [CrossRef]
- Araújo, F.; Shrestha, N.; Shahbazi, M.A.; Liu, D.; Herranz-Blanco, B.; Mäkilä, E.M.; Salonen, J.J.; Hirvonen, J.T.; Granja, P.L.; Sarmento, B.; et al. Microfluidic Assembly of a Multifunctional Tailorable Composite System Designed for Site Specific Combined Oral Delivery of Peptide Drugs. ACS Nano 2015, 9, 8291–8302. [Google Scholar] [CrossRef] [PubMed]
- Yandrapalli, N.; Antonietti, M. Dewetting-Assisted Interface Templating: Complex Emulsions to Multicavity Particles. Adv. Sci. 2022, 9, 2203265. [Google Scholar] [CrossRef] [PubMed]
- Vladisavljević, G.T.; Williams, R.A. Recent Developments in Manufacturing Emulsions and Particulate Products Using Membranes. Adv. Colloid. Interface Sci. 2005, 113, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Mugabi, J.; Jeong, J.H. Review of the Technological Advances for the Preparation of Colloidal Dispersions at High Production Throughput Using Microporous Membrane Systems. Colloid Polym. Sci. 2023, 1, 463–485. [Google Scholar] [CrossRef]
- Van Der Graaf, S.; Schroën, C.G.P.H.; Boom, R.M. Preparation of Double Emulsions by Membrane Emulsification—A Review. J. Memb. Sci. 2005, 251, 7–15. [Google Scholar] [CrossRef]
- De La Vega, J.C.; Elischer, P.; Schneider, T.; Häfeli, U.O. Uniform Polymer Microspheres: Monodispersity Criteria, Methods of Formation and Applications. Nanomedicine 2013, 8, 265–285. [Google Scholar] [CrossRef] [PubMed]
- Moga, A.; Yandrapalli, N.; Dimova, R.; Robinson, T. Optimization of the Inverted Emulsion Method for High-Yield Production of Biomimetic Giant Unilamellar Vesicles. ChemBioChem 2019, 20, 2674–2682. [Google Scholar] [CrossRef]
- Kubatta, E.A.; Rehage, H. Characterization of Giant Vesicles Formed by Phase Transfer Processes. Colloid. Polym. Sci. 2009, 287, 1117–1122. [Google Scholar] [CrossRef]
- Jiang, J.; Xiao, J.; Zhao, Z.; Yuan, M.S.; Wang, J. One-Step Prepared Nano-in-Micro Microcapsule Delivery Vehicle with Sequential Burst–Sustained Drug Release for the Targeted Treatment of Inflammatory Bowel Disease. Mater. Chem. Front. 2021, 5, 6027–6040. [Google Scholar] [CrossRef]
- Zhang, K.; Ren, Y.; Jiang, T.; Jiang, H. Thermal Field-Actuated Multifunctional Double-Emulsion Droplet Carriers: On-Demand Migration, Core Release and Released Particle Focusing. Chem. Eng. J. 2022, 431, 134200. [Google Scholar] [CrossRef]
- Lee, M.H.; Hribar, K.C.; Brugarolas, T.; Kamat, N.P.; Burdick, J.A.; Lee, D. Harnessing Interfacial Phenomena to Program the Release Properties of Hollow Microcapsules. Adv. Funct. Mater. 2012, 22, 131–138. [Google Scholar] [CrossRef]
- Gonzales, D.T.; Yandrapalli, N.; Robinson, T.; Zechner, C.; Tang, T.Y.D. Cell-Free Gene Expression Dynamics in Synthetic Cell Populations. ACS Synth. Biol. 2022, 11, 205–215. [Google Scholar] [CrossRef]
- Shetty, S.C.; Yandrapalli, N.; Pinkwart, K.; Krafft, D.; Vidakovic-Koch, T.; Ivanov, I.; Robinson, T. Directed Signaling Cascades in Monodisperse Artificial Eukaryotic Cells. ACS Nano. 2021, 15, 15656–15666. [Google Scholar] [CrossRef]
- Zhang, W.; Abbaspourrad, A.; Chen, D.; Campbell, E.; Zhao, H.; Li, Y.; Li, Q.; Weitz, D.A.; Zhang, W.; Chen, D.; et al. Osmotic Pressure Triggered Rapid Release of Encapsulated Enzymes with Enhanced Activity. Adv. Funct. Mater. 2017, 27, 1700975. [Google Scholar] [CrossRef]
- Jagadeesan, D.; Nasimova, I.; Gourevich, I.; Starodubtsev, S.; Kumacheva, E. Microgels for the Encapsulation and Stimulus-Responsive Release of Molecules with Distinct Polarities. Macromol. Biosci. 2011, 11, 889–896. [Google Scholar] [CrossRef] [PubMed]
- Shang, L.; Cheng, Y.; Zhao, Y. Emerging Droplet Microfluidics. Chem. Rev. 2017, 117, 7964–8040. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Ma, C.; Yan, H.; Wang, P.; Yu, S.; Zhang, T.; Yin, Z. Preparation and Characterization of GX-50 and Vitamin C Co-Encapsulated Microcapsules by a Water-in-Oil-in-Water (W1/O/W2) Double Emulsion-Complex Coacervation Method. Langmuir 2023, 39, 13863–13875. [Google Scholar] [CrossRef]
- Aditya, N.P.; Aditya, S.; Yang, H.J.; Kim, H.W.; Park, S.O.; Lee, J.; Ko, S. Curcumin and Catechin Co-Loaded Water-in-Oil-in-Water Emulsion and Its Beverage Application. J. Funct. Foods 2015, 15, 35–43. [Google Scholar] [CrossRef]
- Chen, X.; McClements, D.J.; Wang, J.; Zou, L.; Deng, S.; Liu, W.; Yan, C.; Zhu, Y.; Cheng, C.; Liu, C. Coencapsulation of (-)-Epigallocatechin-3-Gallate and Quercetin in Particle-Stabilized W/O/W Emulsion Gels: Controlled Release and Bioaccessibility. J. Agric. Food Chem. 2018, 66, 3691–3699. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Lu, K.; Zhou, S.; Qi, B.; Li, Y. Co-Delivery of Insulin and Quercetin in W/O/W Double Emulsions Stabilized by Different Hydrophilic Emulsifiers. Food Chem. 2022, 369, 130918. [Google Scholar] [CrossRef] [PubMed]
- Matos, M.; Gutiérrez, G.; Iglesias, O.; Coca, J.; Pazos, C. Enhancing Encapsulation Efficiency of Food-Grade Double Emulsions Containing Resveratrol or Vitamin B12 by Membrane Emulsification. J. Food Eng. 2015, 166, 212–220. [Google Scholar] [CrossRef]
- Huang, H.; Belwal, T.; Aalim, H.; Li, L.; Lin, X.; Liu, S.; Ma, C.; Li, Q.; Zou, Y.; Luo, Z. Protein-Polysaccharide Complex Coated W/O/W Emulsion as Secondary Microcapsule for Hydrophilic Arbutin and Hydrophobic Coumaric Acid. Food Chem. 2019, 300, 125171. [Google Scholar] [CrossRef]
- Heidari, F.; Jafari, S.M.; Ziaiifar, A.M.; Malekjani, N. Stability and Release Mechanisms of Double Emulsions Loaded with Bioactive Compounds; a Critical Review. Adv. Colloid Interface Sci. 2022, 299, 102567. [Google Scholar] [CrossRef]
- Estabrook, D.A.; Day, R.A.; Sletten, E.M. Redox-Responsive Gene Delivery from Perfluorocarbon Nanoemulsions through Cleavable Poly(2-Oxazoline) Surfactants. Angew. Chem. Int. Ed. 2021, 60, 17362–17367. [Google Scholar] [CrossRef] [PubMed]
- Seleci, D.A.; Maurer, V.; Stahl, F.; Scheper, T.; Garnweitner, G. Rapid Microfluidic Preparation of Niosomes for Targeted Drug Delivery. Int. J. Mol. Sci. 2019, 20, 4696. [Google Scholar] [CrossRef] [PubMed]
- Higashi, S.; Shimizu, M.; Nakashima, T.; Iwata, K.; Uchiyama, F.; Tateno, S.; Tamura, S.; Setoguchi, T. Arterial-injection Chemotherapy for Hepatocellular Carcinoma Using Monodispersed Poppy-seed Oil Microdroplets Containing Fine Aqueous Vesicles of Epirubicin. Initial Medical Application of a Membrane-emulsification Technique. Cancer 1995, 75, 1245–1254. [Google Scholar] [CrossRef]
- Yanagie, H.; Yanagawa, M.; Higuchi, T.; Mizumachi, R.; Fujihara, M.; Morishita, Y.; Sakurai, Y.; Mouri, K.; Dewi, N.; Nonaka, Y.; et al. Single-Dose Toxicity Study by Intra-Arterial Injection of 10BSH Entrapped Water-in-Oil-in-Water Emulsion for Boron Neutron Capture Therapy to Hepatocellular Carcinoma. Appl. Radiat. Isot. 2020, 163, 109202. [Google Scholar] [CrossRef]
- Flaiz, L.; Freire, M.; Cofrades, S.; Mateos, R.; Weiss, J.; Jiménez-Colmenero, F.; Bou, R. Comparison of Simple, Double and Gelled Double Emulsions as Hydroxytyrosol and n-3 Fatty Acid Delivery Systems. Food Chem. 2016, 213, 49–57. [Google Scholar] [CrossRef]
- Li, B.; Jiang, Y.; Liu, F.; Chai, Z.; Li, Y.; Li, Y.; Leng, X. Synergistic Effects of Whey Protein–Polysaccharide Complexes on the Controlled Release of Lipid-Soluble and Water-Soluble Vitamins in W1/O/W2 Double Emulsion Systems. Int. J. Food Sci. Technol. 2012, 47, 248–254. [Google Scholar] [CrossRef]
- Wei, W.; Chen, F.; Qiu, Y.; Zhang, L.; Gao, J.; Wu, T.; Wang, P.; Zhang, M.; Zhu, Q. Co-Encapsulation of Collagen Peptide and Astaxanthin in WG/OG/W Double Emulsions-Filled Alginate Hydrogel Beads: Fabrication, Characterization and Digestion Behaviors. J. Colloid Interface Sci. 2023, 651, 159–171. [Google Scholar] [CrossRef]
- Windbergs, M.; Zhao, Y.; Heyman, J.; Weitz, D.A. Biodegradable Core-Shell Carriers for Simultaneous Encapsulation of Synergistic Actives. J. Am. Chem. Soc. 2013, 135, 7933–7937. [Google Scholar] [CrossRef]
- Bodin-Thomazo, N.; Malloggi, F.; Pantoustier, N.; Perrin, P.; Guenoun, P.; Rosilio, V. Formation and Stabilization of Multiple w/o/w Emulsions Encapsulating Catechin, by Mechanical and Microfluidic Methods Using a Single PH-Sensitive Copolymer: Effect of Copolymer/Drug Interaction. Int. J. Pharm. 2022, 622, 121871. [Google Scholar] [CrossRef]
- Huang, L.; Zhou, J.; Chen, Y.; Li, W.; Han, X.; Wang, L. Engineering Microcapsules for Simultaneous Delivery of Combinational Therapeutics. Adv. Mater. Technol. 2020, 5, 2000623. [Google Scholar] [CrossRef]
- Kong, T.; Wu, J.; Yeung, K.W.K.; To, M.K.T.; Shum, H.C.; Wang, L. Microfluidic Fabrication of Polymeric Core-Shell Microspheres for Controlled Release Applications. Biomicrofluidics 2013, 7, 044128. [Google Scholar] [CrossRef]
- Yang, X.L.; Ju, X.J.; Mu, X.T.; Wang, W.; Xie, R.; Liu, Z.; Chu, L.Y. Core-Shell Chitosan Microcapsules for Programmed Sequential Drug Release. ACS Appl. Mater. Interfaces 2016, 8, 10524–10534. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.S.; Kim, E.; Nam, C.; Choi, Y.; Lee, Y.J.; Weitz, D.A.; Lee, H.; Choi, C.H. Hydrogel Microcapsules with a Thin Oil Layer: Smart Triggered Release via Diverse Stimuli. Adv. Funct. Mater. 2021, 31, 2009553. [Google Scholar] [CrossRef]
- Mohanraj, B.; Duan, G.; Peredo, A.; Kim, M.; Tu, F.; Lee, D.; Dodge, G.R.; Mauck, R.L. Mechanically Activated Microcapsules for “On-Demand” Drug Delivery in Dynamically Loaded Musculoskeletal Tissues. Adv. Funct. Mater. 2019, 29, 1807909. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yan, D.; Fu, F.; Liu, Y.; Zhang, B.; Wang, J.; Shang, L.; Gu, Z.; Zhao, Y. Composite Core-Shell Microparticles from Microfluidics for Synergistic Drug Delivery. Sci. China Mater. 2017, 60, 543–553. [Google Scholar] [CrossRef]
- Shader, R.I. Polypharmacy, Pill Burden, and Optimizing the Medicine Cabinet. Clin. Ther. 2019, 41, 2461–2462. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Shum, H.C.; Kim, J.W.; Cho, J.C.; Weitz, D.A. Multiple Polymersomes for Programmed Release of Multiple Components. J. Am. Chem. Soc. 2011, 133, 15165–15171. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Chen, K.; Zhang, H.; Pang, B.; Choi, C.-H.; Mao, A.S.; Liao, H.; Utech, S.; Mooney, D.J.; Wang, H.; et al. Microfluidic Templated Multicompartment Microgels for 3D Encapsulation and Pairing of Single Cells. Small 2018, 14, 1702955. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Wu, Q.; Han, S.; Xu, W.; Zhong, F.; Yuan, S.; Dwivedi, P.; Si, T.; Xu, R.X. Rapid Production of Single- and Multi-Compartment Polymeric Microcapsules in a Facile 3D Microfluidic Process for Magnetic Separation and Synergistic Delivery. Sens. Actuators B. Chem. 2018, 275, 190–198. [Google Scholar] [CrossRef]
- He, F.; Wang, W.; He, X.H.; Yang, X.L.; Li, M.; Xie, R.; Ju, X.J.; Liu, Z.; Chu, L.Y. Controllable Multicompartmental Capsules with Distinct Cores and Shells for Synergistic Release. ACS Appl. Mater. Interfaces 2016, 8, 8743–8754. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Lee, T.Y.; Amstad, E.; Kim, S.H. Microfluidic Production of Capsules-in-Capsules for Programed Release of Multiple Ingredients. Adv. Mater. Technol. 2018, 3, 1800006. [Google Scholar] [CrossRef]
- Mou, C.-L.; Wang, W.; Li, Z.-L.; Ju, X.-J.; Xie, R.; Deng, N.-N.; Wei, J.; Liu, Z.; Chu, L.-Y.; Mou, C.; et al. Trojan-Horse-Like Stimuli-Responsive Microcapsules. Adv. Sci. 2018, 5, 1700960. [Google Scholar] [CrossRef]
- Chu, L.-Y.; Utada, A.S.; Shah, R.K.; Kim, J.-W.; Weitz, D.A. Controllable Monodisperse Multiple Emulsions. Angew. Chem. Int. Ed. 2007, 46, 8970–8974. [Google Scholar] [CrossRef]
- Kim, S.-H.; Weitz, D.A. One-Step Emulsification of Multiple Concentric Shells with Capillary Microfluidic Devices. Angew. Chem. 2011, 123, 8890–8893. [Google Scholar] [CrossRef]
- Deng, N.N.; Yelleswarapu, M.; Zheng, L.; Huck, W.T.S. Microfluidic Assembly of Monodisperse Vesosomes as Artificial Cell Models. J. Am. Chem. Soc. 2017, 139, 587–590. [Google Scholar] [CrossRef]
- Yandrapalli, N.; Kirchhofer, T.; Robinson, T. Giant Lipid Vesicles with Inner Compartments to Mimic Eukaryotic Cells. BpJ 2018, 114, 461a. [Google Scholar] [CrossRef]
- Sun, B.J.; Shum, H.C.; Holtze, C.; Weitz, D.A. Microfluidic Melt Emulsification for Encapsulation and Release of Actives. ACS Appl. Mater. Interfaces 2010, 2, 3411–3416. [Google Scholar] [CrossRef]
- Guo, X.; Zhang, B.; Wei, S.; Pan, Y.; Xu, J.; Wang, J.; Li, T. Droplet Microfluidic-Based Low-Cost and High-Speed Microsphere Array Direct Writing Technology and Its Applications. ACS Appl. Mater. Interfaces 2023, 15, 32047–32056. [Google Scholar] [CrossRef]
- Shum, H.C.; Zhao, Y.J.; Kim, S.H.; Weitz, D.A. Multicompartment Polymersomes from Double Emulsions. Angew. Chem. Int. Ed. 2011, 50, 1648–1651. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Luo, T.; Ju, X.J.; Xie, R.; Liu, L.; Chu, L.Y. Microfluidic Preparation of Multicompartment Microcapsules for Isolated Co-Encapsulation and Controlled Release of Diverse Components. Int. J. Nonlinear Sci. Numer. Simul. 2012, 13, 325–332. [Google Scholar] [CrossRef]
- Choi, C.H.; Lee, H.; Abbaspourrad, A.; Kim, J.H.; Fan, J.; Caggioni, M.; Wesner, C.; Zhu, T.; Weitz, D.A. Triple Emulsion Drops with An Ultrathin Water Layer: High Encapsulation Efficiency and Enhanced Cargo Retention in Microcapsules. Adv. Mater. 2016, 28, 3340–3344. [Google Scholar] [CrossRef] [PubMed]
- Yandrapalli, N.; Kumru, B.; Robinson, T.; Antonietti, M. Rainbows in a Bottle: Realizing Microoptic Effects by Polymerizable Multiple Emulsion Particle Design. arXiv 2023, arXiv:2301.02005. [Google Scholar]
- Duncanson, W.J.; Lin, T.; Abate, A.R.; Seiffert, S.; Shah, R.K.; Weitz, D.A. Microfluidic Synthesis of Advanced Microparticles for Encapsulation and Controlled Release. Lab Chip 2012, 12, 2135–2145. [Google Scholar] [CrossRef]
- Seiffert, S.; Thiele, J.; Abate, A.R.; Weitz, D.A. Smart Microgel Capsules from Macromolecular Precursors. J. Am. Chem. Soc. 2010, 132, 6606–6609. [Google Scholar] [CrossRef]
- Lee, T.Y.; Ku, M.; Kim, B.; Lee, S.; Yang, J.; Kim, S.H. Microfluidic Production of Biodegradable Microcapsules for Sustained Release of Hydrophilic Actives. Small 2017, 13, 1700646. [Google Scholar] [CrossRef]
- Zhang, L.; Cai, L.H.; Lienemann, P.S.; Rossow, T.; Polenz, I.; Vallmajo-Martin, Q.; Ehrbar, M.; Na, H.; Mooney, D.J.; Weitz, D.A. One-Step Microfluidic Fabrication of Polyelectrolyte Microcapsules in Aqueous Conditions for Protein Release. Angew. Chem. Int. Ed. 2016, 55, 13470–13474. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Ju, X.J.; Zou, X.Y.; Xie, R.; Wang, W.; Liu, Y.M.; Chu, L.Y. Multi-Stimuli-Responsive Microcapsules for Adjustable Controlled-Release. Adv. Funct. Mater. 2014, 24, 3312–3323. [Google Scholar] [CrossRef]
- Choi, Y.H.; Hwang, J.-S.; Han, S.H.; Lee, C.-S.; Jeon, S.-J.; Kim, S.-H.; Choi, Y.H.; Han, S.H.; Kim, S.-H.; Hwang, J.-S.S.; et al. Thermo-Responsive Microcapsules with Tunable Molecular Permeability for Controlled Encapsulation and Release. Adv. Funct. Mater. 2021, 31, 2100782. [Google Scholar] [CrossRef]
- Kaang, B.K.; Lee, S.; Piao, J.J.; Cho, H.J.; Kim, D.P. Magnetic Delivery and Ultrasound-Responsive Release of Chelating Microcapsules for Selective Removal of Urolithiasis. Lab. Chip. 2023, 23, 2829–2837. [Google Scholar] [CrossRef] [PubMed]
- Guo, B.; Chen, T.; Hu, X.; Yang, C.; Shi, Z.; Wang, Z.; Wu, X.; Shen, S.; Ding, W.; Huang, F.; et al. Programmable Photoswitchable Microcapsules Enable Precise and Tailored Drug Delivery from Microfluidics. ACS Appl. Mater. Interfaces 2023, 16, 6461. [Google Scholar] [CrossRef]
- Lee, T.Y.; Choi, T.M.; Shim, T.S.; Frijns, R.A.M.; Kim, S.H. Microfluidic Production of Multiple Emulsions and Functional Microcapsules. Lab Chip 2016, 16, 3415–3440. [Google Scholar] [CrossRef] [PubMed]
- Nagelberg, S.; Zarzar, L.D.; Nicolas, N.; Subramanian, K.; Kalow, J.A.; Sresht, V.; Blankschtein, D.; Barbastathis, G.; Kreysing, M.; Swager, T.M.; et al. Reconfigurable and Responsive Droplet-Based Compound Micro-Lenses. Nat. Commun. 2017, 8, 14673. [Google Scholar] [CrossRef]
- Zhang, M.J.; Wang, W.; Xie, R.; Ju, X.J.; Liu, L.; Gu, Y.Y.; Chu, L.Y. Microfluidic Fabrication of Monodisperse Microcapsules for Glucose-Response at Physiological Temperature. Soft Matter. 2013, 9, 4150–4159. [Google Scholar] [CrossRef]
- Chemtob, S. Basic Pharmacologic Principles. In Fetal and Neonatal Physiology, 3rd ed.; WB Saunders: Philadelphia, PN, USA, 2004; Volume 1. [Google Scholar] [CrossRef]
- Wen, L.; Papadopoulos, K.D. Effects of Osmotic Pressure on Water Transport in W1/O/W2 Emulsions. J. Colloid. Interface Sci. 2001, 235, 398–404. [Google Scholar] [CrossRef]
- Tadros, T.F. Emulsion Formation, Stability, and Rheology. Emuls. Form. Stab. 2013, 652, 1–75. [Google Scholar] [CrossRef]
- Lee, S.; Che, B.; Tai, M.; Li, W.; Kim, S.-H.; Lee, S.; Kim, S.-H.; Che, B.; Tai, M.; Li, W. Designing Semipermeable Hydrogel Shells with Controlled Thickness through Internal Osmosis in Triple-Emulsion Droplets. Adv. Funct. Mater. 2021, 31, 2105477. [Google Scholar] [CrossRef]
- Elsayed, M.M.A.; Abdallah, O.Y.; Naggar, V.F.; Khalafallah, N.M. Lipid Vesicles for Skin Delivery of Drugs: Reviewing Three Decades of Research. Int. J. Pharm. 2007, 332, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Sercombe, L.; Veerati, T.; Moheimani, F.; Wu, S.Y.; Sood, A.K.; Hua, S. Advances and Challenges of Liposome Assisted Drug Delivery. Front. Pharmacol. 2015, 6, 163819. [Google Scholar] [CrossRef] [PubMed]
- Antonietti, M.; Förster, S. Vesicles and Liposomes: A Self-Assembly Principle Beyond Lipids. Adv. Mater. 2003, 15, 1323–1333. [Google Scholar] [CrossRef]
- Van Swaay, D.; Demello, A. Microfluidic Methods for Forming Liposomes. Lab Chip 2013, 13, 752–767. [Google Scholar] [CrossRef] [PubMed]
- Deng, N.N.; Yelleswarapu, M.; Huck, W.T.S. Monodisperse Uni- and Multicompartment Liposomes. J. Am. Chem. Soc. 2016, 138, 7584–7591. [Google Scholar] [CrossRef] [PubMed]
- Tsai, F.C.; Stuhrmann, B.; Koenderink, G.H. Encapsulation of Active Cytoskeletal Protein Networks in Cell-Sized Liposomes. Langmuir 2011, 27, 10061–10071. [Google Scholar] [CrossRef] [PubMed]
- Takiguchi, K.; Yamada, A.; Negishi, M.; Tanaka-Takiguchi, Y.; Yoshikawa, K. Entrapping Desired Amounts of Actin Filaments and Molecular Motor Proteins in Giant Liposomes. Langmuir 2008, 24, 11323–11326. [Google Scholar] [CrossRef] [PubMed]
- Chowdhuri, S.; Cole, C.M.; Devaraj, N.K. Encapsulation of Living Cells within Giant Phospholipid Liposomes Formed by the Inverse-Emulsion Technique. ChemBioChem 2016, 17, 886–889. [Google Scholar] [CrossRef]
- Petit, J.; Polenz, I.; Baret, J.C.; Herminghaus, S.; Bäumchen, O. Vesicles-on-a-Chip: A Universal Microfluidic Platform for the Assembly of Liposomes and Polymersomes. Eur. Phys. J. E 2016, 39, 59. [Google Scholar] [CrossRef]
- Dikpati, A.; Madgulkar, A.R.; Kshirsagar, S.J.; Chahal, A.S. Targeted Drug Delivery to CNS Using Nanoparticles. J. Adv. Pharm. Sci. 2012, 2, 179–191. [Google Scholar]
- Glassman, P.M.; Hood, E.D.; Ferguson, L.T.; Zhao, Z.; Siegel, D.L.; Mitragotri, S.; Brenner, J.S.; Muzykantov, V.R. Red Blood Cells: The Metamorphosis of a Neglected Carrier into the Natural Mothership for Artificial Nanocarriers. Adv. Drug Deliv. Rev. 2021, 178, 113992. [Google Scholar] [CrossRef]
- Leister, N.; Götz, V.; Jan Bachmann, S.; Nachtigall, S.; Hosseinpour, S.; Peukert, W.; Karbstein, H. A Comprehensive Methodology to Study Double Emulsion Stability. J. Colloid Interface Sci. 2023, 630, 534–548. [Google Scholar] [CrossRef] [PubMed]
- Delivery, D.; Adamczyk, Z. Double Emulsions. In Encyclopedia of Colloid and Interface Science; Springer: Berlin/Heidelberg, Germany, 2013; pp. 303–337. [Google Scholar] [CrossRef]
- Muschiolik, G.; Dickinson, E. Double Emulsions Relevant to Food Systems: Preparation, Stability, and Applications. Compr. Rev. Food Sci. Food Saf. 2017, 16, 532–555. [Google Scholar] [CrossRef] [PubMed]
- Sapei, L.; Naqvi, M.A.; Rousseau, D. Stability and Release Properties of Double Emulsions for Food Applications. Food Hydrocoll. 2012, 27, 316–323. [Google Scholar] [CrossRef]
- Lee, J.; Kwak, E.; Kim, H.-T.; Jo, Y.-J.; Choi, M.-J. Influence of Different Electrolytes and Oils on the Stability of W1/O/W2 Double Emulsion during Storage and in Vitro Digestion. Food Sci. Biotechnol. 2023, 32, 1515–1529. [Google Scholar] [CrossRef] [PubMed]
- Sameh, H.; Wafa, E.; Sihem, B.; Fernando, L.C. Influence of Diffusive Transport on the Structural Evolution of W/O/W Emulsions. Langmuir 2012, 28, 17597–17608. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Gou, J.; Sun, F.; Geng, S.C.; Hu, X.; Zhang, K.; Lin, X.; Xiao, W.; Tang, X. Impact of Electrolytes on Double Emulsion Systems (W/O/W) Stabilized by an Amphiphilic Block Copolymer. Colloids Surf. B Biointerfaces 2014, 122, 368–374. [Google Scholar] [CrossRef] [PubMed]
- Tenorio-Garcia, E.; Araiza-Calahorra, A.; Simone, E.; Sarkar, A. Recent Advances in Design and Stability of Double Emulsions: Trends in Pickering Stabilization. Food Hydrocoll. 2022, 128, 107601. [Google Scholar] [CrossRef]
- Nisisako, T.; Ando, T.; Hatsuzawa, T. High-Volume Production of Single and Compound Emulsions in a Microfluidic Parallelization Arrangement Coupled with Coaxial Annular World-to-Chip Interfaces. Lab Chip 2012, 12, 3426–3435. [Google Scholar] [CrossRef]
- Analysis of Reported Drug Interactions: A Recipe for Harm to Patients|Advisory. Available online: https://patientsafety.pa.gov/ADVISORIES/Pages/201612_137.aspx (accessed on 18 March 2024).
- Leister, N.; Karbstein, H.P. Determination of the Dominating Coalescence Pathways in Double Emulsion Formulations by Use of Microfluidic Emulsions. Processes 2023, 11, 234. [Google Scholar] [CrossRef]
- Sun, L.; Li, T.; Zhang, B.; Zhang, M.; Xu, J.; Wang, J. An Off-the-Shelf Microfluidic Device for the Controllable Fabrication of Multiple-Holed Hollow Particles and Their Cell Culture Applications. Mater. Chem. Front. 2021, 5, 3149–3158. [Google Scholar] [CrossRef]
- Yadavali, S.; Lee, D.; Issadore, D. Robust Microfabrication of Highly Parallelized Three-Dimensional Microfluidics on Silicon. Sci. Rep. 2019, 9, 20194. [Google Scholar] [CrossRef] [PubMed]
- Conchouso, D.; Castro, D.; Khan, S.A.; Foulds, I.G. Three-Dimensional Parallelization of Microfluidic Droplet Generators for a Litre per Hour Volume Production of Single Emulsions. Lab Chip 2014, 14, 3011–3020. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.H.; Yelleswarapu, V.R.; Yadavali, S.; Issadore, D.; Lee, D. Kilo-Scale Droplet Generation in Three-Dimensional Monolithic Elastomer Device (3D MED). Lab Chip 2015, 15, 4387–4392. [Google Scholar] [CrossRef]
- Romanowsky, M.B.; Abate, A.R.; Rotem, A.; Holtze, C.; Weitz, D.A. High Throughput Production of Single Core Double Emulsions in a Parallelized Microfluidic Device. Lab Chip 2012, 12, 802–807. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.H.; Issadore, D.; Lee, D. Recent Developments in Scale-up of Microfluidic Emulsion Generation via Parallelization. Korean J. Chem. Eng. 2016, 33, 1757–1766. [Google Scholar] [CrossRef]
- Varghese, D.; Ishida, C.; Koya, H.H. Polypharmacy. In Home-Based Medical Care for Older Adults: A Clinical Case Book; Springer Nature: Berlin/Heidelberg, Germany, 2023; pp. 105–110. [Google Scholar] [CrossRef]
- Daunt, R.; Curtin, D.; O’Mahony, D. Polypharmacy Stewardship: A Novel Approach to Tackle a Major Public Health Crisis. Lancet Healthy Longev. 2023, 4, e228–e235. [Google Scholar] [CrossRef] [PubMed]
- Chiu, Y.W.; Teitelbaum, I.; Misra, M.; De Leon, E.M.; Adzize, T.; Mehrotra, R. Pill Burden, Adherence, Hyperphosphatemia, and Quality of Life in Maintenance Dialysis Patients. Clin. J. Am. Soc. Nephrol. 2009, 4, 1089–1096. [Google Scholar] [CrossRef]
- Arriaga, L.R.; Amstad, E.; Weitz, D.A. Scalable Single-Step Microfluidic Production of Single-Core Double Emulsions with Ultra-Thin Shells. Lab Chip 2015, 15, 3335–3340. [Google Scholar] [CrossRef]
- Chiu, N.; Hewson, L.; Fisk, I.; Wolf, B. Programmed Emulsions for Sodium Reduction in Emulsion Based Foods. Food. Funct. 2015, 6, 1428–1434. [Google Scholar] [CrossRef]
- Hernández-Marín, N.Y.; Lobato-Calleros, C.; Román-Guerrero, A.; Alvarez-Ramirez, J.; Vernon-Carter, E.J. Physical Properties and Release Behaviour of Caffeine Multiple Emulsions Stabilised by Binary or Ternary Biopolymer Soluble Complexes under Acid, Bile and Yogurt Storage Conditions. Food Hydrocoll. 2016, 58, 42–48. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yandrapalli, N. Complex Emulsions as an Innovative Pharmaceutical Dosage form in Addressing the Issues of Multi-Drug Therapy and Polypharmacy Challenges. Pharmaceutics 2024, 16, 707. https://doi.org/10.3390/pharmaceutics16060707
Yandrapalli N. Complex Emulsions as an Innovative Pharmaceutical Dosage form in Addressing the Issues of Multi-Drug Therapy and Polypharmacy Challenges. Pharmaceutics. 2024; 16(6):707. https://doi.org/10.3390/pharmaceutics16060707
Chicago/Turabian StyleYandrapalli, Naresh. 2024. "Complex Emulsions as an Innovative Pharmaceutical Dosage form in Addressing the Issues of Multi-Drug Therapy and Polypharmacy Challenges" Pharmaceutics 16, no. 6: 707. https://doi.org/10.3390/pharmaceutics16060707
APA StyleYandrapalli, N. (2024). Complex Emulsions as an Innovative Pharmaceutical Dosage form in Addressing the Issues of Multi-Drug Therapy and Polypharmacy Challenges. Pharmaceutics, 16(6), 707. https://doi.org/10.3390/pharmaceutics16060707