Design and Biocompatibility of Biodegradable Poly(octamethylene suberate) Nanoparticles to Treat Skin Diseases
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Polymer Molecular Weight Assay by Size-Exclusion Chromatography (SEC)
2.3. Fabrication of POS Nanoparticles (POS-NP and BC-POS-NP)
2.3.1. POS-NP and BC-POS-NP Production
2.3.2. Lyophilisation of BC-POS-NPs
2.4. Nanoparticle Physicochemical Characterisation
2.4.1. Size, PDI, and Z-Potential of POS-NP and BC-POS-NP
2.4.2. Determination of Entrapment Efficiency (EE) and Drug-Loading Capacity (DL)
2.5. BCs Incorporation Studies
2.5.1. Crystallinity Studies by Differential Scanning Calorimetry (DSC)
2.5.2. Fourier Transform Infrared (FTIR) Analysis
2.5.3. Nuclear Magnetic Resonance (NMR) Analysis
2.6. Antioxidant Activity of BC-POS-NP
2.7. Biological Assays
2.7.1. Cytotoxicity of BC-POS-NP
2.7.2. Cultivation of Reconstruction of Human Epidermis (RHE)
2.7.3. In Vitro Permeation Studies on RHE Using Franz Diffusion Cells
2.7.4. Histological Analyses
2.8. Statistical Analysis
3. Results and Discussion
3.1. Preliminary Studies
3.2. Physiochemical Characterisation of POS-NPs and BC-POS-NPs
3.2.1. Physicochemical Properties of BC-POS-NP Formulations
3.2.2. Entrapment Efficiency (EE, %) and Drug Loading (DL, %) Capacity
3.3. Thermal Characterisation by Differential Scanning Calorimetry (DSC)
3.4. FTIR Analysis
3.5. 1H NMR Analysis of the BCs-POS-NPs Structure
3.6. In Vitro Antioxidant Activity
3.7. Biocompatibility Studies
3.8. In Vitro Permeability Studies of BC-POS on RHE
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, R.; Wei, T.; Goldberg, H.; Wang, W.; Cullion, K.; Kohane, D.S. Getting Drugs Across Biological Barriers. Adv. Mater. 2017, 29, 1606596. [Google Scholar] [CrossRef] [PubMed]
- Narasimha Murthy, S.; Shivakumar, H.N. Topical and Transdermal Drug Delivery. In Handbook of Non-Invasive Drug Delivery Systems; Elsevier Inc.: Amsterdam, The Netherlands, 2010; pp. 1–36. [Google Scholar]
- Vogt, A.; Wischke, C.; Neffe, A.T.; Ma, N.; Alexiev, U.; Lendlein, A. Nanocarriers for drug delivery into and through the skin—Do existing technologies match clinical challenges? J. Control. Release 2016, 242, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Raszewska-Famielec, M.; Flieger, J. Nanoparticles for Topical Application in the Treatment of Skin Dysfunctions-An Overview of Dermo-Cosmetic and Dermatological Products. Int. J. Mol. Sci. 2022, 23, 15980. [Google Scholar] [CrossRef] [PubMed]
- Kumari, A.; Yadav, S.K.; Yadav, S.C. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf. B Biointerfaces 2010, 75, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Elsabahy, M.; Wooley, K.L. Design of polymeric nanoparticles for biomedical delivery applications. Chem. Soc. Rev. 2012, 41, 2545–2561. [Google Scholar] [CrossRef] [PubMed]
- Ul-Islam, M.; Khan, S.; Ullah, M.W.; Park, J.K. Structure, Chemistry and Pharmaceutical Applications of Biodegradable Polymers. In Handbook of Polymers for Pharmaceutical Technologies; Thakur, V.K., Thakur, M.K., Eds.; Scrivener Publishing LLC: Beverly, MA, USA, 2015. [Google Scholar]
- Mota, A.H.; Rijo, P.; Molpeceres, J.; Reis, C.P. Broad overview of engineering of functional nanosystems for skin delivery. Int. J. Pharm. 2017, 532, 710–728. [Google Scholar] [CrossRef]
- Gupta, N.; Gupta, G.D.; Singh, D. Localized topical drug delivery systems for skin cancer: Current approaches and future prospects. Front. Nanotechnol. 2022, 4, 1006628. [Google Scholar] [CrossRef]
- Seyednejad, H.; Ghassemi, A.H.; van Nostrum, C.F.; Vermonden, T.; Hennink, W.E. Functional aliphatic polyesters for biomedical and pharmaceutical applications. J. Control. Release 2011, 152, 168–176. [Google Scholar] [CrossRef] [PubMed]
- Silvers, A.L.; Chang, C.C.; Emrick, T. Functional aliphatic polyesters and nanoparticles prepared by organocatalysis and orthogonal grafting chemistry. J. Polym. Sci. Part A Polym. Chem. 2012, 50, 3517–3529. [Google Scholar] [CrossRef]
- Karavelidis, V.; Karavas, E.; Giliopoulos, D.; Papadimitriou, S.; Bikiaris, D. Evaluating the effects of crystallinity in new biocompatible polyester nanocarriers on drug release behavior. Int. J. Nanomed. 2011, 6, 3021–3032. [Google Scholar]
- Rawat, M.; Singh, D.; Saraf, S. Nanotechcarriers: Promising vehicle for bioactive drugs. Biol. Pharm. Bull. 2006, 29, 1790–1798. [Google Scholar] [CrossRef] [PubMed]
- Hickey, J.W.; Santos, J.L.; Williford, J.-M.; Mao, H.-Q. Control of polymeric nanoparticle size to improve therapeutic delivery. J. Control. Release 2015, 219, 536–547. [Google Scholar] [CrossRef] [PubMed]
- Fattal, E.; Vauthier, C. Drug Delivery: Nanoparticles in Encyclopedia of Pharmaceutical Technology; Swarbrick, J., Ed.; Informa Healthcare: New York, NY, USA, 2006; pp. 1183–1200. [Google Scholar]
- Kamaly, N.; Yameen, B.; Wu, J.; Farokhzad, O.C. Degradable controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release. Chem. Rev. 2016, 116, 2602–2663. [Google Scholar] [CrossRef] [PubMed]
- Díaz, A.; Katsarava, R.; Puiggalí, J. Synthesis, properties and applications of biodegradable polymers derived from diols and dicarboxylic acids: From polyesters to poly(ester amide)s. Int. J. Mol. Sci. 2014, 15, 7064–7123. [Google Scholar] [CrossRef] [PubMed]
- Gestí, S.; Casas, M.T.; Puiggali, J. Single crystal morphology and structural data of a series of polyesters derived from 1,8-octanediol. Eur. Polym. J. 2008, 44, 2295–2307. [Google Scholar] [CrossRef]
- Washington, K.E.; Kularatne, R.N.; Karmegam, V.; Biewer, M.C.; Stefan, M.C. Recent advances in aliphatic polyesters for drug delivery applications. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2017, 9, 10. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Tsai, P.C.; Ramezanli, T.; Michniak-Kohn, B.B. Polymeric nanoparticles-based topical delivery systems for the treatment of dermatological diseases. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2013, 5, 205–218. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Khengar, R.H.; Sun, M.; Wang, Z.; Fan, A.; Zhao, Y. Acid-responsive polymeric nanocarriers for topical adapalene delivery. Pharm. Res. 2014, 31, 3051–3059. [Google Scholar] [CrossRef] [PubMed]
- Pfluck, A.C.D.; de Barros, D.P.C.; Fonseca, L.P. Biodegradable Polyester Synthesis in Renewed Aqueous Polycondensation Media: The Core of the New Greener Polymer-5B Technology. Processes 2021, 9, 365. [Google Scholar] [CrossRef]
- Fonseca, L.J.P.; Pfluck, A.C.D.; de Barros, D.P.C. Synthesis of Polyesters in Aqueous Polymerization Media “from de Solid to Solid” via Biocatalysis. PCT/PT2020/050051 Published as WO 2021/137711 A1. 2021. Available online: https://patentscope.wipo.int/search/pt/detail.jsf?docId=WO21137711 (accessed on 21 May 2024).
- Pfluck, A.C.D.; de Barros, D.P.C.; Oliva, A.; Fonseca, L.P. Enzymatic Poly (octamethylene suberate) Synthesis by a Two-Step Polymerization Method Based on the New Greener Polymer-5B Technology. Processes 2022, 10, 221. [Google Scholar] [CrossRef]
- Casas, M.T.; Puiggalí, J. Enzymatic degradation of poly(octamethylene suberate) lamellar crystals. Polym. Degrad. Stab. 2009, 94, 1941–1947. [Google Scholar] [CrossRef]
- Shang, Y.; Li, X.; Jiang, Z.; Qiu, Z. Synthesis, crystallization behavior and mechanical properties of novel biobased Poly(octamethylene succinate. Polym. Degrad. Stab. 2020, 171, 109043. [Google Scholar] [CrossRef]
- Rao, J.P.; Geckeler, K.E. Polymer Nanoparticles: Preparation Techniques and Size-Control Parameters. Prog. Polym. Sci. 2011, 36, 887–913. [Google Scholar] [CrossRef]
- Kang, W.; Choi, D.; Park, T. Dietary Suberic Acid Protects Against UVB-Induced Skin Photoaging in Hairless Mice. Nutrients 2019, 11, 2948. [Google Scholar] [CrossRef] [PubMed]
- Junnuthula, V.; Kolimi, P.; Nyavanandi, D.; Sampathi, S.; Vora, L.K.; Dyawanapelly, S. Polymeric Micelles for Breast Cancer Therapy: Recent Updates, Clinical Translation and Regulatory Considerations. Pharmaceutics 2022, 14, 1860. [Google Scholar] [CrossRef] [PubMed]
- Woodfield, T.B.; Malda, J.; de Wijn, J.; Péters, F.; Riesle, J.; van Blitterswijk, C.A. Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique. Biomaterials 2004, 25, 4149–4161. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Kelly, A.L.; Miao, S. Emulsion-based encapsulation and delivery systems for polyphenols. Trends Food Sci. Technol. 2016, 47, 1–9. [Google Scholar] [CrossRef]
- Landfester, K.; Weiss, C.K. Encapsulation by Miniemulsion Polymerization. In Modern Techniques for Nano- and Microreactors/-reactions. In Advances in Polymer Science; Caruso, F., Ed.; Springer: Berlin/Heidelberg, Germany, 2010; Volume 229. [Google Scholar]
- Magar, R.T.; Sohng, J.K. A Review on Structure, Modifications and Structure-Activity Relation of Quercetin and Its Derivatives. J. Microbiol. Biotechnol. 2020, 30, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Wang, T.; Long, M.; Li, P. Quercetin: Its Main Pharmacological Activity and Potential Application in Clinical Medicine. Oxidative Med. Cell. Longev. 2020, 2020, 8825387. [Google Scholar] [CrossRef]
- Wang, W.; Sun, C.; Mao, L.; Ma, P.; Liu, F.; Yang, J.; Gao, Y. The biological activities, chemical stability, metabolism and delivery systems of quercetin: A review. Trends Food Sci. Technol. 2016, 56, 21–38. [Google Scholar] [CrossRef]
- Kleemann, R.; Verschuren, L.; Morrison, M.; Zadelaar, S.; van Erk, M.J.; Wielinga, P.Y.; Kooistra, T. Anti-inflammatory, antiproliferative and anti-atherosclerotic effects of quercetin in human in vitro and in vivo models. Atherosclerosis 2011, 218, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhyay, P.; Prajapati, A.K. Quercetin in anti-diabetic research and strategies for improved quercetin bioavailability using polymer-based carriers—A review. RSC Adv. 2015, 5, 97547–97562. [Google Scholar] [CrossRef]
- Luo, L.; Lane, M.E. Topical and transdermal delivery of caffeine. Int. J. Pharm. 2015, 490, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Simsolo, E.E.; Eroğlu, İ.; Tanrıverdi, S.T.; Özer, Ö. Formulation and Evaluation of Organogels Containing Hyaluronan Microparticles for Topical Delivery of Caffeine. AAPS PharmSciTech 2018, 19, 1367–1376. [Google Scholar] [CrossRef] [PubMed]
- Milkova, V.; Goycoolea, F.M. Encapsulation of caffeine in polysaccharides oil-core nanocapsules. Colloid. Polym. Sci. 2020, 298, 1035–1041. [Google Scholar] [CrossRef]
- Makky, A.M.; El-Leithy, E.S.; Hussein, D.G.; Khattab, A. Skin Targeting of an Optimized Caffeine Nanostructured Lipid Carrier with Improved Efficiency Against Chemotherapy Induced Alopecia. Int. J. App Pharm. 2022, 14, 235–250. [Google Scholar] [CrossRef]
- Mehta, A.B.; Nadkarni, N.J.; Patil, S.P.; Godse, K.V.; Gautam, M.; Agarwal, S. Topical corticosteroids in dermatology. Indian J. Dermatol. Venereol. Leprol. 2016, 82, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Kondiah, P.P.D.; Rants’o, T.A.; Mdanda, S.; Mohlomi, L.M.; Choonara, Y.E. A Poly (Caprolactone)-Cellulose Nanocomposite Hydrogel for Transdermal Delivery of Hydrocortisone in Treating Psoriasis Vulgaris. Polymers 2022, 14, 2633. [Google Scholar] [CrossRef] [PubMed]
- Rosado, C.; Silva, C.; Reis, C.P. Hydrocortisone-loaded poly(ε-caprolactone) nanoparticles for atopic dermatitis treatment. Pharm. Dev. Technol. 2013, 18, 710–718. [Google Scholar] [CrossRef]
- Malekhosseini, S.; Rezaie, A.; Khaledian, S.; Abdoli, M.; Zangeneh, M.M.; Hosseini, A.; Behbood, L. Fabrication and characterization of hydrocortisone loaded Dextran-Poly Lactic-co-Glycolic acid micelle. Heliyon 2020, 6, e03975. [Google Scholar] [CrossRef]
- Khalil, S.; Bardawil, T.; Stephan, C.; Darwiche, N.; Abbas, O.; Kibbi, A.G.; Nemer, G.; Kurban, M. Retinoids: A Journey from the Molecular Structures and Mechanisms of Action to Clinical Uses in Dermatology and Adverse Effects. J. Dermatol. Treat. 2017, 28, 684–696. [Google Scholar] [CrossRef] [PubMed]
- Ramezanhi, T.; Zhang, Z.; Michniak-Kohn, B.B. Development and characterization of polymeric nanoparticle-based formulation of adapalene for topical acne therapy. Nanomed. Nanotechnol. Biol. Med. 2017, 13, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.K.; Mehta, P. Fabrication and functional attributes of nanotherapeutically engineered system for co-administration of adapalene and lycopene for enhanced acne management: An in vitro and in vivo investigation. Beni-Suef Univ. J. Basic Appl. Sci. 2023, 12, 72. [Google Scholar] [CrossRef]
- Dreher, F.; Maibach, H. Protective effects of topical antioxidants in humans. Curr. Probl. Dermatol. 2001, 29, 157–164. [Google Scholar] [PubMed]
- de Barros, D.P.C.; Reed, P.; Alves, M.; Santos, R.; Oliva, A. Biocompatibility and Antimicrobial Activity of Nanostructured Lipid Carriers for Topical Applications Are Affected by Type of Oils Used in Their Composition. Pharmaceutics 2021, 13, 1950. [Google Scholar] [CrossRef] [PubMed]
- de Barros, D.P.C.; Santos, R.; Reed, P.; Fonseca, L.P.; Oliva, A. Design of Quercetin-Loaded Natural Oil-Based Nanostructured Lipid Carriers for the Treatment of Bacterial Skin Infections. Molecules 2022, 27, 8818. [Google Scholar] [CrossRef] [PubMed]
- Adi-Dako, O.; Oppong Bekoe, S.; Ofori-Kwakye, K.; Appiah, E.; Peprah, P. Novel HPLC Analysis of Hydrocortisone in Conventional and Controlled-Release Pharmaceutical Preparations. J. Pharm. 2017, 2017, 9495732. [Google Scholar] [CrossRef] [PubMed]
- Pinto, F.; de Barros, D.P.C.; Reis, C.; Fonseca, L.P. Optimization of nanostructured lipid carriers loaded with retinoids by central composite design. J. Mol. Liq. 2019, 293, 111468. [Google Scholar] [CrossRef]
- Aydın, A.A.; Toprakçı, G. Synthesis and characterization of new organic phase change materials (PCMs): Diesters of suberic acid. Sol. Energy Mater. Sol. Cells 2021, 220, 110822. [Google Scholar] [CrossRef]
- Pinto, F.; Fonseca, L.P.; Souza, S.; Oliva, A.; de Barros, D.P.C. Topical distribution and efficiency of nanostructured lipid carriers on a 3D reconstructed human epidermis model. J. Drug Deliv. Sci. Technol. 2020, 57, 101616. [Google Scholar] [CrossRef]
- Zoio, P.; Ventura, S.; Leite, M.; Oliva, A. Pigmented Full-Thickness Human Skin Model Based on a Fibroblast-Derived Matrix forLong-Term Studies. Tissue Eng. Part C Methods 2021, 27, 433–443. [Google Scholar] [CrossRef] [PubMed]
- OECD (Organisation for Economic Co-operation and Development). Guidelines for Testing Chemicals-428 Skin Absorption: In Vitro Method; OECD TG 428 2004; OECD: Paris, France, 2004. [Google Scholar]
- Shah, V.P.; Elkins, J.; Hanus, J.; Noorizadeh, C.; Skelly, J.P. In vitro release of hydrocortisone from topical preparations and automated procedure. Pharm. Res. 1991, 8, 55–59. [Google Scholar] [CrossRef] [PubMed]
- E.P.a.o.t. Council (Ed.) Regulation (EC) No 1223/2009 of the European Parliament and of the Council of 30 November 2009 on Cosmetic Products. Off. J. Eur. Union 2009. Available online: https://health.ec.europa.eu/document/download/47f167ec-b5db-4ec9-9d12-3d807bf3e526_en5 (accessed on 20 May 2024).
- ISO. ISO 10993-5:2009: Biological Evaluation of Medical Devices—Part 5: Tests for In Vitro Cytotoxicity. Available online: https://www.iso.org/standard/36406.html (accessed on 15 May 2024).
- Choudhary, A.; Kant, V.; Jangir, B.L.; Joshi, V.G. Quercetin loaded chitosan tripolyphosphate nanoparticles accelerated cutaneous wound healing in Wistar rats. Eur. J. Pharmacol. 2020, 880, 173172. [Google Scholar] [CrossRef] [PubMed]
- Cho, E.C. Effect of polymer characteristics on the thermal stability of retinol encapsulated in aliphatic polyester nanoparticles. Bull. Korean Chem. Soc. 2012, 33, 2560–2566. [Google Scholar] [CrossRef]
- Kumar, A.; Chauhan, J.; Dubey, K.D.; Sen, S.; Munshi, P. Tuning Potency of Bioactive Molecules via Polymorphic Modifications: A Case Study. Mol. Pharm. 2022, 19, 1008–1018. [Google Scholar] [CrossRef]
- Baucells, M.; Ferrer, N.; Gómez, P.; Lacort, G.; Roura, M. Determination of caffeine in solid pharmaceutical samples by FTIR spectroscopy. Mikrochim. Acta 1993, 112, 87–98. [Google Scholar] [CrossRef]
- Imran, M.; Iqubal, M.K.; Imtiyaz, K.; Saleem, S.; Mittal, S.; Rizvi, M.M.A.; Ali, J.; Baboota, S. Topical nanostructured lipid carrier gel of quercetin and resveratrol: Formulation, optimization, in vitro and ex vivo study for the treatment of skin cancer. Int. J. Pharm. 2020, 587, 119705. [Google Scholar] [CrossRef]
- Altamimi, M.A.; Elzayat, E.M.; Qamar, W.; Alshehri, S.M.; Sherif, A.Y.; Haq, N.; Shakeel, F. Evaluation of the bioavailability of hydrocortisone when prepared as solid dispersion. Saudi Pharm. J. SPJ Off. Publ. Saudi Pharm. Soc. 2019, 27, 629–636. [Google Scholar] [CrossRef]
- Sitkowski, L.; Stefaniak, L.; Nicol, L.; Martin, M.L.; Martin, G.J.; Webb, G.A. Complete assignments of the 1H, 13C and 15N NMR spectra of caffeine. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 1995, 51, 839–841. [Google Scholar] [CrossRef]
- Ivanova, G.; Simeonova, M.; Cabrita, E.J.; Rangel, M. NMR insight into the supramolecular structure of daunorubicin loaded polymer nanoparticles. J. Phys. Chem. B 2011, 115, 902–909. [Google Scholar] [CrossRef]
- Heins, A.; McPhail, D.B.; Sokolowski, T.; Stöckmann, H.; Schwarz, K. The location of phenolic antioxidants and radicals at interfaces determines their activity. Lipids 2007, 42, 573–582. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, L.E.; Muniz, B.V.; Burga-Sánchez, J.; Volpato, M.C.; de Paula, E.; Rosa, E.A.; Groppo, F.C. The effect of two drug delivery systems in ropivacaine cytotoxicity and cytokine release by human keratinocytes and fibroblasts. J. Pharm. Pharmacol. 2017, 69, 161–171. [Google Scholar] [CrossRef]
- Chen, R.; Lin, J.; Hong, J.; Han, D.; Zhang, A.D.; Lan, R.; Fu, L.; Wu, Z.; Lin, J.; Zhang, W.; et al. Potential toxicity of quercetin: The repression of mitochondrial copy number via decreased POLG expression and excessive TFAM expression in irradiated murine bone marrow. Toxicol. Rep. 2014, 30, 450–458. [Google Scholar] [CrossRef] [PubMed]
- Pourtalebi Jahromi, L.; Ghazali, M.; Ashrafi, H.; Azadi, A. A comparison of models for the analysis of the kinetics of drug release from PLGA-based nanoparticles. Heliyon 2020, 6, e03451. [Google Scholar] [CrossRef] [PubMed]
- Baksi, R.; Singh, D.P.; Borse, S.P.; Rana, R.; Sharma, V.; Nivsarkar, M. In vitro and in vivo anticancer efficacy potential of Quercetin loaded polymeric nanoparticles. Biomed. Pharmacother. Biomed. Pharmacother. 2018, 106, 1513–1526. [Google Scholar] [CrossRef]
- Willson, C. The clinical toxicology of caffeine: A review and case study. Toxicol. Rep. 2018, 5, 1140–1152. [Google Scholar] [CrossRef]
- Arooj, A.; Rehman, A.U.; Iqbal, M.; Naz, I.; Alhodaib, A.; Ahmed, N. Development of Adapalene Loaded Liposome Based Gel for Acne. Gels 2023, 9, 135. [Google Scholar] [CrossRef]
- Lau, E.T.; Giddings, S.J.; Mohammed, S.G.; Dubois, P.; Johnson, S.K.; Stanley, R.A.; Halley, P.J.; Steadman, K.J. Encapsulation of hydrocortisone and mesalazine in zein microparticles. Pharmaceutics 2013, 5, 277–293. [Google Scholar] [CrossRef]
- Nadal, J.M.; Dos Anjos Camargo, G.; Novatski, A.; Macenhan, W.R.; Dias, D.T.; Barboza, F.M.; Lyra, A.; Roik, J.R.; Padilha de Paula, J.; Somer, A.; et al. Adapalene-loaded poly(ε-caprolactone) microparticles: Physicochemical characterization and in vitro penetration by photoacoustic spectroscopy. PLoS ONE 2019, 14, e0213625. [Google Scholar] [CrossRef]
- Liang, X.W.; Xu, Z.P.; Grice, J.; Zvyagin, A.V.; Roberts, M.S.; Liu, X. Penetration of nanoparticles into human skin. Curr. Pharm. Des. 2013, 19, 6353–6366. [Google Scholar] [CrossRef] [PubMed]
Formulation | Polymer, wt% | Surfactant, wt% | Bioactive Compound, wt% | Water, wt% |
---|---|---|---|---|
POS-NP | 2.5 | 2 | - | 95.5 |
BC-POS-NP | 2.5 | 2 | 0.5 | 95 |
BC-POS-NP | EE, % | DL, % |
---|---|---|
CF-POS-NP | 28.30 ± 1.81 | 36.11 ± 1.48 |
HC-POS-NP | 83.09 ± 4.32 | 62.42 ± 1.29 |
QR-POS-NP | 99.90 ± 0.10 | 66.65 ± 3.56 |
AD-POS-NP | 99.95 ± 0.04 | 66.66 ± 4.87 |
BC-POS-NP | Tgm (°C) | Tm (°C) | ΔHm (J/g) | Tc (°C) | ΔHc (J/g) | Tgc (°C) |
---|---|---|---|---|---|---|
CF | 30.39 ± 3.44 | 51.09 ± 0.12 | 21.20 ± 2.01 | 37.62 ± 0.05 | 34.46 ± 2.50 | 20.04 ± 0.05 |
QR | 23.91 ± 4.98 | 47.07 ± 0.27 | 35.10 ± 4.58 | 30.13 ± 3.99 | 33.65 ± 0.27 | 12.17 ± 0.05 |
AD | 30.64 ± 0.58 | 43.96 ± 0.11 | 46.63 ± 1.68 | 26.66 ± 0.36 4.54 ± 0.45 | 24.28 ± 7.78 42.97 ± 2.95 | 17.95 ± 0.02 |
HC | 22.52 ± 0.03 | 41.48 ± 0.57 | 31.16 ± 3.80 | 32.66 ± 2.62 | 16.23 ± 2.61 | 17.44 ± 1.05 |
POS | 31.85 ± 3.44 | 51.1 ± 0.39 | 26.0 ± 1.78 | 36.3 ± 1.25 | 36.64 ± 2.72 | 18.17 ± 2.96 |
Total Polymer, mg/mL−1 | HaCaT | HDFn |
---|---|---|
POS-NP | ≤2.5 | ≤2.5 |
CF-POS-NP | ≤1.25 | ≤2.5 |
HC-POS-NP | ≤1.25 | ≤2.5 |
QR-POS-NP | toxic | ≤2.5 |
AD-POS-NP | ≤2.5 | ≤2.5 |
AD-POS-NP | CF-POS-NP | QR-POS-NP | HC-POS-NP | |
---|---|---|---|---|
Cumulative amount (µgcm−2), 24 h | 439.2 ± 108.2 | 140.1 ± 4.14 | 114.73 ± 20.2 | 62.38± 3.67 |
J (µgcm−2 h−1) | ∗118.0 ± 69.4 ∙43.8 ± 3.90 | ∗50.44 ± 7.21 ∙11.12 ± 1.51 | ∗23.18 ± 5.24 ∙16.52 ± 2.87 | ∗10.54 ± 2.15 ∙6.36 ± 0.483 |
P (×10−4, cm h−1) | ∗235.8 ± 126.7 ∙42.38 ± 7.81 | ∗100.88 ± 15.6 ∙2.224 ± 0.568 | ∗46.36 ± 2.56 ∙33.04 ±5.21 | ∗21.08 ± 4.30 ∙6.36 ± 0.966 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Barros, D.P.C.; Fonseca, L.P.; Gonçalves, L.G.; Serrano, D.S.; Oliva, A. Design and Biocompatibility of Biodegradable Poly(octamethylene suberate) Nanoparticles to Treat Skin Diseases. Pharmaceutics 2024, 16, 753. https://doi.org/10.3390/pharmaceutics16060753
de Barros DPC, Fonseca LP, Gonçalves LG, Serrano DS, Oliva A. Design and Biocompatibility of Biodegradable Poly(octamethylene suberate) Nanoparticles to Treat Skin Diseases. Pharmaceutics. 2024; 16(6):753. https://doi.org/10.3390/pharmaceutics16060753
Chicago/Turabian Stylede Barros, Dragana P. C., Luís P. Fonseca, Luís G. Gonçalves, Diogo S. Serrano, and Abel Oliva. 2024. "Design and Biocompatibility of Biodegradable Poly(octamethylene suberate) Nanoparticles to Treat Skin Diseases" Pharmaceutics 16, no. 6: 753. https://doi.org/10.3390/pharmaceutics16060753
APA Stylede Barros, D. P. C., Fonseca, L. P., Gonçalves, L. G., Serrano, D. S., & Oliva, A. (2024). Design and Biocompatibility of Biodegradable Poly(octamethylene suberate) Nanoparticles to Treat Skin Diseases. Pharmaceutics, 16(6), 753. https://doi.org/10.3390/pharmaceutics16060753