Design of Chitin Cell Culture Matrices for 3D Tissue Engineering: The Importance of Chitin Types, Solvents, Cross-Linkers, and Fabrication Techniques
Abstract
:1. Introduction
2. Chitin Types
3. Types of Solvents
# | Type of Solvent | Type of Chitin | Additional Components | Cross-Linkers | Drying Techniques | Type of Scaffold | Morphological Properties | Ref. | ||
---|---|---|---|---|---|---|---|---|---|---|
Porosity, % | Pore Size | Area, m2/g | ||||||||
1 | Methanolic CaCl2 | β-Chitin (%DA 72.4%) | Nanosilver | None | Lyophilization (no T of freezing provided) | β-Chitin–nanosilver | ND | ~500 µm f | ND | [81] |
2 | β-Chitin | Nanodiopside, nanohydroxyapatite | Glutaraldehyde | Lyophilization after freezing at −80 °C | β-Chitin–nanodiopside–nanohydroxyapatite | 67–81 g | 126–400 µm h | 11.24 | [58] | |
3 | α-Chitin | Nanobioactive glass ceramic | None | Lyophilization after freezing at −80 °C | α-Chitin–nanobioactive glass ceramic | ND | 150–500 µm | ND | [59] | |
4 | α-Chitin | Nanosilica | None | Lyophilization (no T provided) | α-Chitin–nanosilica | ND | ND | ND | [31] | |
5 | β-Chitin | Hydroxyapatite | None | Lyophilization after freezing at −20 °C | β-chitin–nanohydroxyapatite | 70–80 | ND | ND | [82] | |
6 | α-Chitin (%DA 75.6%) | Hydroxyapatite | None | Lyophilization after freezing at −20 °C | α-Chitin hydrogel–nanohydroxyapatite | 72–79 i | 250–400 µm | ND | [57] | |
7 | α-Chitin (%DA > 72.4%) | Silk fibroin | Glutaraldehyde | Lyophilization after freezing at −20 °C | β-Chitin–silk fibroin | 76–81 | ND | ND | [61] | |
8 | α-Chitin | Pectin, CaCO3 nanopowder | Chitosan | Lyophilization (no T of freezing provided) | α-Chitin–pectin–CaCO3 nanopowder | ~42 | 200–300 µm | ND | [60] | |
9 | β-Chitin | Gelatin, hydroxyapatite | Glutaraldehyde | Lyophilization after freezing at −80 °C | β-Chitin–gelatin–nanohydroxyapatite | 68–81 j | 126–400 µm j | ND | [62] | |
10 | β-Chitin (%DA 85%) | PHBV a | None | Lyophilization (no T of freezing provided) | β-Chitin–PHBV | 67 | <20 µm | ND | [63] | |
11 | DMAc/ 5% LiCl | β-Chitin | Atelocollagen | UV irradiation | Lyophilization after freezing at −75 °C | β-Chitin–collagen | 63–78 k | 241–429 µm k | ND | [83] |
12 | α-Chitin | Hydroxyapatite | None | Lyophilization after freezing at −38 °C | α-Chitin–hydroxyapatite | 69 | 200–400 µm | ND | [32] | |
13 | α-Chitin | Sugar | None | Lyophilization (no T of freezing provided) | α-Chitin | ND | 500 µm | ND | [84] | |
14 | α-Chitin (%DA > 75%) | None | None | Supercritical CO2 (sc-CO2) | α-Chitin | 83–92 l | 2–50 nm | 205–365 l | [85] | |
15 | α-Chitin | None | None | Lyophilization after freezing at −20 °C | Chitin | 53.9 | 10 µm | ND | [86] | |
16 | α-Chitin | None | None | Lyophilization after freezing at −196 °C | α-Chitin | 61.2 | 100–200 µm | ND | [86] | |
17 | α-Chitin | None | None | Lyophilization after freezing at −38 °C | α-Chitin | 68.8 | 200–500 µm | ND | [86] | |
18 | α-Chitin | None | None | Supercritical CO2 (sc-CO2) | α-Chitin | 9.8 | ND | ND | [86] | |
19 | α-Chitin | None | None | Air drying | α-Chitin | 12.9 | ND | ND | [86] | |
20 | NaOH/ Urea | α-Chitin | None | None | Sc-CO2 | α-Chitin | ND | ND | <366 | [75] |
21 | NaOH Solution | β-chitin sponge | None | None | Lyophilization (no T of freezing provided) | Cartilage–scaffold composites | ND | 100–200 µm | ND | [87] |
22 | α-Chitin | β-glucan | None | Materials were studied as hydrogels (not dried) | Fungal mycelial mats with chitin–glucan polysaccharide cell walls | 53–63 | ND | ND | [88] | |
23 | Ionic Liquid | α-Chitin (%DA ~58%) | Sucrose acetate isobutyrate | None | Lyophilization after freezing at −77 °C | α-Chitin–sucrose acetate isobutyrate | 44–89 | 57–106 µm | ND | [89] |
24 | α-Chitin | None | None | Supercritical CO2 (sc-CO2) | Chitin | 84–90 | 2–50 nm | 108–145 | [90] | |
25 | Aqueous suspension | Chitin nanocrystals | POFC b | Thermo cross-linking | Lyophilization after freezing at −50 °C | Chitin–nanocrystals–POFC | ~80 | ND | ND | [28] |
26 | Chitin nanocrystals | PHBV, a,d NaCl (porogen) | None | Dried at 25 °C d | Chitin nanocrystals–PHBV | ND | 9.6 µm | ND | [91] | |
27 | Chitin nanocrystals | Hyaluronan, gelatin | EDC c | Lyophilization after freezing at −50 °C | Chitin–hyaluronan–gelatin | ND | 92–230 µm e | ND | [92] |
4. Cross-Linkers
5. Fabrication Techniques to Generate Porosity
5.1. Rapid Prototyping Method (3D Printing)
5.2. Sol–Gel Technique
5.3. Solvent Casting and Particulate Leaching
5.4. Gas Foaming Technique and Supercritical Drying
5.5. Freeze-Drying
6. Cell Types
7. Degradation
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Nicolas, J.; Magli, S.; Rabbachin, L.; Sampaolesi, S.; Nicotra, F.; Russo, L. 3D Extracellular Matrix Mimics: Fundamental Concepts and Role of Materials Chemistry to Influence Stem Cell Fate. Biomacromolecules 2020, 21, 1968–1994. [Google Scholar] [CrossRef] [PubMed]
- Camarero-Espinosa, S.; Rothen-Rutishauser, B.; Foster, E.J.; Weder, C. Articular Cartilage: From Formation to Tissue Engineering. Biomater. Sci. 2016, 4, 734–767. [Google Scholar] [CrossRef] [PubMed]
- Bandtlow, C.E.; Zimmermann, D.R. Proteoglycans in the Developing Brain: New Conceptual Insights for Old Proteins. Physiol. Rev. 2000, 80, 1267–1290. [Google Scholar] [CrossRef] [PubMed]
- Sobreiro-Almeida, R.; Quinteira, R.; Neves, N.M. Renal Regeneration: The Role of Extracellular Matrix and Current ECM-Based Tissue Engineered Strategies. Adv. Healthc. Mater. 2021, 10, 2100160. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Ko, H.; Kwon, I.K.; Shin, K. Extracellular Matrix Revisited: Roles in Tissue Engineering. Int. Neurourol. J. 2016, 20, S23–S29. [Google Scholar] [CrossRef] [PubMed]
- Gnavi, S.; Barwig, C.; Freier, T.; Haastert-Talini, K.; Grothe, C.; Geuna, S. The use of chitosan-based scaffolds to enhance regeneration in the nervous system. In International Review of Neurobiology, 1st ed.; Geuna, S., Perroteau, I., Tos, P., Battiston, B., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2013; Volume 109, pp. 2–237. [Google Scholar]
- Ye, Q.; Zünd, G.; Benedikt, P.; Jockenhoevel, S.; Hoerstrup, S.P.; Sakyama, S.; Hubbell, J.A.; Turina, M. Fibrin Gel as a Three Dimensional Matrix in Cardiovascular Tissue Engineering. Eur. J. Cardio-Thorac. Surg. 2000, 17, 587–591. [Google Scholar] [CrossRef] [PubMed]
- Owen, S.C.; Fisher, S.A.; Tam, R.Y.; Nimmo, C.M.; Shoichet, M.S. Hyaluronic Acid Click Hydrogels Emulate the Extracellular Matrix. Langmuir 2013, 29, 7393–7400. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J. Bioactive Modification of Poly(Ethylene Glycol) Hydrogels for Tissue Engineering. Biomaterials 2010, 31, 4639–4656. [Google Scholar] [CrossRef] [PubMed]
- Kumirska, J.; Weinhold, X.M.; Czerwicka, M.; Kaczyski, Z.; Bychowska, A.; Brzozowski, K.; Thming, J.; Stepnowski, P. Influence of the Chemical Structure and Physicochemical Properties of Chitin- and Chitosan-Based Materials on Their Biomedical Activity. In Biomedical. Engineering Trends in Materials Sciences; Laskovski, A.N., Ed.; IntechOpen Limited: London, UK, 2011; Volume 2, pp. 25–42. [Google Scholar]
- Wang, L.; Xu, Z.; Zhang, H.; Yao, C. A Review on Chitosan-Based Biomaterial as Carrier in Tissue Engineering and Medical Applications. Eur. Polym. J. 2023, 191, 112059. [Google Scholar] [CrossRef]
- Budiarso, I.J.; Rini, N.D.W.; Tsalsabila, A.; Birowosuto, M.D.; Wibowo, A. Chitosan-Based Smart Biomaterials for Biomedical Applications: Progress and Perspectives. ACS Biomater. Sci. Eng. 2023, 9, 3084–3115. [Google Scholar] [CrossRef]
- Aranaz, I.; Mengibar, M.; Harris, R.; Panos, I.; Miralles, B.; Acosta, N.; Galed, G.; Heras, A. Functional Characterization of Chitin and Chitosan. Curr. Chem. Biol. 2012, 3, 203–230. [Google Scholar] [CrossRef]
- No, H.K.; Meyers, S.P. Preparation and Characterization of Chitin and Chitosan—A Review. J. Aquat. Food Prod. Technol. 1995, 4, 27–52. [Google Scholar] [CrossRef]
- Islam, S.; Bhuiyan, M.A.R.; Islam, M.N. Chitin and Chitosan: Structure, Properties and Applications in Biomedical Engineering. J. Polym. Environ. 2017, 25, 854–866. [Google Scholar] [CrossRef]
- Janvikul, W.; Uppanan, P.; Thavornyutikarn, B.; Krewraing, J.; Prateepasen, R. In Vitro Comparative Hemostatic Studies of Chitin, Chitosan, and Their Derivatives. J. Appl. Polym. Sci. 2006, 102, 445–451. [Google Scholar] [CrossRef]
- Li, S.; Gu, B.; Li, X.; Tang, S.; Zheng, L.; Ruiz-Hitzky, E.; Sun, Z.; Xu, C.; Wang, X. MXene-Enhanced Chitin Composite Sponges with Antibacterial and Hemostatic Activity for Wound Healing. Adv. Healthc. Mater. 2022, 11, 2102367. [Google Scholar] [CrossRef]
- Benhabiles, M.S.; Salah, R.; Lounici, H.; Drouiche, N.; Goosen, M.F.A.; Mameri, N. Antibacterial Activity of Chitin, Chitosan and Its Oligomers Prepared from Shrimp Shell Waste. Food Hydrocoll. 2012, 29, 48–56. [Google Scholar] [CrossRef]
- Shigemasa, Y.; Minami, S. Applications of Chitin and Chitosan for Biomaterials. Biotechnol. Genet. Eng. Rev. 1996, 13, 383–420. [Google Scholar] [CrossRef]
- Minagawa, T.; Okamura, Y.; Shigemasa, Y.; Minami, S.; Okamoto, Y. Effects of Molecular Weight and Deacetylation Degree of Chitin/Chitosan on Wound Healing. Carbohydr. Polym. 2007, 67, 640–644. [Google Scholar] [CrossRef]
- Razavi, M.; Zhu, K.; Zhang, Y.S. Naturally based and biologically derived nanobiomaterials. In Nanobiomaterials Science, Development and Evaluation, 1st ed.; Razavi, M., Thakor, A., Eds.; Woodhead Publishing: Cambridge, UK, 2017; pp. 61–86. [Google Scholar]
- Wan, A.C.A.; Tai, B.C.U. Chitin—A Promising Biomaterial for Tissue Engineering and Stem Cell Technologies. Biotechnol. Adv. 2013, 31, 1776–1785. [Google Scholar] [CrossRef]
- Piekarska, K.; Sikora, M.; Owczarek, M.; Jóźwik-Pruska, J.; Wiśniewska-Wrona, M. Chitin and Chitosan as Polymers of the Future—Obtaining, Modification, Life Cycle Assessment and Main Directions of Application. Polymers 2023, 15, 793. [Google Scholar] [CrossRef]
- Pandey, A.R.; Singh, U.S.; Momin, M.; Bhavsar, C. Chitosan: Application in Tissue Engineering and Skin Grafting. J. Polym. Res. 2017, 24, 125. [Google Scholar] [CrossRef]
- Vishwanath, V.; Pramanik, K.; Biswas, A. Optimization and Evaluation of Silk Fibroin-Chitosan Freeze-Dried Porous Scaffolds for Cartilage Tissue Engineering Application. J. Biomater. Sci. Polym. Ed. 2016, 27, 657–674. [Google Scholar] [CrossRef]
- Shrestha, B.K.; Mousa, H.M.; Tiwari, A.P.; Ko, S.W.; Park, C.H.; Kim, C.S. Development of Polyamide-6,6/Chitosan Electrospun Hybrid Nanofibrous Scaffolds for Tissue Engineering Application. Carbohydr. Polym. 2016, 148, 107–114. [Google Scholar] [CrossRef]
- Rezaei, F.S.; Khorshidian, A.; Beram, F.M.; Derakhshani, A.; Esmaeili, J.; Barati, A. 3D Printed Chitosan/Polycaprolactone Scaffold for Lung Tissue Engineering: Hope to Be Useful for COVID-19 Studies. RSC Adv. 2021, 11, 19508–19520. [Google Scholar] [CrossRef]
- Tian, Y.; Liang, K.; Wang, X.; Ji, Y. Fabrication of Nanocomposite Bioelastomer Porous Scaffold Based on Chitin Nanocrystal Supported Emulsion-Freeze-Casting. ACS Sustain. Chem. Eng. 2017, 5, 3305–3313. [Google Scholar] [CrossRef]
- Jayakumar, R.; Chennazhi, K.P.; Srinivasan, S.; Nair, S.V.; Furuike, T.; Tamura, H. Chitin Scaffolds in Tissue Engineering. Int. J. Mol. Sci. 2011, 12, 1876–1887. [Google Scholar] [CrossRef]
- Deepthi, S.; Viha, C.V.S.; Thitirat, C.; Furuike, T.; Tamura, H.; Jayakumar, R. Fabrication of Chitin/Poly(Butylene Succinate)/Chondroitin Sulfate Nanoparticles Ternary Composite Hydrogel Scaffold for Skin Tissue Engineering. Polymers 2014, 6, 2974–2984. [Google Scholar] [CrossRef]
- Madhumathi, K.; Sudheesh Kumar, P.T.; Kavya, K.C.; Furuike, T.; Tamura, H.; Nair, S.V.; Jayakumar, R. Novel Chitin/Nanosilica Composite Scaffolds for Bone Tissue Engineering Applications. Int. J. Biol. Macromol. 2009, 45, 289–292. [Google Scholar] [CrossRef]
- Ge, Z.; Baguenard, S.; Lim, L.Y.; Wee, A.; Khor, E. Hydroxyapatite-Chitin Materials as Potential Tissue Engineered Bone Substitutes. Biomaterials 2004, 25, 1049–1058. [Google Scholar] [CrossRef]
- Philibert, T.; Lee, B.H.; Fabien, N. Current Status and New Perspectives on Chitin and Chitosan as Functional Biopolymers. Appl. Biochem. Biotechnol. 2017, 181, 1314–1337. [Google Scholar] [CrossRef]
- Karaman, O.; Şen, M.; Demirci, E.A. Electrospun Scaffolds for Vascular Tissue Engineering. Electrospun Mater. Tissue Eng. Biomed. Appl. Res. Des. Commer. 2017, 261–287. [Google Scholar] [CrossRef]
- Iber, B.T.; Kasan, N.A.; Torsabo, D.; Omuwa, J.W. A Review of Various Sources of Chitin and Chitosan in Nature. J. Renew. Mater. 2022, 10, 1097–1123. [Google Scholar] [CrossRef]
- Jang, M.K.; Kong, B.G.; Jeong, Y.-I.; Lee, C.H.; Nah, J.W. Physicochemical Characterization of α-Chitin, β-Chitin, and γ-Chitin Separated from Natural Resources. J. Polym. Sci. Part A Polym. Chem. 2004, 42, 3423–3432. [Google Scholar] [CrossRef]
- Kaya, M.; Mujtaba, M.; Ehrlich, H.; Salaberria, A.M.; Baran, T.; Amemiya, C.T.; Galli, R.; Akyuz, L.; Sargin, I.; Labidi, J. On Chemistry of γ-Chitin. Carbohydr. Polym. 2017, 176, 177–186. [Google Scholar] [CrossRef]
- Hou, J.; Aydemir, B.E.; Dumanli, A.G. Understanding the Structural Diversity of Chitins as a Versatile Biomaterial. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2021, 379, 20200331. [Google Scholar] [CrossRef]
- Seenuvasan, M.; Sarojini, G.; Dineshkumar, M. Recovery of chitosan from natural biotic waste. In Current Developments in Biotechnology and Bioengineering, 1st ed.; Varjani, S., Pandey, A., Gnansounou, E., Khanal, S.K., Reveendran, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 115–133. [Google Scholar]
- Zuber, M.; Zia, K.M.; Barikani, M. Chitin and chitosan-based blends, composites and nanocomposites. In Advances in Natural Polymers, 1st ed.; Thomas, P., Visakh, P.M., Mathew, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 18, pp. 55–119. [Google Scholar]
- Lopez, J.M.; Sánchez, L.F.; Nakamatsu, J.; Maruenda, H. Study of the Acetylation Pattern of Chitosan by Pure Shift NMR. Anal. Chem. 2020, 92, 12250–12256. [Google Scholar] [CrossRef]
- Qin, Y.; Lu, X.; Sun, N.; Rogers, R.D. Dissolution or Extraction of Crustacean Shells Using Ionic Liquids to Obtain High Molecular Weight Purified Chitin and Direct Production of Chitin Films and Fibers. Green Chem. 2010, 12, 968–997. [Google Scholar] [CrossRef]
- Wineinger, H.B.; Kelly, A.; Shamshina, J.L.; Rogers, R.D. Farmed Jumbo Shrimp Molts: An Ionic Liquid Strategy to Increase Chitin Yield per Animal While Controlling Molecular Weight. Green Chem. 2020, 22, 6001–6007. [Google Scholar] [CrossRef]
- Wineinger, H.B.; Shamshina, J.L.; Kelly, A.; King, C.; Rogers, R.D. A Method for Determining the Uniquely High Molecular Weight of Chitin Extracted from Raw Shrimp Shells Using Ionic Iquids. Green Chem. 2020, 22, 3734–3741. [Google Scholar] [CrossRef]
- Shamshina, J.L.; Barber, P.S.; Gurau, G.; Griggs, C.S.; Rogers, R.D. Pulping of Crustacean Waste Using Ionic Liquids: To Extract or Not to Extract. ACS Sustain. Chem. Eng. 2016, 4, 6072–6081. [Google Scholar] [CrossRef]
- Shamshina, J.L. Chitin in Ionic Liquids: Historical Insights into the Polymer’s Dissolution and Isolation: A Review. Green Chem. 2019, 21, 3974–3993. [Google Scholar] [CrossRef]
- Pillai, C.K.S.; Paul, W.; Sharma, C.P. Chitin and Chitosan Polymers: Chemistry, Solubility and Fiber Formation. Prog. Polym. Sci. 2009, 34, 641–678. [Google Scholar] [CrossRef]
- Rinaudo, M. Chitin and Chitosan: Properties and Applications. Prog. Polym. Sci. 2006, 31, 603–632. [Google Scholar] [CrossRef]
- Duan, B.; Huang, Y.; Lu, A.; Zhang, L. Recent Advances in Chitin Based Materials Constructed via Physical Methods. Prog. Polym. Sci. 2018, 82, 1–33. [Google Scholar] [CrossRef]
- Von Weimarn, P.P. Conversion of Fibroin, Chitin, Casein, and Similar Substances into the Ropy-Plastic State and Colloidal Solution. Ind. Eng. Chem. 1927, 19, 109–110. [Google Scholar] [CrossRef]
- Austin, P.R. Solvents for and Purification of Chitin. U.S. Patent US4062921A, 13 December 1977. [Google Scholar]
- Kifune, K.; Inoue, K.; Mori, S. Chitin Fibers and Process for the Production of the Same. U.S. Patent 4,932,404, 12 June 1990. [Google Scholar]
- Ji, Y.; Liang, K.; Shen, X.; Bowlin, G.L. Electrospinning and Characterization of Chitin Nanofibril/Polycaprolactone Nanocomposite Fiber Mats. Carbohydr. Polym. 2014, 101, 68–74. [Google Scholar] [CrossRef]
- Tokura, S.; Nishi, N.; Noguchi, J. Studies on Chitin. Iii. Preparation of Chitin Fibers. Polym. J. 1979, 11, 781–786. [Google Scholar] [CrossRef]
- Brown, P.E.R. Solvents for and Purification of Chitin. U.S. Patent 3,892,731, 1 July 1975. [Google Scholar]
- Arunraj, T.R.; Sanoj Rejinold, N.; Ashwin Kumar, N.; Jayakumar, R. Bio-Responsive Chitin-Poly(l-Lactic Acid) Composite Nanogels for Liver Cancer. Colloids Surf. B Biointerfaces 2014, 113, 394–402. [Google Scholar] [CrossRef]
- Sudheesh Kumar, P.T.; Srinivasan, S.; Lakshmanan, V.-K.; Tamura, H.; Nair, S.V.; Jayakumar, R. Synthesis, Characterization and Cytocompatibility Studies of α-Chitin Hydrogel/Nano Hydroxyapatite Composite Scaffolds. Int. J. Biol. Macromol. 2011, 49, 20–31. [Google Scholar] [CrossRef]
- Teimouri, A.; Azadi, M.; Shams Ghahfarokhi, Z.; Razavizadeh, R. Preparation and Characterization of Novel β-Chitin/Nanodiopside/Nanohydroxyapatite Composite Scaffolds for Tissue Engineering Applications. J. Biomater. Sci. Polym. Ed. 2017, 28, 1–14. [Google Scholar] [CrossRef]
- Peter, M.; Sudheesh Kumar, P.T.; Binulal, N.S.; Nair, S.V.; Tamura, H.; Jayakumar, R. Development of Novel α-Chitin/Nanobioactive Glass Ceramic Composite Scaffolds for Tissue Engineering Applications. Carbohydr. Polym. 2009, 78, 926–931. [Google Scholar] [CrossRef]
- Kumar, P.T.S.; Ramya, C.; Jayakumar, R.; Nair, S.; Kumar, V.; Lakshmanan, V.K. Drug Delivery and Tissue Engineering Applications of Biocompatible Pectin-Chitin/Nano CaCO3 Composite Scaffolds. Colloids Surf. B Biointerfaces 2013, 106, 109–116. [Google Scholar] [CrossRef]
- Azadi, M.; Teimouri, A.; Karvani, J.; Abadi, A. Fabrication, Characterization and Biocompatible Properties of β-Chitin/Silk Fibroin/MCM-41 Composite Scaffolds for Bone Tissue Engineering Applications. Evol. Poly. Tech. J. 2020, 3, 180026. [Google Scholar]
- Teimouri, A.; Azadi, M. β-Chitin/Gelatin/Nanohydroxyapatite Composite Scaffold Prepared through Freeze-Drying Method for Tissue Engineering Applications. Polym. Bull. 2016, 73, 3513–3529. [Google Scholar] [CrossRef]
- Sankar, D.; Chennazhi, K.P.; Nair, S.V.; Jayakumar, R. Fabrication of Chitin/Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate) Hydrogel Scaffold. Carbohydr. Polym. 2012, 90, 725–729. [Google Scholar] [CrossRef]
- Bouma, C.L.; Roseman, S. Sugar Transport by the Marine Chitinolytic Bacterium Vibrio Furnissii. Molecular Cloning and Analysis of the Mannose/Glucose Permease. J. Biol. Chem. 1996, 271, 33468–33475. [Google Scholar] [CrossRef]
- Wang, Y.; Kou, J.; Wang, X.; Chen, X. Acid Hydrolysis of Chitin in Calcium Chloride Solutions. Green Chem. 2023, 25, 2596–2607. [Google Scholar] [CrossRef]
- Tamura, H.; Nagahama, H.; Tokura, S. Preparation of Chitin Hydrogel under Mild Conditions. Cellulose 2006, 13, 357–364. [Google Scholar] [CrossRef]
- Vincendon, M. 1 H NMR Study of the Chitin Dissolution Mechanism. Die Makromol. Chem. 1985, 186, 1787–1795. [Google Scholar] [CrossRef]
- Potthast, A.; Rosenau, T.; Buchner, R.; Röder, T.; Ebner, G.; Bruglachner, H.; Sixta, H.; Kosma, P. The Cellulose Solvent System N,N-Dimethylacetamide/Lithium Chloride Revisited: The Effect of Water on Physicochemical Properties and Chemical Stability. Cellulose 2002, 9, 41–53. [Google Scholar] [CrossRef]
- Potthast, A.; Rosenau, T.; Sixta, H.; Kosma, P. Degradation of Cellulosic Materials by Heating in DMAc/LiCl. Tetrahedron Lett. 2002, 43, 7757–7759. [Google Scholar] [CrossRef]
- Hu, X.; Du, Y.; Tang, Y.; Wang, Q.; Feng, T.; Yang, J.; Kennedy, J.F. Solubility and Property of Chitin in NaOH/Urea Aqueous Solution. Carbohydr. Polym. 2007, 70, 451–458. [Google Scholar] [CrossRef]
- Han, P.; Shi, J.; Nie, T.; Zhang, S.; Wang, X.; Yang, P.; Wu, H.; Jiang, Z. Conferring Natural-Derived Porous Microspheres with Surface Multifunctionality through Facile Coordination-Enabled Self-Assembly Process. ACS Appl. Mater. Interfaces 2016, 8, 8076–8085. [Google Scholar] [CrossRef]
- Duan, B.; Zheng, X.; Xia, Z.; Fan, X.; Guo, L.; Liu, J.; Wang, Y.; Ye, Q.; Zhang, L. Highly Biocompatible Nanofibrous Microspheres Self-Assembled from Chitin in NaOH/Urea Aqueous Solution as Cell Carriers. Angew. Chem. 2015, 127, 5241–5245. [Google Scholar] [CrossRef]
- Feng, M.; Lu, X.; Hou, D.; Zhang, S. Solubility, chain characterization, and derivatives of chitin. In Handbook of Chitin and Chitosan, 1st ed.; Gopi, S., Sabu, T., Pius, A., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2020; Volume 1, pp. 101–129. [Google Scholar]
- Fang, Y.; Duan, B.; Lu, A.; Liu, M.; Liu, H.; Xu, X.; Zhang, L. Intermolecular Interaction and the Extended Wormlike Chain Conformation of Chitin in NaOH/Urea Aqueous Solution. Biomacromolecules 2015, 16, 1410–1417. [Google Scholar] [CrossRef]
- Ding, B.; Cai, J.; Huang, J.; Zhang, L.; Chen, Y.; Shi, X.; Du, Y.; Kuga, S. Facile Preparation of Robust and Biocompatible Chitin Aerogels. J. Mater. Chem. 2012, 22, 5801–5809. [Google Scholar] [CrossRef]
- Ji, X.; Yuan, X.; Ma, L.; Bi, B.; Zhu, H.; Lei, Z.; Liu, W.; Pu, H.X.; Jiang, J.; Jiang, X.; et al. Mesenchymal Stem Cell-Loaded Thermosensitive Hydroxypropyl Chitin Hydrogel Combined with a Three-Dimensional-Printed Poly(ε-Caprolactone)/Nano-Hydroxyapatite Scaffold to Repair Bone Defects via Osteogenesis, Angiogenesis and Immunomodulation. Theranostics 2020, 10, 725–740. [Google Scholar] [CrossRef]
- Xu, Y.; Xu, Y.; Bi, B.; Hou, M.; Yao, L.; Du, Q.; He, A.; Liu, Y.; Miao, C.; Liang, X.; et al. A Moldable Thermosensitive Hydroxypropyl Chitin Hydrogel for 3D Cartilage Regeneration in Vitro and in Vivo. Acta Biomater. 2020, 108, 87–96. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Liu, S.; Li, B. Fabrication of Chitin Microspheres and Their Multipurpose Application as Catalyst Support and Adsorbent. Carbohydr. Polym. 2015, 120, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Shamshina, J.L.; Berton, P.; Gurau, G.; Rogers, R.D. Hydrogels Based on Cellulose and Chitin: Fabrication, Properties, and Applications. Green Chem. 2015, 18, 53–75. [Google Scholar] [CrossRef]
- Roy, J.C.; Salaün, F.; Giraud, S.; Ferri, A.; Chen, G.; Guan, J. Solubility of Chitin: Solvents, Solution Behaviors and Their Related Mechanisms. In Solubility of Polysaccharides, 1st ed.; Xu, Z., Ed.; IntechOpen Limited: London, UK, 2017; pp. 77–102. [Google Scholar]
- Kumar, P.T.S.; Abhilash, S.; Manzoor, K.; Nair, S.V.; Tamura, H.; Jayakumar, R. Preparation and Characterization of Novel β-Chitin/Nanosilver Composite Scaffolds for Wound Dressing Applications. Carbohydr. Polym. 2010, 80, 761–767. [Google Scholar] [CrossRef]
- Sudheesh Kumar, P.T.; Srinivasan, S.; Lakshmanan, V.K.; Tamura, H.; Nair, S.V.; Jayakumar, R. β-Chitin Hydrogel/Nano Hydroxyapatite Composite Scaffolds for Tissue Engineering Applications. Carbohydr. Polym. 2011, 85, 584–591. [Google Scholar] [CrossRef]
- Lee, S.B.; Kim, Y.H.; Chong, M.S.; Lee, Y.M. Preparation and Characteristics of Hybrid Scaffolds Composed of β-Chitin and Collagen. Biomaterials 2004, 25, 2309–2317. [Google Scholar] [CrossRef]
- Weng, J.; Wang, M. Producing Chitin Scaffolds with Controlled Pore Size and Interconnectivity for Tissue Engineering. J. Mater. Sci. Lett. 2001, 20, 1401–1403. [Google Scholar] [CrossRef]
- Tsioptsias, C.; Michailof, C.; Stauropoulos, G.; Panayiotou, C. Chitin and Carbon Aerogels from Chitin Alcogels. Carbohydr. Polym. 2009, 76, 535–540. [Google Scholar] [CrossRef]
- Chow, K.S.; Khor, E.; Chwee Aun Wan, A. Porous Chitin Matrices for Tissue Engineering: Fabrication and in vitro Cytotoxic Assessment. Poly. Res. 2001, 8, 27–35. [Google Scholar] [CrossRef]
- Abe, M.; Takahashi, M.; Tokura, S.; Tamura, H.; Nagano, A. Cartilage-Scaffold Composites Produced by Bioresorbable β-Chitin Sponge with Cultured Rabbit Chondrocytes. Tissue Eng. 2004, 10, 585–594. [Google Scholar] [CrossRef]
- Narayanan, K.B.; Zo, S.M.; Han, S.S. Novel Biomimetic Chitin-Glucan Polysaccharide Nano/Microfibrous Fungal-Scaffolds for Tissue Engineering Applications. Int. J. Biol. Macromol. 2020, 149, 724–731. [Google Scholar] [CrossRef]
- Gonçalves, C.; Silva, S.S.; Gomes, J.M.; Oliveira, I.M.; Canadas, R.F.; Maia, F.R.; Radhouani, H.; Reis, R.L.; Oliveira, J.M. Ionic Liquid-Mediated Processing of SAIB-Chitin Scaffolds. ACS Sustain. Chem. Eng. 2020, 8, 3986–3994. [Google Scholar] [CrossRef]
- Silva, S.S.; Duarte, A.R.C.; Carvalho, A.P.; Mano, J.F.; Reis, R.L. Green Processing of Porous Chitin Structures for Biomedical Applications Combining Ionic Liquids and Supercritical Fluid Technology. Acta Biomater. 2011, 7, 1166–1172. [Google Scholar] [CrossRef]
- Li, H.Y.; Li, H.; Wang, B.J.; Gu, Q.; Jiang, Z.Q.; Wu, X.D. Synthesis and Properties of Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate)/Chitin Nanocrystals Composite Scaffolds for Tissue Engineering. Chin. Chem. Lett. 2014, 25, 1635–1638. [Google Scholar] [CrossRef]
- Hariraksapitak, P.; Supaphol, P. Preparation and Properties of A-Chitin-Whisker-Reinforced Hyaluronan–Gelatin Nanocomposite Scaffolds. J. Appl. Polym. Sci. 2010, 117, 3406–3418. [Google Scholar] [CrossRef]
- Oryan, A.; Kamali, A.; Moshiri, A.; Baharvand, H.; Daemi, H. Chemical Crosslinking of Biopolymeric Scaffolds: Current Knowledge and Future Directions of Crosslinked Engineered Bone Scaffolds. Int. J. Biol. Macromol. 2018, 107, 678–688. [Google Scholar] [CrossRef]
- Ruini, F.; Tonda-Turo, C.; Chiono, V.; Ciardelli, G. Chitosan Membranes for Tissue Engineering: Comparison of Different Crosslinkers. Biomed. Mater. 2015, 10, 065002. [Google Scholar] [CrossRef]
- Krishnakumar, G.S.; Sampath, S.; Muthusamy, S.; John, M.A. Importance of Crosslinking Strategies in Designing Smart Biomaterials for Bone Tissue Engineering: A Systematic Review. Mater. Sci. Eng. C 2019, 96, 941–954. [Google Scholar] [CrossRef]
- Gomes, S.R.; Rodrigues, G.; Martins, G.G.; Henriques, C.M.R.; Silva, J.C. In Vitro Evaluation of Crosslinked Electrospun Fish Gelatin Scaffolds. Mater. Sci. Eng. C 2013, 33, 1219–1227. [Google Scholar] [CrossRef]
- Ratanavaraporn, J.; Rangkupan, R.; Jeeratawatchai, H.; Kanokpanont, S.; Damrongsakkul, S. Influences of Physical and Chemical Crosslinking Techniques on Electrospun Type A and B Gelatin Fiber Mats. Int. J. Biol. Macromol. 2010, 47, 431–438. [Google Scholar] [CrossRef]
- Tierney, C.M.; Haugh, M.G.; Liedl, J.; Mulcahy, F.; Hayes, B.; O’Brien, F.J. The Effects of Collagen Concentration and Crosslink Density on the Biological, Structural and Mechanical Properties of Collagen-GAG Scaffolds for Bone Tissue Engineering. J. Mech. Behav. Biomed. Mater. 2009, 2, 202–209. [Google Scholar] [CrossRef]
- Davidenko, N.; Bax, D.V.; Schuster, C.F.; Farndale, R.W.; Hamaia, S.W.; Best, S.M.; Cameron, R.E. Optimisation of UV Irradiation as a Binding Site Conserving Method for Crosslinking Collagen-Based Scaffolds. J. Mater. Sci. Mater. Med. 2016, 27, 14. [Google Scholar] [CrossRef]
- Kubyshkina, G.; Zupančič, B.; Štukelj, M.; Grošelj, D.; Marion, L.; Emri, I. The Influence of Different Sterilization Techniques on the Time-Dependent Behavior of Polyamides. J. Biomater. Nanobiotechnol. 2011, 2, 361–368. [Google Scholar] [CrossRef]
- Weadock, K.S.; Miller, E.J.; Bellincampi, L.D.; Zawadsky, J.P.; Dunn, M.G. Physical Crosslinking of Collagen Fibers: Comparison of Ultraviolet Irradiation and Dehydrothermal Treatment. J. Biomed. Mater. Res. 1995, 29, 1373–1379. [Google Scholar] [CrossRef] [PubMed]
- Bigi, A.; Cojazzi, G.; Panzavolta, S.; Rubini, K.; Roveri, N. Mechanical and Thermal Properties of Gelatin Films at Different Degrees of Glutaraldehyde Crosslinking. Biomaterials 2001, 22, 763–768. [Google Scholar] [CrossRef] [PubMed]
- Bigi, A.; Cojazzi, G.; Panzavolta, S.; Roveri, N.; Rubini, K. Stabilization of Gelatin Films by Crosslinking with Genipin. Biomaterials 2002, 23, 4827–4832. [Google Scholar] [CrossRef] [PubMed]
- Reddy, N.; Reddy, R.; Jiang, Q. Crosslinking Biopolymers for Biomedical Applications. Trends Biotechnol. 2015, 33, 362–369. [Google Scholar] [CrossRef] [PubMed]
- Cammarata, C.R.; Hughes, M.E.; Ofner, C.M. Carbodiimide Induced Cross-Linking, Ligand Addition, and Degradation in Gelatin. Mol. Pharm. 2015, 12, 783–793. [Google Scholar] [CrossRef] [PubMed]
- Pieper, J.S.; Hafmans, T.; Veerkamp, J.H.; Kuppevelt, T.H.V. Development of tailor-made collagen-glycosaminoglycan matrices: EDC/NHS crosslinking, and ultrastructural aspects. Biomaterials 2000, 21, 581–593. [Google Scholar] [CrossRef] [PubMed]
- Farr, N.; Pashneh-Tala, S.; Stehling, N.; Claeyssens, F.; Green, N.; Rodenburg, C. Characterizing Cross-Linking Within Polymeric Biomaterials in the SEM by Secondary Electron Hyperspectral Imaging. Macromol. Rapid Commun. 2020, 41, 1900484. [Google Scholar] [CrossRef] [PubMed]
- Eltom, A.; Zhong, G.; Muhammad, A. Scaffold Techniques and Designs in Tissue Engineering Functions and Purposes: A Review. Adv. Mater. Sci. Eng. 2019, 2019, 3429527. [Google Scholar] [CrossRef]
- Yadav, P.; Beniwal, G.; Saxena, K.K. A Review on Pore and Porosity in Tissue Engineering. Mater. Today Proc. 2021, 44, 2623–2628. [Google Scholar] [CrossRef]
- Suamte, L.; Tirkey, A.; Barman, J.; Jayasekhar Babu, P. Various Manufacturing Methods and Ideal Properties of Scaffolds for Tissue Engineering Applications. Smart Mater. Manuf. 2023, 1, 100011. [Google Scholar] [CrossRef]
- Ali, M.K.; Moshikur, R.M.; Goto, M. Surface-Active Ionic Liquids for Medical and Pharmaceutical Applications. In Application of Ionic Liquids in Drug Delivery, 1st ed.; Goto, M., Moniruzzaman, M., Eds.; Springer: Singapore, 2021; Volume 8, pp. 165–186. [Google Scholar]
- Azad, M.A.; Olawuni, D.; Kimbell, G.; Badruddoza, A.Z.M.; Hossain, M.S.; Sultana, T. Polymers for extrusion-based 3D printing of pharmaceuticals: A holistic materials–process perspective. Pharmaceutics 2020, 12, 124. [Google Scholar] [CrossRef]
- Huang, J.; Zhong, Y.; Lu, A.; Zhang, L.; Cai, J. Temperature and Time-Dependent Self-Assembly and Gelation Behavior of Chitin in Aqueous KOH/Urea Solution. Giant 2020, 4, 100038. [Google Scholar] [CrossRef]
- Tajiri, R.; Mihata, A.; Yamamoto, K.; Kadokawa, J.I. Facile Preparation of Chitin Gels with Calcium Bromide Dihydrate/Methanol Media and Their Efficient Conversion into Porous Chitins. RSC Adv. 2014, 4, 5542–5546. [Google Scholar] [CrossRef]
- Owens, G.J.; Singh, R.K.; Foroutan, F.; Alqaysi, M.; Han, C.M.; Mahapatra, C.; Kim, H.W.; Knowles, J.C. Sol-Gel Based Materials for Biomedical Applications. Prog. Mater. Sci. 2016, 77, 1–79. [Google Scholar] [CrossRef]
- Hench, L.L.; West, J.K. The Sol-Gel Process. Chem. Rev. 1990, 90, 33–72. [Google Scholar] [CrossRef]
- Vesvoranan, O.; Anup, A.; Hixon, K.R. Current Concepts and Methods in Tissue Interface Scaffold Fabrication. Biomimetics 2022, 7, 151. [Google Scholar] [CrossRef]
- Tsioptsias, C.; Panayiotou, C. Foaming of Chitin Hydrogels Processed by Supercritical Carbon Dioxide. J. Supercrit. Fluids 2008, 47, 302–308. [Google Scholar] [CrossRef]
- Mitchell, G.R.; Tojeira, A. 3rd International Conference on Tissue Engineering, ICTE2013 Role of Anisotropy in Tissue Engineering. Procedia Eng. 2013, 59, 117–125. [Google Scholar] [CrossRef]
- Stratton, S.; Shelke, N.B.; Hoshino, K.; Rudraiah, S.; Kumbar, S.G. Bioactive Polymeric Scaffolds for Tissue Engineering. Bioact. Mater. 2016, 1, 93–108. [Google Scholar] [CrossRef]
- Abdelwahed, W.; Degobert, G.; Stainmesse, S.; Fessi, H. Freeze-Drying of Nanoparticles: Formulation, Process and Storage Considerations. Adv. Drug Deliv. Rev. 2006, 58, 1688–1713. [Google Scholar] [CrossRef]
- Lanza, R.; Langer, R.; Vacanti, J.P.; Atala, A. Principles of Tissue Engineering, 5th ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2020; pp. 1–1678. [Google Scholar]
- Abascal, K.; Ganora, L.; Yarnell, E. The Effect of Freeze-Drying and Its Implications for Botanical Medicine: A Review. Phyther. Res. 2005, 19, 655–660. [Google Scholar] [CrossRef]
- Jain, S.; Savanth, R. Freeze Drying. World J. Pharm. Res. 2023, 4, 96–111. [Google Scholar]
- Chen, G.; Wang, W. Role of Freeze Drying in Nanotechnology. Dry. Technol. 2007, 25, 29–35. [Google Scholar] [CrossRef]
- Shao, G.; Hanaor, D.A.H.; Shen, X.; Gurlo, A. Freeze Casting: From Low-Dimensional Building Blocks to Aligned Porous Structures—A Review of Novel Materials, Methods, and Applications. Adv. Mater. 2020, 32, 1907176. [Google Scholar] [CrossRef]
- Kang, K.; Liu, Y.; Song, X.; Xu, L.; Zhang, W.; Jiao, Y.; Zhao, Y. Hemostatic Performance of Ɑ-Chitin/Gelatin Composite Sponges with Directional Pore Structure. Macromol. Biosci. 2022, 22, 2200020. [Google Scholar] [CrossRef]
- Bai, H.; Chen, Y.; Delattre, B.; Tomsia, A.P.; Ritchie, R.O. Bioinspired Large-Scale Aligned Porous Materials Assembled with Dual Temperature Gradients. Sci. Adv. 2015, 1, e1500849. [Google Scholar] [CrossRef]
- Bai, H.; Walsh, F.; Gludovatz, B.; Delattre, B.; Huang, C.; Chen, Y.; Tomsia, A.P.; Ritchie, R.O. Bioinspired Hydroxyapatite/Poly(Methyl Methacrylate) Composite with a Nacre-Mimetic Architecture by a Bidirectional Freezing Method. Adv. Mater. 2016, 28, 50–56. [Google Scholar] [CrossRef]
- Bitar, K.N.; Zakhem, E. Biomedical Engineering and Computational Biology Design Strategies of Biodegradable Scaffolds for Tissue Regeneration. Biomed. Eng. Comput. Biol. 2014, 6, 13–20. [Google Scholar] [CrossRef]
- Kurita, K.; Kaji, Y.; Mori, T.; Nishiyama, Y. Enzymatic Degradation of β-Chitin: Susceptibility and the Influence of Deacetylation. Carbohydr. Polym. 2000, 42, 19–21. [Google Scholar] [CrossRef]
- Beier, S.; Bertilsson, S. Bacterial Chitin Degradation-Mechanisms and Ecophysiological Strategies. Front. Microbiol. 2013, 4, 149. [Google Scholar] [CrossRef]
- Ren, D.; Yi, H.; Wang, W.; Ma, X. The Enzymatic Degradation and Swelling Properties of Chitosan Matrices with Different Degrees of N-Acetylation. Carbohydr. Res. 2005, 340, 2403–2410. [Google Scholar] [CrossRef]
- Zhang, H.; Neau, S.H. In Vitro Degradation of Chitosan by a Commercial Enzyme Preparation: Effect of Molecular Weight and Degree of Deacetylation. Biomaterials 2001, 22, 1653–1658. [Google Scholar] [CrossRef]
- Tomihata, K.; Ikada, Y. In Vitro and in Vivo Degradation of Films of Chitin and Its Deacetylated Derivatives. Biomaterials 1997, 18, 567–575. [Google Scholar] [CrossRef]
Entry | Scaffold | Cells | Result | Ref |
---|---|---|---|---|
1 | β-Chitin (%DA = 72.4)–nanosilver β-Chitin–nanohydroxyapatite | Vero cells (epithelial): A mammalian cell line | Cell attachment studies using vero (epithelial) cells showed that the cells were well attached to the scaffolds. | [81] |
2 | α-Chitin–nanohydroxyapatite | Cells were found to attach and spread on the scaffolds. | [57] | |
3 | β-Chitin–nanohydroxyapatite | The cell viability, attachment, and proliferation studies confirmed the cytocompatibility of scaffolds with well-improved cell attachment and proliferation. | [82] | |
4 | β-Chitin–nanodiopside–nanohydroxyapatite | MC3T3-E1: A mouse preosteoblast cell line | Cell studies proved the cytocompatibility of the composite scaffolds with improved cell adhesion. | [58] |
5 | β-Chitin–silk fibroin–mesoporous silicate | Cell studies proved the cytocompatible nature of the composite scaffolds with well-improved proliferation and cell attachment. | [61] | |
6 | β-Chitin–gelatin–nanohydroxyapatite | Cell studies demonstrated the cytocompatibility nature of the composite scaffolds. | [62] | |
7 | α-Chitin–nanobioactive glass ceramic | MG63: A human osteoblastic cell line (osteoblastic model) | Cell attachment studies indicated no sign of toxicity, and cell attachment to the pore walls. | [59] |
8 | α-Chitin–nanosilica | Biocompatible when tested with MG 63 cell line. | [31] | |
9 | α-Chitinnanohydroxyapatite | Cells were found to attach and spread on the scaffolds. | [57] | |
10 | β-Chitin–nanohydroxyapatite | The cell viability, attachment, and proliferation studies confirmed the cytocompatibility of scaffolds with well-improved cell attachment and proliferation. | [82] | |
11 | α-Chitin–pectin–CaCO3 nanopowder | Negligible toxicity towards cells. Cell attachment and proliferation studies showed that cells attached to the scaffolds and started to proliferate after 48 h of incubation. | [60] | |
12 | α-Chitin–nanohydroxyapatite | Human dermal fibroblasts (HDFs) | Cells were found to attach and spread on the scaffolds. | [57] |
13 | β-Chitin–nanohydroxyapatite | The cell viability, attachment, and proliferation studies confirmed the cytocompatibility of scaffolds with well-improved cell attachment and proliferation. | [82] | |
14 | Chitin–PHBV | Showed enhanced HDF cell attachment and proliferation. | [63] | |
15 | β-Chitin–collagen | Fibroblasts were attached to collagen-coated scaffolds, whereas cells did not attach and aggregate on the scaffold of chitin alone. | [83] | |
16 | Mycelial mats: α-Chitin–β-glucan | CRL 2310: Human keratinocyte cell line | Scaffolds seeded with keratinocytes showed deposition of extracellular matrix (ECM) components and the formation of cell sheets in 14 days. | [88] |
17 | α-Chitin–nanohydroxyapatite | NIH3T3: A fibroblast cell line | Cells were found to attach and spread on the scaffolds. | [57] |
18 | β-Chitin–nanohydroxyapatite | The cell viability, attachment, and proliferation studies confirmed the cytocompatibility of scaffolds with well-improved cell attachment and proliferation. | [82] | |
19 | α-Chitin–pectin–CaCO3 nanopowder | Negligible toxicity towards cells. Cell attachment and proliferation studies showed that cells attached to the scaffolds and started to proliferate after 48 h of incubation. | [60] | |
20 | α-Chitin | L929: A fibroblast cell line | Fibroblast cells were well attached to the chitin gels and maintained their normal morphologies compared with controls in normal culture plates. | [75] |
21 | α-Chitin | Produced materials had deficient cytotoxicity levels. | [90] | |
22 | α-Chitin–pectin–CaCO3 nanopowder | Negligible toxicity towards cells. Cell attachment and proliferation studies showed that cells attached to the scaffolds and started to proliferate after 48 h of incubation. | [60] | |
23 | α-Chitin–nanohydroxyapatite | CCL-1: Mouse fibroblasts | HA–chitin materials were non-cytotoxic. | [32] |
24 | α-Chitin–nanohydroxyapatite | CCL-186: Human lung fibroblast | HA–chitin materials were non-cytotoxic. | [32] |
25 | α-Chitin–nanohydroxyapatite | CRL-427: Human osteoblasts | Cells adhered, spread, and formed a monolayer on the surfaces of the matrixes, confirming cell proliferation. | [32] |
26 | α-Chitin–nanohydroxyapatite | CRL-1427: Human bone cell | HA–chitin materials were non-cytotoxic. | [32] |
27 | β-chitin sponge with a cartilage-like layer at its surface | Cultured rabbit chondrocytes | Culturing of cells directly with scaffold did not promote any visible cell damage. The cell layer at the surface of the β-chitin sponge was filled with chondrocytes and abundant extracellular matrix. | [87] |
28 | α-Chitin (%DA = 57.9)–sucrose acetate isobutyrate (SAIB) | hASC (also hADSC): Human adipose stem cells | The cells were able to spread in the scaffolds. Scaffolds were able to support cell viability and proliferation in culture with an osteoblastic cell line. Cell proliferation rates increased after 24 h, decreasing after 48 h. After 72 h of culture, cell proliferation improved. After 72 h of culture, cells were wholly adapted. | [89] |
29 | Chitin nanocrystals–poly(3-hydroxybutyrate-co-3-hydroxy valerate) (PHBV) | Scaffolds enhanced hADSC adhesion. | [91] | |
30 | α-Chitin whiskers–hyaluronan–gelatin | SaOS-2: Human osteosarcoma cells | The presence of the CWs (at 30%) was cytotoxic to cells; however, observation indicated that bone cells attached and proliferated well over scaffold surfaces. | [92] |
31 | α-Chitin–nanohydroxyapatite | MSCs: Mesenchymal stem cells in vivo rabbit femur model | Both cell-free and cell-loaded porous HA–chitin matrixes promoted the ingrowth of surrounding tissues, with the cell-loaded HA–chitin matrix being the better performer. | [32] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basak, T.; Shamshina, J.L. Design of Chitin Cell Culture Matrices for 3D Tissue Engineering: The Importance of Chitin Types, Solvents, Cross-Linkers, and Fabrication Techniques. Pharmaceutics 2024, 16, 777. https://doi.org/10.3390/pharmaceutics16060777
Basak T, Shamshina JL. Design of Chitin Cell Culture Matrices for 3D Tissue Engineering: The Importance of Chitin Types, Solvents, Cross-Linkers, and Fabrication Techniques. Pharmaceutics. 2024; 16(6):777. https://doi.org/10.3390/pharmaceutics16060777
Chicago/Turabian StyleBasak, Turna, and Julia L. Shamshina. 2024. "Design of Chitin Cell Culture Matrices for 3D Tissue Engineering: The Importance of Chitin Types, Solvents, Cross-Linkers, and Fabrication Techniques" Pharmaceutics 16, no. 6: 777. https://doi.org/10.3390/pharmaceutics16060777
APA StyleBasak, T., & Shamshina, J. L. (2024). Design of Chitin Cell Culture Matrices for 3D Tissue Engineering: The Importance of Chitin Types, Solvents, Cross-Linkers, and Fabrication Techniques. Pharmaceutics, 16(6), 777. https://doi.org/10.3390/pharmaceutics16060777