Formulation and Evaluation of Polysaccharide Microparticles for the Controlled Release of Propranolol Hydrochloride
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of PCH Microparticles
2.3. Entrapment Efficiency (%EE) and Drug Loading (%DL)
2.4. Particle Size Measurement
2.5. Swelling Study of PCH Microparticles
2.6. Rheological and Surface Tension Measurements
2.7. Differential Scanning Calorimetry
2.8. Fourier Transform Infrared (FTIR) Analysis
2.9. In Vitro Release Study
2.10. Scanning Electron Microscopy (SEM)
3. Results and Discussion
3.1. Preparation of PCH Microparticles
3.2. Entrapment Efficiency (%EE) and Drug Loading (%DL)
3.3. Microparticle Size Measurement
3.4. Swelling Study of PCH Microparticles
3.5. Rheological and Surface Tension Measurements
3.6. Differential Scanning Calorimetry
3.7. Fourier Transform Infrared (FTIR) Analysis
3.8. In Vitro Release Study
3.9. Scanning Electron Microscopy (SEM)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Allegaert, K.; Verbesselt, R.; Naulaers, G.; Van Den Anker, J.; Rayyan, M.; Debeer, A.; de Hoon, J. Developmental pharmacology: Neonates are not just small adults…. Acta Clin. Belg. 2008, 63, 16–24. [Google Scholar]
- Klassen, T.P.; Hartling, L.; Craig, J.C.; Offringa, M. Children are not just small adults: The urgent need for high-quality trial evidence in children. PLoS Med. 2008, 5, e172. [Google Scholar] [CrossRef] [PubMed]
- Golhen, K.; Buettcher, M.; Kost, J.; Huwyler, J.; Pfister, M. Meeting Challenges of Pediatric Drug Delivery: The Potential of Orally Fast Disintegrating Tablets for Infants and Children. Pharmaceutics 2023, 15, 1033. [Google Scholar] [CrossRef] [PubMed]
- Joseph, P.D.; Craig, J.C.; Caldwell, P.H. Clinical trials in children. Br. J. Clin. Pharmacol. 2015, 79, 357–369. [Google Scholar] [CrossRef]
- Cirri, M.; Maestrini, L.; Maestrelli, F.; Mennini, N.; Mura, P.; Ghelardini, C.; Di Cesare Mannelli, L. Design, characterization and in vivo evaluation of nanostructured lipid carriers (NLC) as a new drug delivery system for hydrochlorothiazide oral administration in pediatric therapy. Drug Deliv. 2018, 25, 1910–1921. [Google Scholar] [CrossRef] [PubMed]
- Pandolfini, C.; Bonati, M. A literature review on off-label drug use in children. Eur. J. Pediatr. 2005, 164, 552–558. [Google Scholar] [CrossRef] [PubMed]
- Standing, J.F.; Tuleu, C. Paediatric formulations—Getting to the heart of the problem. Int. J. Pharm. 2005, 300, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Hanning, S.M.; Lopez, F.L.; Wong, I.C.; Ernest, T.B.; Tuleu, C.; Gul, M.O. Patient centric formulations for paediatrics and geriatrics: Similarities and differences. Int. J. Pharm. 2016, 512, 355–359. [Google Scholar] [CrossRef] [PubMed]
- Harris, D.; Hermans, E.; Klein, S.; Wagner-Hattler, L.; Walsh, J. Age-appropriate solid oral formulations for pediatric applications with a focus on multiparticulates and minitablets: Summary of September 2019 EuPFI workshop. Eur. J. Pharm. Biopharm. 2020, 153, 222–225. [Google Scholar] [CrossRef]
- Khater, A.-J.; Almurisi, S.H.; Mahmood, S.; Alheibshy, F.; Alobaida, A.; Abdul-Halim, N.; Chatterjee, B. A review on taste masked multiparticulate dosage forms for paediatric. Int. J. Pharm. 2023, 632, 122571. [Google Scholar]
- Lopez, F.L.; Mistry, P.; Batchelor, H.K.; Bennett, J.; Coupe, A.; Ernest, T.B.; Orlu, M.; Tuleu, C. Acceptability of placebo multiparticulate formulations in children and adults. Sci. Rep. 2018, 8, 9210. [Google Scholar] [CrossRef] [PubMed]
- Mistry, P.; Batchelor, H. Evidence of acceptability of oral paediatric medicines: A review. J. Pharm. Pharmacol. 2017, 69, 361–376. [Google Scholar] [CrossRef] [PubMed]
- Hasnain, M.S.; Ahmed, S.A.; Beg, S.; Ansari, M.T.; Nayak, A.K. ‘Quality by design’ approach for development of multiparticulate drug delivery systems. In Pharmaceutical Quality by Design; Elsevier: Amsterdam, The Netherlands, 2019; pp. 351–365. [Google Scholar]
- Jadach, B.; Świetlik, W.; Froelich, A. Sodium alginate as a pharmaceutical excipient: Novel applications of a well-known polymer. J. Pharm. Sci. 2022, 111, 1250–1261. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, M.H.; Abdelnabi, D.M.; Elghamry, H.A. Response Surface Methodology for Optimization of Buspirone Hydrochloride-Loaded In Situ Gel for Pediatric Anxiety. Gels 2022, 8, 395. [Google Scholar] [CrossRef] [PubMed]
- Abdelkader, H.; Abdel-Aleem, J.A.; Mousa, H.S.; Elgendy, M.O.; Al Fatease, A.; Abou-Taleb, H.A. Captopril Polyvinyl Alcohol/Sodium Alginate/Gelatin-Based Oral Dispersible Films (ODFs) with Modified Release and Advanced Oral Bioavailability for the Treatment of Pediatric Hypertension. Pharmaceuticals 2023, 16, 1323. [Google Scholar] [CrossRef] [PubMed]
- Silva, P.M.; Neto, M.D.; Cerqueira, M.A.; Rodriguez, I.; Bourbon, A.I.; Azevedo, A.G.; Pastrana, L.M.; Coimbra, M.A.; Vicente, A.A.; Gonçalves, C. Resveratrol-loaded octenyl succinic anhydride modified starch emulsions and hydroxypropyl methylcellulose (HPMC) microparticles: Cytotoxicity and antioxidant bioactivity assessment after in vitro digestion. Int. J. Biol. Macromol. 2024, 259, 129288. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Brown, K.M.; Prud’homme, R.K. Characterization and Intermolecular Interactions of Hydroxypropyl Guar Solutions. Biomacromolecules 2002, 3, 456–461. [Google Scholar] [CrossRef] [PubMed]
- Shariatinia, Z. Pharmaceutical applications of chitosan. Adv. Colloid Interface Sci. 2019, 263, 131–194. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Xue, W.; Liu, Q.; Yu, W.; Fu, Y.; Xiong, X.; Ma, X.; Yuan, Q. Swelling behaviour of alginate–chitosan microcapsules prepared by external gelation or internal gelation technology. Carbohydr. Polym. 2004, 56, 459–464. [Google Scholar] [CrossRef]
- Brayfield, A. Martindale: The Complete Drug Reference; Pharmaceutical Press: London, UK, 2017. [Google Scholar]
- Cirri, M.; Mura, P.; Benedetti, S.; Buratti, S. Development of a Hydroxypropyl-β-Cyclodextrin-Based Liquid Formulation for the Oral Administration of Propranolol in Pediatric Therapy. Pharmaceutics 2023, 15, 2217. [Google Scholar] [CrossRef]
- delMoral-Sanchez, J.-M.; Gonzalez-Alvarez, I.; Gonzalez-Alvarez, M.; Navarro, A.; Bermejo, M. Classification of WHO essential oral medicines for children applying a provisional pediatric biopharmaceutics classification system. Pharmaceutics 2019, 11, 567. [Google Scholar] [CrossRef] [PubMed]
- Jagdale, S.C.; Agavekar, A.J.; Pandya, S.V.; Kuchekar, B.S.; Chabukswar, A.R. Formulation and evaluation of gastroretentive drug delivery system of propranolol hydrochloride. AAPS PharmSciTech 2009, 10, 1071–1079. [Google Scholar] [CrossRef] [PubMed]
- Cadena-Velandia, Z.G.; Montenegro-Alarcón, J.C.; Marquínez-Casas, X.; Mora-Huertas, C.E. Quercetin-loaded alginate microparticles: A contribution on the particle structure. J. Drug Deliv. Sci. Technol. 2020, 56, 101558. [Google Scholar] [CrossRef]
- Chandrasekar, V.; Coupland, J.N.; Anantheswaran, R.C. Characterization of nisin containing chitosan-alginate microparticles. Food Hydrocoll. 2017, 69, 301–307. [Google Scholar] [CrossRef]
- Yahoum, M.M.; Toumi, S.; Tahraoui, H.; Lefnaoui, S.; Kebir, M.; Amrane, A.; Assadi, A.A.; Zhang, J.; Mouni, L. Formulation and evaluation of xanthan gum microspheres for the sustained release of metformin hydrochloride. Micromachines 2023, 14, 609. [Google Scholar] [CrossRef] [PubMed]
- Tapia, C.; Molina, S.; Diaz, A.; Abugoch, L.; Diaz-Dosque, M.; Valenzuela, F.; Yazdani-Pedram, M. The effect of chitosan as internal or external coating on the 5-ASA release from calcium alginate microparticles. AAPS PharmSciTech 2010, 11, 1294–1305. [Google Scholar] [CrossRef]
- Čalija, B.; Cekić, N.; Savić, S.; Krajišnik, D.; Daniels, R.; Milić, J. An investigation of formulation factors affecting feasibility of alginate-chitosan microparticles for oral delivery of naproxen. Arch. Pharmacal Res. 2011, 34, 919–929. [Google Scholar] [CrossRef] [PubMed]
- Patel, N.; Lalwani, D.; Gollmer, S.; Injeti, E.; Sari, Y.; Nesamony, J. Development and evaluation of a calcium alginate based oral ceftriaxone sodium formulation. Prog. Biomater. 2016, 5, 117–133. [Google Scholar] [CrossRef] [PubMed]
- Anal, A.K.; Stevens, W.F.; Remunan-Lopez, C. Ionotropic cross-linked chitosan microspheres for controlled release of ampicillin. Int. J. Pharm. 2006, 312, 166–173. [Google Scholar] [CrossRef]
- Angadi, S.C.; Manjeshwar, L.S.; Aminabhavi, T.M. Novel composite blend microbeads of sodium alginate coated with chitosan for controlled release of amoxicillin. Int. J. Biol. Macromol. 2012, 51, 45–55. [Google Scholar] [CrossRef]
- Nayak, A.K.; Malakar, J.; Pal, D.; Hasnain, M.S.; Beg, S. Soluble starch-blended Ca2+-Zn2+-alginate composites-based microparticles of aceclofenac: Formulation development and in vitro characterization. Future J. Pharm. Sci. 2018, 4, 63–70. [Google Scholar] [CrossRef]
- Crcarevska, M.S.; Dodov, M.G.; Goracinova, K. Chitosan coated Ca–alginate microparticles loaded with budesonide for delivery to the inflamed colonic mucosa. Eur. J. Pharm. Biopharm. 2008, 68, 565–578. [Google Scholar]
- Cerveró, J.M.; Nogareda, J.; del Valle, E.M.M.; Galán, M.A. Development of a technology to produce monodispersed microparticles based on the formation of drops from viscous non-Newtonian liquids sprayed through a fan jet nozzle. Chem. Eng. J. 2011, 174, 699–708. [Google Scholar] [CrossRef]
- Davarcı, F.; Turan, D.; Ozcelik, B.; Poncelet, D. The influence of solution viscosities and surface tension on calcium-alginate microbead formation using dripping technique. Food Hydrocoll. 2017, 62, 119–127. [Google Scholar] [CrossRef]
- Kamaruddin, M.A.; Yusoff, M.S.; Aziz, H.A. Preparation and characterization of alginate beads by drop weight. Int. J. Technol. 2014, 5, 121–132. [Google Scholar] [CrossRef]
- Lencina, M.S.; Andreucetti, N.A.; Gómez, C.G.; Villar, M.A. Recent studies on alginates based blends, composites, and nanocomposites. In Advances in Natural Polymers: Composites and Nanocomposites; Springer: Berlin/Heidelberg, Germany, 2013; pp. 193–254. [Google Scholar]
- Abruzzo, A.; Nicoletta, F.P.; Dalena, F.; Cerchiara, T.; Luppi, B.; Bigucci, F. Bilayered buccal films as child-appropriate dosage form for systemic administration of propranolol. Int. J. Pharm. 2017, 531, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Raffin, R.; Colomé, L.; Haas, S.; Jornada, D.; Pohlmann, A.; Guterres, S. Development of HPMC and Eudragit S100® blended microparticles containing sodium pantoprazole. Die Pharm. Int. J. Pharm. Sci. 2007, 62, 361–364. [Google Scholar]
- Jovanović, M.; Tomić, N.; Cvijić, S.; Stojanović, D.; Ibrić, S.; Uskoković, P. Mucoadhesive gelatin buccal films with propranolol hydrochloride: Evaluation of mechanical, mucoadhesive, and biopharmaceutical properties. Pharmaceutics 2021, 13, 273. [Google Scholar] [CrossRef]
- Takka, S. Propranolol hydrochloride–anionic polymer binding interaction. Il Farm. 2003, 58, 1051–1056. [Google Scholar] [CrossRef]
- Račić, A.; Dukovski, B.J.; Lovrić, J.; Dobričić, V.; Vučen, S.; Micov, A.; Stepanović-Petrović, R.; Tomić, M.; Pecikoza, U.; Bajac, J. Synergism of polysaccharide polymers in antihistamine eye drops: Influence on physicochemical properties and in vivo efficacy. Int. J. Pharm. 2024, 655, 124033. [Google Scholar] [CrossRef]
- Oh, C.M.; Heng, P.W.S.; Chan, L.W. Influence of hydroxypropyl methylcellulose on metronidazole crystallinity in spray-congealed polyethylene glycol microparticles and its impact with various additives on metronidazole release. AAPS PharmSciTech 2015, 16, 1357–1367. [Google Scholar] [CrossRef] [PubMed]
- Shetty, G.R.; Rao, B.L.; Asha, S.; Wang, Y.; Sangappa, Y. Preparation and characterization of silk fibroin/hydroxypropyl methyl cellulose (HPMC) blend films. Fibers Polym. 2015, 16, 1734–1741. [Google Scholar] [CrossRef]
- Fontes, G.C.; Calado, V.M.A.; Rossi, A.M.; Rocha-Leão, M.H.M.d. Characterization of antibiotic-loaded alginate-OSA starch microbeads produced by ionotropic pregelation. BioMed Res. Int. 2013, 2013, 472626. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Gao, K.; Bai, Y.; Lei, L.; Jia, T.; Yang, K.; Xue, C. Microfluidic synthesis of chitosan-coated magnetic alginate microparticles for controlled and sustained drug delivery. Int. J. Biol. Macromol. 2021, 182, 639–647. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Liu, D.; Song, L.; Li, H.; Dai, S.; Su, Y.; Li, Q.; Li, J.; Zheng, T. Surface modified porous silicon with chitosan coating as a pH-responsive controlled delivery system for lutein. Food Funct. 2022, 13, 6129–6138. [Google Scholar] [CrossRef] [PubMed]
- Cekić, N.D.; Milić, J.R.; Savić, S.D.; Savić, M.M.; Jović, Ž.; Daniels, R. Influence of the preparation procedure and chitosan type on physicochemical properties and release behavior of alginate–chitosan microparticles. Drug Dev. Ind. Pharm. 2009, 35, 1092–1102. [Google Scholar] [CrossRef]
- Malatani, R.T.; Bilal, S.; Mahmood, A.; Sarfraz, R.M.; Zafar, N.; Ijaz, H.; Rehman, U.; Akbar, S.; Alkhalidi, H.M.; Gad, H.A. Development of tofacitinib loaded pH-responsive chitosan/mucin based hydrogel microparticles: In-vitro characterization and toxicological screening. Gels 2023, 9, 187. [Google Scholar] [CrossRef]
Formulation Code | Na-ag (%, w/w) | Calcium Chloride (%, w/w) | HPMC (%, w/w) | HPGG (%, w/w) |
---|---|---|---|---|
F1 | 1.5 | 1.5 | - | - |
F2 | 2 | 2 | - | - |
F3 | 4 | 4 | - | - |
F4 | 5 | 5 | - | - |
F5 | 6 | 6 | - | - |
F6 | 2 | 2 | 1 | - |
F7 | 2 | 2 | - | 0.25 |
F8 | 2 | 2 | 0.5 |
Formulation Code | Size (μm) * | EE (%) # | DL (%) # |
---|---|---|---|
F1 | 641 ± 7 | 21.3 ± 1.6 | 0.18 ± 0.02 |
F2 | 670 ± 10 | 54.9 ± 1.2 | 0.27 ± 0.02 |
F3 | 691 ± 19 | 31.5 ± 1.5 | 0.12 ± 0.01 |
F4 | 787 ± 12 | 47.2 ± 1.8 | 0.13 ± 0.03 |
F5 | 821 ± 23 | 51.0 ± 2.5 | 0.13 ± 0.01 |
F6 | 698 ± 12 | 65.0 ± 1.5 | 0.25 ± 0.01 |
F7 | 710 ± 25 | 55.8 ± 2.4 | 0.22 ± 0.02 |
F8 | 741 ± 33 | 49.1 ± 3.8 | 0.20 ± 0.02 |
Formulation Code | pH 1.2 | pH 6.8 |
---|---|---|
F2 | 71.6 | 399.3 |
F6 | 148.8 | 626.5 |
FC2 * | 98.05 | 278.23 |
FC6 * | 135.04 | 335.59 |
Polymer(s) Dispersion | Na-ag (%, w/w) | HPMC (%, w/w) | HPGG (%, w/w) | Viscosity (mPa·s) 1 |
---|---|---|---|---|
P1 | 1.5 | - | - | 37.46 ± 0.15 |
P2 | 2 | - | - | 73.74 ± 0.33 |
P3 | 4 | - | - | 212.97 ± 1.56 |
P4 | 5 | - | - | 802.70 ± 1.73 |
P5 | 6 | - | - | 1328.33 ± 4.04 |
P6 | 2 | 1 | - | 171.97 ± 0.81 |
P7 | 2 | - | 0.25 | 287.07 ± 0.21 |
P8 | 2 | - | 0.5 | 481.70 ± 2.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stojmenovski, A.; Gatarić, B.; Vučen, S.; Railić, M.; Krstonošić, V.; Kukobat, R.; Mirjanić, M.; Škrbić, R.; Račić, A. Formulation and Evaluation of Polysaccharide Microparticles for the Controlled Release of Propranolol Hydrochloride. Pharmaceutics 2024, 16, 788. https://doi.org/10.3390/pharmaceutics16060788
Stojmenovski A, Gatarić B, Vučen S, Railić M, Krstonošić V, Kukobat R, Mirjanić M, Škrbić R, Račić A. Formulation and Evaluation of Polysaccharide Microparticles for the Controlled Release of Propranolol Hydrochloride. Pharmaceutics. 2024; 16(6):788. https://doi.org/10.3390/pharmaceutics16060788
Chicago/Turabian StyleStojmenovski, Aneta, Biljana Gatarić, Sonja Vučen, Maja Railić, Veljko Krstonošić, Radovan Kukobat, Maja Mirjanić, Ranko Škrbić, and Anđelka Račić. 2024. "Formulation and Evaluation of Polysaccharide Microparticles for the Controlled Release of Propranolol Hydrochloride" Pharmaceutics 16, no. 6: 788. https://doi.org/10.3390/pharmaceutics16060788
APA StyleStojmenovski, A., Gatarić, B., Vučen, S., Railić, M., Krstonošić, V., Kukobat, R., Mirjanić, M., Škrbić, R., & Račić, A. (2024). Formulation and Evaluation of Polysaccharide Microparticles for the Controlled Release of Propranolol Hydrochloride. Pharmaceutics, 16(6), 788. https://doi.org/10.3390/pharmaceutics16060788