Lipid Biomimetic Models as Simple Yet Complex Tools to Predict Skin Permeation and Drug–Membrane Biophysical Interactions
Abstract
:1. Introduction
2. Composition and Molecular Assembly of the Stratum Corneum Lipid Matrix
3. Stratum Corneum Lipid Model Membranes
3.1. The Long Periodicity Phase (LPP)
3.2. The Short Periodicity Phase (SPP)
3.3. Cholesterol Influence on Stratum Corneum Lipid Assembly
3.4. Phase Separation and Promoters of Miscibility on Stratum Corneum Lipid Models
3.5. Ceramide Headgroup Influence on Stratum Corneum Assembly
3.6. Main Considerations for Stratum Corneum Barrier Function
4. Stratum Corneum Lipid Models as Surrogates for Permeation Studies
4.1. Spraying by Airbrush
4.2. Skin-Parallel Artificial Membrane Permeability Assay (Skin-PAMPATM)
4.3. Phospholipid Vesicle-Based Permeation Assay (PVPA)
5. Commercially Available and Patented Skin Models
6. Conclusions and Prospects
- (i)
- an increasingly mimetic composition and structure of SC ILM essential to reproduce its permeation barrier function. To this end, not only the lipid composition should be considered but also the protein fraction (e.g., keratin).
- (ii)
- adapting skin models to high-throughput screening. The integration of skin cell-free models into microfluidic chips that mimick the skin laminar flow can boost throughput and reduce cost, cut human intervention and errors, and set a new standard for skin permeation studies.
- (iii)
- adding a new dimension to skin permeation evaluations by providing molecular/biophysical insights into permeation, vital to predicting potential skin toxicity.
- (iv)
- investing in models that not only mimick healthy skin but also injured skin conditions that enable researchers to delve into the intricate dynamics of how various skin conditions influence compound permeation, offering invaluable insights into treatment efficacy and safety. Mimicking permeation behaviour in diseased skin aligns with the principles of personalised medicine, emphasising tailored treatments based on individual patient profiles and needs. This would empower researchers to deepen their understanding of how specific skin conditions impact barrier function and permeability, thereby facilitating the development of precise therapeutic interventions.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kolarsick, P.; Kolarsick, M.A.; Goodwin, C. Anatomy and Physiology of the Skin. J. Dermatol. Nurses’ Assoc. 2011, 3, 203–213. [Google Scholar] [CrossRef]
- Lopes, C.M.; Silva, J.; Real Oliveira, M.E.C.D.; Lúcio, M. Chapter 14—Lipid-based colloidal carriers for topical application of antiviral drugs. In Design of Nanostructures for Versatile Therapeutic Applications; Grumezescu, A.M., Ed.; William Andrew Publishing: Norwich, NY, USA, 2018; pp. 565–622. [Google Scholar] [CrossRef]
- Zaidi, Z.; Lanigan, S.W. Skin: Structure and Function. In Dermatology in Clinical Practice; Lanigan, S.W., Zaidi, Z., Eds.; Springer: London, UK, 2010; pp. 1–15. [Google Scholar] [CrossRef]
- Elias, P.M. Stratum Corneum Defensive Functions: An Integrated View. J. Investig. Dermatol. 2005, 125, 183–200. [Google Scholar] [CrossRef] [PubMed]
- Elias, P.M. Structure and function of the stratum corneum extracellular matrix. J. Investig. Dermatol. 2012, 132, 2131–2133. [Google Scholar] [CrossRef] [PubMed]
- Richard, C.; Cassel, S.; Blanzat, M. Vesicular systems for dermal and transdermal drug delivery. RSC Adv. 2020, 11, 442–451. [Google Scholar] [CrossRef] [PubMed]
- Souto, E.B.; Fangueiro, J.F.; Fernandes, A.R.; Cano, A.; Sanchez-Lopez, E.; Garcia, M.L.; Severino, P.; Paganelli, M.O.; Chaud, M.V.; Silva, A.M. Physicochemical and biopharmaceutical aspects influencing skin permeation and role of SLN and NLC for skin drug delivery. Heliyon 2022, 8, e08938. [Google Scholar] [CrossRef] [PubMed]
- Michaels, A.S.; Chandrasekaran, S.K.; Shaw, J.E. Drug permeation through human skin: Theory and invitro experimental measurement. AIChE J. 1975, 21, 985–996. [Google Scholar] [CrossRef]
- Baroli, B. Penetration of nanoparticles and nanomaterials in the skin: Fiction or reality? J. Pharm. Sci. 2010, 99, 21–50. [Google Scholar] [CrossRef] [PubMed]
- Walters, K.A.; Roberts, M.S. The structure and function of skin. In Dermatological and Transdermal Formulations; Walters, K.A., Ed.; Marcel Dekker: New York, NY, USA, 2002; pp. 1–41. [Google Scholar]
- Neupane, R.; Boddu, S.H.S.; Renukuntla, J.; Babu, R.J.; Tiwari, A.K. Alternatives to Biological Skin in Permeation Studies: Current Trends and Possibilities. Pharmaceutics 2020, 12, 152. [Google Scholar] [CrossRef] [PubMed]
- Schmid-Wendtner, M.H.; Korting, H.C. The pH of the Skin Surface and Its Impact on the Barrier Function. Ski. Pharmacol. Physiol. 2006, 19, 296–302. [Google Scholar] [CrossRef] [PubMed]
- Wagner, H.; Kostka, K.-H.; Lehr, C.-M.; Schaefer, U.F. pH profiles in human skin: Influence of two in vitro test systems for drug delivery testing. Eur. J. Pharm. Biopharm. 2003, 55, 57–65. [Google Scholar] [CrossRef]
- Lee, S.H.; Jeong, S.K.; Ahn, S.K. An Update of the Defensive Barrier Function of Skin. Yonsei Med. J. 2006, 47, 293–306. [Google Scholar] [CrossRef] [PubMed]
- Blank, H.I. Measurement of pH of the skin surface. J. Investig. Dermatol. 1939, 2, 67–79. [Google Scholar] [CrossRef]
- Schaefer, H.; Redelmeier, T.E.; Lademann, J. Skin Penetration. In Contact Dermatitis; Johansen, J.D., Frosch, P.J., Lepoittevin, J.-P., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 215–227. [Google Scholar] [CrossRef]
- Jepps, O.G.; Dancik, Y.; Anissimov, Y.G.; Roberts, M.S. Modeling the human skin barrier—Towards a better understanding of dermal absorption. Adv. Drug Deliv. Rev. 2013, 65, 152–168. [Google Scholar] [CrossRef]
- Supe, S.; Takudage, P. Methods for evaluating penetration of drug into the skin: A review. Ski. Res. Technol. Off. J. Int. Soc. Bioeng. Ski. 2021, 27, 299–308. [Google Scholar] [CrossRef] [PubMed]
- Nategholeslam, M.; Gray, C.G.; Tomberli, B. Stiff Spring Approximation Revisited: Inertial Effects in Nonequilibrium Trajectories. J. Phys. Chem. B 2017, 121, 391–403. [Google Scholar] [CrossRef] [PubMed]
- Lundborg, M.; Wennberg, C.L.; Narangifard, A.; Lindahl, E.; Norlen, L. Predicting drug permeability through skin using molecular dynamics simulation. J. Control. Release 2018, 283, 269–279. [Google Scholar] [CrossRef] [PubMed]
- Abraham, M.H.; Martins, F. Human skin permeation and partition: General linear free-energy relationship analyses. J. Pharm. Sci. 2004, 93, 1508–1523. [Google Scholar] [CrossRef] [PubMed]
- Mitragotri, S.; Edwards, D.A.; Blankschtein, D.; Langer, R. A mechanistic study of ultrasonically-enhanced transdermal drug delivery. J. Pharm. Sci. 1995, 84, 697–706. [Google Scholar] [CrossRef] [PubMed]
- Schmook, F.P.; Meingassner, J.G.; Billich, A. Comparison of human skin or epidermis models with human and animal skin in in-vitro percutaneous absorption. Int. J. Pharm. 2001, 215, 51–56. [Google Scholar] [CrossRef]
- Catz, P.; Friend, D.R. Transdermal delivery of levonorgestrel. VIII. Effect of enhancers on rat skin, hairless mouse skin, hairless guinea pig skin, and human skin. Int. J. Pharm. 1990, 58, 93–102. [Google Scholar] [CrossRef]
- Chilcott, R.P.; Barai, N.; Beezer, A.E.; Brain, S.I.; Brown, M.B.; Bunge, A.L.; Burgess, S.E.; Cross, S.; Dalton, C.H.; Dias, M.; et al. Inter- and intralaboratory variation of in vitro diffusion cell measurements: An international multicenter study using quasi-standardized methods and materials. J. Pharm. Sci. 2005, 94, 632–638. [Google Scholar] [CrossRef] [PubMed]
- Haq, A.; Goodyear, B.; Ameen, D.; Joshi, V.; Michniak-Kohn, B. Strat-M® synthetic membrane: Permeability comparison to human cadaver skin. Int. J. Pharm. 2018, 547, 432–437. [Google Scholar] [CrossRef]
- EC1223/2009; Cosmetic Products Regulation. European Parliament, Council of the European Union: Brussels, Belgium, 2009.
- EC1907/2006; Registration, Evaluation, Authorization and Restriction of Chemicals (REACH). European Parliament, Council of the European Union: Brussels, Belgium, 2006.
- Silva, R.J.; Tamburic, S. A State-of-the-Art Review on the Alternatives to Animal Testing for the Safety Assessment of Cosmetics. Cosmetics 2022, 9, 90. [Google Scholar] [CrossRef]
- de Jager, M.; Groenink, W.; Bielsa i Guivernau, R.; Andersson, E.; Angelova, N.; Ponec, M.; Bouwstra, J. A novel in vitro percutaneous penetration model: Evaluation of barrier properties with p-aminobenzoic acid and two of its derivatives. Pharm. Res. 2006, 23, 951–960. [Google Scholar] [CrossRef] [PubMed]
- Kessner, D.; Ruettinger, A.; Kiselev, M.A.; Wartewig, S.; Neubert, R.H. Properties of ceramides and their impact on the stratum corneum structure. Part 2: Stratum corneum lipid model systems. Ski. Pharmacol. Physiol. 2008, 21, 58–74. [Google Scholar] [CrossRef] [PubMed]
- Bouwstra, J.A.; Gooris, G.S. The Lipid Organisation in Human Stratum Corneum and Model Systems. Open Dermatol. J. 2010, 4, 10–13. [Google Scholar] [CrossRef]
- Bouwstra, J.; Pilgram, G.; Gooris, G.; Koerten, H.; Ponec, M. New aspects of the skin barrier organization. Ski. Pharmacol. Appl. Ski. Physiol. 2001, 14 (Suppl. 1), 52–62. [Google Scholar] [CrossRef]
- Schmitt, T.; Neubert, R.H.H. State of the Art in Stratum Corneum Research. Part II: Hypothetical Stratum Corneum Lipid Matrix Models. Ski. Pharmacol. Physiol. 2020, 33, 213–230. [Google Scholar] [CrossRef]
- Schroeter, A.; Eichner, A.; Mueller, J.; Neubert, R.H.H. The Importance of Stratum Corneum Lipid Organization for Proper Barrier Function. In Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement; Dragicevic, N., Maibach, H.I., Eds.; Springer-Verlag: Berlin/Heidelberg, Germany, 2015; pp. 19–38. [Google Scholar] [CrossRef]
- Kovacik, A.; Pullmannova, P.; Pavlikova, L.; Maixner, J.; Vavrova, K. Behavior of 1-Deoxy-, 3-Deoxy- and N-Methyl-Ceramides in Skin Barrier Lipid Models. Sci. Rep. 2020, 10, 3832. [Google Scholar] [CrossRef]
- Kovacik, A.; Pullmannova, P.; Opalka, L.; Silarova, M.; Maixner, J.; Vavrova, K. Effects of (R)- and (S)-alpha-Hydroxylation of Acyl Chains in Sphingosine, Dihydrosphingosine, and Phytosphingosine Ceramides on Phase Behavior and Permeability of Skin Lipid Models. Int. J. Mol. Sci. 2021, 22, 7468. [Google Scholar] [CrossRef]
- van Smeden, J.; Hoppel, L.; van der Heijden, R.; Hankemeier, T.; Vreeken, R.J.; Bouwstra, J.A. LC/MS analysis of stratum corneum lipids: Ceramide profiling and discovery. J. Lipid Res. 2011, 52, 1211–1221. [Google Scholar] [CrossRef]
- Masukawa, Y.; Narita, H.; Shimizu, E.; Kondo, N.; Sugai, Y.; Oba, T.; Homma, R.; Ishikawa, J.; Takagi, Y.; Kitahara, T.; et al. Characterization of overall ceramide species in human stratum corneum. J. Lipid Res. 2008, 49, 1466–1476. [Google Scholar] [CrossRef] [PubMed]
- Rabionet, M.; Gorgas, K.; Sandhoff, R. Ceramide synthesis in the epidermis. Biochim. Biophys. Acta 2014, 1841, 422–434. [Google Scholar] [CrossRef]
- van Smeden, J.; Boiten, W.A.; Hankemeier, T.; Rissmann, R.; Bouwstra, J.A.; Vreeken, R.J. Combined LC/MS-platform for analysis of all major stratum corneum lipids, and the profiling of skin substitutes. Biochim. Biophys. Acta 2014, 1841, 70–79. [Google Scholar] [CrossRef]
- Engelbrecht, T.N.; Schroeter, A.; Hauß, T.; Demé, B.; Scheidt, H.A.; Huster, D.; Neubert, R.H.H. The impact of ceramides NP and AP on the nanostructure of stratum corneum lipid bilayer. Part I: Neutron diffraction and 2H NMR studies on multilamellar models based on ceramides with symmetric alkyl chain length distribution. Soft Matter 2012, 8, 6599–6607. [Google Scholar] [CrossRef]
- Bouwstra, J.A.; Gooris, G.S.; Dubbelaar, F.E.R.; Weerheim, A.M.; Ijzerman, A.P.; Ponec, M. Role of ceramide 1 in the molecular organization of the stratum corneum lipids. J. Lipid Res. 1998, 39, 186–196. [Google Scholar] [CrossRef] [PubMed]
- de Jager, M.; Gooris, G.; Ponec, M.; Bouwstra, J. Acylceramide head group architecture affects lipid organization in synthetic ceramide mixtures. J. Investig. Dermatol. 2004, 123, 911–916. [Google Scholar] [CrossRef]
- Ruettinger, A.; Kiselev, M.A.; Hauss, T.; Dante, S.; Balagurov, A.M.; Neubert, R.H. Fatty acid interdigitation in stratum corneum model membranes: A neutron diffraction study. Eur. Biophys. J. 2008, 37, 759–771. [Google Scholar] [CrossRef] [PubMed]
- Flach, C.R.; Mendelsohn, R.; Rerek, M.E.; Moore, D.J. Biophysical studies of model stratum corneum lipid monolayers by infrared reflection-absorption spectroscopy and Brewster angle microscopy. J. Phys. Chem. B 2000, 104, 2159–2165. [Google Scholar] [CrossRef]
- Bouwstra, J.A.; Gooris, G.S.; van der Spek, J.A.; Bras, W. Structural investigations of human stratum corneum by small-angle X-ray scattering. J. Investig. Dermatol. 1991, 97, 1005–1012. [Google Scholar] [CrossRef]
- Percot, A.; Lafleur, M. Direct observation of domains in model stratum corneum lipid mixtures by Raman microspectroscopy. Biophys. J. 2001, 81, 2144–2153. [Google Scholar] [CrossRef] [PubMed]
- de Jager, M.W.; Gooris, G.S.; Ponec, M.; Bouwstra, J.A. Lipid mixtures prepared with well-defined synthetic ceramides closely mimic the unique stratum corneum lipid phase behavior. J. Lipid Res. 2005, 46, 2649–2656. [Google Scholar] [CrossRef] [PubMed]
- Bouwstra, J.A.; Gooris, G.S.; Dubbelaar, F.E.; Ponec, M. Phase behavior of stratum corneum lipid mixtures based on human ceramides: The role of natural and synthetic ceramide 1. J. Investig. Dermatol. 2002, 118, 606–617. [Google Scholar] [CrossRef] [PubMed]
- Bouwstra, J.A.; Gooris, G.S.; Dubbelaar, F.E.R.; Ponec, M. Phase behavior of lipid mixtures based on human ceramides: Coexistence of crystalline and liquid phases. J. Lipid Res. 2001, 42, 1759–1770. [Google Scholar] [CrossRef] [PubMed]
- de Jager, M.W.; Gooris, G.S.; Dolbnya, I.P.; Bras, W.; Ponec, M.; Bouwstra, J.A. The phase behaviour of skin lipid mixtures based on synthetic ceramides. Chem. Phys. Lipids 2003, 124, 123–134. [Google Scholar] [CrossRef] [PubMed]
- de Jager, M.W.; Gooris, G.S.; Dolbnya, I.P.; Ponec, M.; Bouwstra, J.A. Modelling the stratum corneum lipid organisation with synthetic lipid mixtures: The importance of synthetic ceramide composition. Biochim. Biophys. Acta 2004, 1664, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Gooris, G.S.; Bouwstra, J.A. Infrared spectroscopic study of stratum corneum model membranes prepared from human ceramides, cholesterol, and fatty acids. Biophys. J. 2007, 92, 2785–2795. [Google Scholar] [CrossRef] [PubMed]
- Bouwstra, J.A.; Gooris, G.S.; Cheng, K.; Weerheim, A.; Bras, W.; Ponec, M. Phase behavior of isolated skin lipids. J. Lipid Res. 1996, 37, 999–1011. [Google Scholar] [CrossRef] [PubMed]
- McIntosh, T.J.; Stewart, M.E.; Downing, D.T. X-ray diffraction analysis of isolated skin lipids: Reconstitution of intercellular lipid domains. Biochemistry 1996, 35, 3649–3653. [Google Scholar] [CrossRef]
- McIntosh, T.J. Organization of skin stratum corneum extracellular lamellae: Diffraction evidence for asymmetric distribution of cholesterol. Biophys. J. 2003, 85, 1675–1681. [Google Scholar] [CrossRef]
- de Jager, M.; Groenink, W.; van der Spek, J.; Janmaat, C.; Gooris, G.; Ponec, M.; Bouwstra, J. Preparation and characterization of a stratum corneum substitute for in vitro percutaneous penetration studies. Biochim. Biophys. Acta 2006, 1758, 636–644. [Google Scholar] [CrossRef] [PubMed]
- Kessner, D.; Kiselev, M.; Dante, S.; Hauss, T.; Lersch, P.; Wartewig, S.; Neubert, R.H. Arrangement of ceramide [EOS] in a stratum corneum lipid model matrix: New aspects revealed by neutron diffraction studies. Eur. Biophys. J. 2008, 37, 989–999. [Google Scholar] [CrossRef] [PubMed]
- Schroter, A.; Kessner, D.; Kiselev, M.A.; Hauss, T.; Dante, S.; Neubert, R.H. Basic nanostructure of stratum corneum lipid matrices based on ceramides [EOS] and [AP]: A neutron diffraction study. Biophys. J. 2009, 97, 1104–1114. [Google Scholar] [CrossRef] [PubMed]
- Kiselev, M.A.; Ryabova, N.Y.; Balagurov, A.M.; Dante, S.; Hauss, T.; Zbytovska, J.; Wartewig, S.; Neubert, R.H. New insights into the structure and hydration of a stratum corneum lipid model membrane by neutron diffraction. Eur. Biophys. J. 2005, 34, 1030–1040. [Google Scholar] [CrossRef] [PubMed]
- Groen, D.; Gooris, G.S.; Bouwstra, J.A. New insights into the stratum corneum lipid organization by X-ray diffraction analysis. Biophys. J. 2009, 97, 2242–2249. [Google Scholar] [CrossRef] [PubMed]
- Schroeter, A.; Kiselev, M.A.; Hauss, T.; Dante, S.; Neubert, R.H. Evidence of free fatty acid interdigitation in stratum corneum model membranes based on ceramide [AP] by deuterium labelling. Biochim. Biophys. Acta 2009, 1788, 2194–2203. [Google Scholar] [CrossRef] [PubMed]
- Kessner, D.; Kiselev, M.A.; Hauss, T.; Dante, S.; Wartewig, S.; Neubert, R.H. Localisation of partially deuterated cholesterol in quaternary SC lipid model membranes: A neutron diffraction study. Eur. Biophys. J. 2008, 37, 1051–1057. [Google Scholar] [CrossRef] [PubMed]
- Zemlyanaya, E.V.; Kiselev, M.A.; Neubert, R.; Kohlbrecher, J.; Aksenov, V.L. Investigation of the structure and properties of model membranes of the stratum corneum by small-angle neutron scattering. J. Surf. Investig. X-ray Synchrotron Neutron Tech. 2008, 2, 884–889. [Google Scholar] [CrossRef]
- Zbytovská, J.; Vávrová, K.; Kiselev, M.A.; Lessieur, P.; Wartewig, S.; Neubert, R.H.H. The effects of transdermal permeation enhancers on thermotropic phase behaviour of a stratum corneum lipid model. Colloids Surf. A 2009, 351, 30–37. [Google Scholar] [CrossRef]
- Zbytovská, J.; Kiselev, M.A.; Funari, S.S.; Garamus, V.M.; Wartewig, S.; Palát, K.; Neubert, R. Influence of cholesterol on the structure of stratum corneum lipid model membrane. Colloids Surf. A 2008, 328, 90–99. [Google Scholar] [CrossRef]
- Chen, H.; Mendelsohn, R.; Rerek, M.E.; Moore, D.J. Effect of cholesterol on miscibility and phase behavior in binary mixtures with synthetic ceramide 2 and octadecanoic acid. Infrared studies. Biochim. Biophys. Acta 2001, 1512, 345–356. [Google Scholar] [CrossRef] [PubMed]
- Fenske, D.B.; Thewalt, J.L.; Bloom, M.; Kitson, N. Models of stratum corneum intercellular membranes: 2H NMR of macroscopically oriented multilayers. Biophys. J. 1994, 67, 1562–1573. [Google Scholar] [CrossRef] [PubMed]
- Lafleur, M. Phase behaviour of model stratum corneum lipid mixtures: An infrared spectroscopy investigation. Can. J. Chem. 1998, 76, 1501–1511. [Google Scholar] [CrossRef]
- Moore, D.J.; Rerek, M.E. Insights into the molecular organization of lipids in the skin barrier from infrared spectroscopy studies of stratum corneum lipid models. Acta Derm.-Venereol. Suppl. 2000, 208, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Kitson, N.; Thewalt, J.; Lafleur, M.; Bloom, M. A model membrane approach to the epidermal permeability barrier. Biochemistry 1994, 33, 6707–6715. [Google Scholar] [CrossRef] [PubMed]
- Velkova, V.; Lafleur, M. Influence of the lipid composition on the organization of skin lipid model mixtures: An infrared spectroscopy investigation. Chem. Phys. Lipids 2002, 117, 63–74. [Google Scholar] [CrossRef] [PubMed]
- Abraham, W.; Downing, D.T. Deuterium NMR investigation of polymorphism in stratum corneum lipids. Biochim. Biophys. Acta 1991, 1068, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Rerek, M.E.; Van Wyck, D.; Mendelsohn, R.; Moore, D.J. FTIR spectroscopic studies of lipid dynamics in phytosphingosine ceramide models of the stratum corneum lipid matrix. Chem. Phys. Lipids 2005, 134, 51–58. [Google Scholar] [CrossRef]
- Engstrom, S.; Ekelund, K.; Engblom, J.; Eriksson, L.; Sparr, E.; Wennerstrom, H. The skin barrier from a lipid perspective. Acta Derm.-Venereol. Suppl. 2000, 208, 31–35. [Google Scholar] [CrossRef]
- Brief, E.; Kwak, S.; Cheng, J.T.; Kitson, N.; Thewalt, J.; Lafleur, M. Phase behavior of an equimolar mixture of N-palmitoyl-D-erythro-sphingosine, cholesterol, and palmitic acid, a mixture with optimized hydrophobic matching. Langmuir 2009, 25, 7523–7532. [Google Scholar] [CrossRef]
- ten Grotenhuis, E.; Demel, R.A.; Ponec, M.; Boer, D.R.; van Miltenburg, J.C.; Bouwstra, J.A. Phase behavior of stratum corneum lipids in mixed Langmuir-Blodgett monolayers. Biophys. J. 1996, 71, 1389–1399. [Google Scholar] [CrossRef] [PubMed]
- Groen, D.; Gooris, G.S.; Ponec, M.; Bouwstra, J.A. Two new methods for preparing a unique stratum corneum substitute. Biochim. Biophys. Acta 2008, 1778, 2421–2429. [Google Scholar] [CrossRef] [PubMed]
- Sinko, B.; Kokosi, J.; Avdeef, A.; Takacs-Novak, K. A PAMPA study of the permeability-enhancing effect of new ceramide analogues. Chem. Biodivers. 2009, 6, 1867–1874. [Google Scholar] [CrossRef] [PubMed]
- Norlen, L.; Engblom, J. Structure-related aspects on water diffusivity in fatty acid-soap and skin lipid model systems. J. Control. Release 2000, 63, 213–226. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Castellano, A.; Cortell-Ivars, C.; Lopez-Carballo, G.; Herraez-Dominguez, M. The influence of Span20 on stratum corneum lipids in langmuir monolayers: Comparison with Azone. Int. J. Pharm. 2000, 203, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Laugel, C.; Yagoubi, N.; Baillet, A. ATR-FTIR spectroscopy: A chemometric approach for studying the lipid organisation of the stratum corneum. Chem. Phys. Lipids 2005, 135, 55–68. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Ashcraft, J.N.; Verploegen, E.; Pashkovski, E.; Weitz, D.A. Permeability of model stratum corneum lipid membrane measured using quartz crystal microbalance. Langmuir 2009, 25, 5762–5766. [Google Scholar] [CrossRef] [PubMed]
- Moore, D.J.; Snyder, R.G.; Rerek, M.E.; Mendelsohn, R. Kinetics of membrane raft formation: Fatty acid domains in stratum corneum lipid models. J. Phys. Chem. B 2006, 110, 2378–2386. [Google Scholar] [CrossRef] [PubMed]
- Sparr, E.; Eriksson, L.; Bouwstra, J.A.; Ekelund, K. AFM Study of Lipid Monolayers: III. Phase Behavior of Ceramides, Cholesterol and Fatty Acids. Langmuir 2000, 17, 164–172. [Google Scholar] [CrossRef]
- Neubert, R.; Rettig, W.; Wartewig, S.; Wegener, M.; Wienhold, A. Structure of stratum corneum lipids characterized by FT-Raman spectroscopy and DSC. II. Mixtures of ceramides and saturated fatty acids. Chem. Phys. Lipids 1997, 89, 3–14. [Google Scholar] [CrossRef]
- Wartewig, S.; Neubert, R.; Rettig, W.; Hesse, K. Structure of stratum corneum lipids characterized by FT-Raman spectroscopy and DSC. IV. Mixtures of ceramides and oleic acid. Chem. Phys. Lipids 1998, 91, 145–152. [Google Scholar] [CrossRef]
- Trommer, H.; Wartewig, S.; Bottcher, R.; Poppl, A.; Hoentsch, J.; Ozegowski, J.H.; Neubert, R.H. The effects of hyaluronan and its fragments on lipid models exposed to UV irradiation. Int. J. Pharm. 2003, 254, 223–234. [Google Scholar] [CrossRef] [PubMed]
- Trommer, H.; Bottcher, R.; Poppl, A.; Hoentsch, J.; Wartewig, S.; Neubert, R.H. Role of ascorbic acid in stratum corneum lipid models exposed to UV irradiation. Pharm. Res. 2002, 19, 982–990. [Google Scholar] [CrossRef] [PubMed]
- Narayanan, S.; Hunerbein, A.; Getie, M.; Jackel, A.; Neubert, R.H. Scavenging properties of metronidazole on free oxygen radicals in a skin lipid model system. J. Pharm. Pharmacol. 2007, 59, 1125–1130. [Google Scholar] [CrossRef] [PubMed]
- Rowat, A.C.; Kitson, N.; Thewalt, J.L. Interactions of oleic acid and model stratum corneum membranes as seen by 2H NMR. Int. J. Pharm. 2006, 307, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Pilgram, G.S.K.; Pelt, A.M.E.-v.; Oostergetel, G.T.; Koerten, H.K.; Bouwstra, J.A. Study on the lipid organization of stratum corneum lipid models by (cryo-) electron diffraction. J. Lipid Res. 1998, 39, 1669–1676. [Google Scholar] [CrossRef] [PubMed]
- Plasencia, I.; Norlen, L.; Bagatolli, L.A. Direct visualization of lipid domains in human skin stratum corneum’s lipid membranes: Effect of pH and temperature. Biophys. J. 2007, 93, 3142–3155. [Google Scholar] [CrossRef] [PubMed]
- Glombitza, B.; Muller-Goymann, C.C. Influence of different ceramides on the structure of in vitro model lipid systems of the stratum corneum lipid matrix. Chem. Phys. Lipids 2002, 117, 29–44. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.-K.; Hong, M.-S.; Kim, Y.-B.; Han, S.-K. Effect of penetration enhancers (pyrrolidone derivatives) on multilamellar liposomes of stratum corneum lipid: A study by UV spectroscopy and differential scanning calorimetry. Int. J. Pharm. 1993, 95, 43–50. [Google Scholar] [CrossRef]
- de la Maza, A.; Manich, A.M.; Coderch, L.; Bosch, P.; Parra, J.L. The formation of liposomes in vitro by mixtures of lipids modeling the composition of the stratum corneum. Colloids Surf. A 1995, 101, 9–19. [Google Scholar] [CrossRef]
- Hatfield, R.M.; Fung, L.W. Molecular properties of a stratum corneum model lipid system: Large unilamellar vesicles. Biophys. J. 1995, 68, 196–207. [Google Scholar] [CrossRef] [PubMed]
- Trommer, H.; Bottcher, R.; Huschka, C.; Wohlrab, W.; Neubert, R.H. Further investigations on the role of ascorbic acid in stratum corneum lipid models after UV exposure. J. Pharm. Pharmacol. 2005, 57, 963–972. [Google Scholar] [CrossRef] [PubMed]
- de Jager, M.W.; Gooris, G.S.; Dolbnya, I.P.; Bras, W.; Ponec, M.; Bouwstra, J.A. Novel lipid mixtures based on synthetic ceramides reproduce the unique stratum corneum lipid organization. J. Lipid Res. 2004, 45, 923–932. [Google Scholar] [CrossRef] [PubMed]
- Bouwstra, J.A.; Dubbelaar, F.E.; Gooris, G.S.; Weerheim, A.M.; Ponec, M. The role of ceramide composition in the lipid organisation of the skin barrier. Biochim. Biophys. Acta 1999, 1419, 127–136. [Google Scholar] [CrossRef]
- Janssens, M.; Gooris, G.S.; Bouwstra, J.A. Infrared spectroscopy studies of mixtures prepared with synthetic ceramides varying in head group architecture: Coexistence of liquid and crystalline phases. Biochim. Biophys. Acta 2009, 1788, 732–742. [Google Scholar] [CrossRef] [PubMed]
- Ohta, N.; Hatta, I. Interaction among molecules in mixtures of ceramide/stearic acid, ceramide/cholesterol and ceramide/stearic acid/cholesterol. Chem. Phys. Lipids 2002, 115, 93–105. [Google Scholar] [CrossRef] [PubMed]
- Engelbrecht, T.N.; Schroeter, A.; Hauss, T.; Neubert, R.H. Lipophilic penetration enhancers and their impact to the bilayer structure of stratum corneum lipid model membranes: Neutron diffraction studies based on the example oleic acid. Biochim. Biophys. Acta 2011, 1808, 2798–2806. [Google Scholar] [CrossRef] [PubMed]
- Gruzinov, A.Y.; Zabelin, A.V.; Kiselev, M.A. Short periodicity phase based on ceramide [AP] in the model lipid membranes of stratum corneum does not change during hydration. Chem. Phys. Lipids 2017, 202, 1–5. [Google Scholar] [CrossRef]
- Engelbrecht, T.N.; Deme, B.; Dobner, B.; Neubert, R.H. Study of the influence of the penetration enhancer isopropyl myristate on the nanostructure of stratum corneum lipid model membranes using neutron diffraction and deuterium labelling. Ski. Pharmacol. Physiol. 2012, 25, 200–207. [Google Scholar] [CrossRef]
- Sonnenberger, S.; Eichner, A.; Hauss, T.; Schroeter, A.; Neubert, R.H.; Dobner, B. Synthesis of specifically deuterated ceramide [AP]-C18 and its biophysical characterization using neutron diffraction. Chem. Phys. Lipids 2017, 204, 15–24. [Google Scholar] [CrossRef]
- Ryabova, N.Y.; Kiselev, M.A.; Dante, S.; Hauss, T.; Balagurov, A.M. Investigation of stratum corneum lipid model membranes with free fatty acid composition by neutron diffraction. Eur. Biophys. J. 2010, 39, 1167–1176. [Google Scholar] [CrossRef] [PubMed]
- Mueller, J.; Trapp, M.; Neubert, R.H.H. The effect of hydrophilic penetration/diffusion enhancer on stratum corneum lipid models: Part II*: DMSO. Chem. Phys. Lipids 2019, 225, 104816. [Google Scholar] [CrossRef] [PubMed]
- Mueller, J.; Schroeter, A.; Steitz, R.; Trapp, M.; Neubert, R.H. Preparation of a New Oligolamellar Stratum Corneum Lipid Model. Langmuir 2016, 32, 4673–4680. [Google Scholar] [CrossRef] [PubMed]
- Mueller, J.; Oliveira, J.S.L.; Barker, R.; Trapp, M.; Schroeter, A.; Brezesinski, G.; Neubert, R.H.H. The effect of urea and taurine as hydrophilic penetration enhancers on stratum corneum lipid models. Biochim. Biophys. Acta 2016, 1858, 2006–2018. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, J.S.; Lange, S.; Dobner, B.; Brezesinski, G. The effect of non-deuterated and deuterated isopropyl myristate on the thermodynamical and structural behavior of a 2D Stratum Corneum model with Ceramide [AP]. Chem. Phys. Lipids 2017, 204, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Ryabova, N.Y.; Kiselev, M.A.; Balagurov, A.M. Transition processes in stratum corneum model lipid membranes with a mixture of free fatty acids. Biophysics 2010, 54, 598–606. [Google Scholar] [CrossRef]
- Watanabe, H.; Obata, Y.; Onuki, Y.; Ishida, K.; Takayama, K. Novel preparation of intercellular lipid models of the stratum corneum containing stereoactive ceramide. Chem. Pharm. Bull. 2010, 58, 312–317. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, H.; Obata, Y.; Onuki, Y.; Ishida, K.; Takayama, K. Different effects of l- and d-menthol on the microstructure of ceramide 5/cholesterol/palmitic acid bilayers. Int. J. Pharm. 2010, 402, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Schroeter, A.; Stahlberg, S.; Skolova, B.; Sonnenberger, S.; Eichner, A.; Huster, D.; Vavrova, K.; Hauss, T.; Dobner, B.; Neubert, R.H.; et al. Phase separation in ceramide[NP] containing lipid model membranes: Neutron diffraction and solid-state NMR. Soft Matter 2017, 13, 2107–2119. [Google Scholar] [CrossRef] [PubMed]
- Kwak, S.; Brief, E.; Langlais, D.; Kitson, N.; Lafleur, M.; Thewalt, J. Ethanol perturbs lipid organization in models of stratum corneum membranes: An investigation combining differential scanning calorimetry, infrared and (2)H NMR spectroscopy. Biochim. Biophys. Acta 2012, 1818, 1410–1419. [Google Scholar] [CrossRef]
- Sun, H.; Zielinska, K.; Resmini, M.; Zarbakhsh, A. Interactions of NIPAM nanogels with model lipid multi-bilayers: A neutron reflectivity study. J. Colloid Interface Sci. 2019, 536, 598–608. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Liao, M.; Ma, K.; Wang, Z.; Deme, B.; Penfold, J.; Lu, J.R.; Webster, J.R.P.; Li, P. Implications of surfactant hydrophobic chain architecture on the Surfactant-Skin lipid model interaction. J. Colloid Interface Sci. 2022, 608, 405–415. [Google Scholar] [CrossRef] [PubMed]
- Oguri, M.; Gooris, G.S.; Bito, K.; Bouwstra, J.A. The effect of the chain length distribution of free fatty acids on the mixing properties of stratum corneum model membranes. Biochim. Biophys. Acta 2014, 1838, 1851–1861. [Google Scholar] [CrossRef] [PubMed]
- Ishida, K.; Obata, Y.; Akagi, C.; Onuki, Y.; Takayama, K. Practical syntheses of D-erythro and L-threo-ceramide [NDS] and difference in contribution of each isomer in microstructure of stratum corneum intercellular lipids. J. Drug Deliv. Sci. Technol. 2014, 24, 689–693. [Google Scholar] [CrossRef]
- Mendelsohn, R.; Selevany, I.; Moore, D.J.; Mack Correa, M.C.; Mao, G.; Walters, R.M.; Flach, C.R. Kinetic evidence suggests spinodal phase separation in stratum corneum models by IR spectroscopy. J. Phys. Chem. B 2014, 118, 4378–4387. [Google Scholar] [CrossRef] [PubMed]
- Garidel, P.; Folting, B.; Schaller, I.; Kerth, A. The microstructure of the stratum corneum lipid barrier: Mid-infrared spectroscopic studies of hydrated ceramide:palmitic acid:cholesterol model systems. Biophys. Chem. 2010, 150, 144–156. [Google Scholar] [CrossRef] [PubMed]
- Groen, D.; Gooris, G.S.; Bouwstra, J.A. Model membranes prepared with ceramide EOS, cholesterol and free fatty acids form a unique lamellar phase. Langmuir 2010, 26, 4168–4175. [Google Scholar] [CrossRef]
- Terayama, S.; Goto, Y.; Fukami, T. Amount of cholesterol in intercellular lipid models inversely correlates with hexagonal structure ratio in packing structures. Chem. Eng. Sci. 2022, 259, 117814. [Google Scholar] [CrossRef]
- Skolova, B.; Hudska, K.; Pullmannova, P.; Kovacik, A.; Palat, K.; Roh, J.; Fleddermann, J.; Estrela-Lopis, I.; Vavrova, K. Different phase behavior and packing of ceramides with long (C16) and very long (C24) acyls in model membranes: Infrared spectroscopy using deuterated lipids. J. Phys. Chem. B 2014, 118, 10460–10470. [Google Scholar] [CrossRef]
- Ramos, A.P.; Bouwstra, J.A.; Lafleur, M. Very Long Chain Lipids Favor the Formation of a Homogeneous Phase in Stratum Corneum Model Membranes. Langmuir 2020, 36, 13899–13907. [Google Scholar] [CrossRef]
- Gorcea, M.; Hadgraft, J.; Moore, D.J.; Lane, M.E. Fourier transform infrared spectroscopy studies of lipid domain formation in normal and ceramide deficient stratum corneum lipid models. Int. J. Pharm. 2012, 435, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Lu, G.; Gillece, T.W.; Moore, D.J. Study of water vapor and surfactant absorption by lipid model systems using the quartz crystal microbalance. Chem. Phys. Lipids 2011, 164, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Jurek, I.; Goral, I.; Mierzynska, Z.; Moniuszko-Szajwaj, B.; Wojciechowski, K. Effect of synthetic surfactants and soapwort (Saponaria officinalis L.) extract on skin-mimetic model lipid monolayers. Biochim. Biophys. Acta Biomembr. 2019, 1861, 556–564. [Google Scholar] [CrossRef] [PubMed]
- Eichner, A.; Stahlberg, S.; Sonnenberger, S.; Lange, S.; Dobner, B.; Ostermann, A.; Schrader, T.E.; Hauss, T.; Schroeter, A.; Huster, D.; et al. Influence of the penetration enhancer isopropyl myristate on stratum corneum lipid model membranes revealed by neutron diffraction and 2H NMR experiments. Biochim. Biophys. Acta Biomembr. 2017, 1859, 745–755. [Google Scholar] [CrossRef] [PubMed]
- Kiselev, M.A.; Ermakova, E.V.; Gruzinov, A.Y.; Zabelin, A.V. Formation of the long-periodicity phase in model membranes of the outermost layer of skin (Stratum corneum). Crystallogr. Rep. 2014, 59, 112–116. [Google Scholar] [CrossRef]
- Curikova-Kindlova, B.A.; Diat, O.; Stepanek, F.; Vavrova, K.; Zbytovska, J. Probing the interactions among sphingosine and phytosphingosine ceramides with non- and alpha-hydroxylated acyl chains in skin lipid model membranes. Int. J. Pharm. 2019, 563, 384–394. [Google Scholar] [CrossRef] [PubMed]
- Pullmannova, P.; Ermakova, E.; Kovacik, A.; Opalka, L.; Maixner, J.; Zbytovska, J.; Kucerka, N.; Vavrova, K. Long and very long lamellar phases in model stratum corneum lipid membranes. J. Lipid Res. 2019, 60, 963–971. [Google Scholar] [CrossRef] [PubMed]
- Badhe, Y.; Schmitt, T.; Gupta, R.; Rai, B.; Neubert, R.H.H. Investigating the nanostructure of a CER[NP]/CER[AP]-based stratum corneum lipid matrix model: A combined neutron diffraction & molecular dynamics simulations approach. Biochim. Biophys. Acta Biomembr. 2022, 1864, 184007. [Google Scholar] [CrossRef] [PubMed]
- Pham, Q.D.; Mojumdar, E.H.; Gooris, G.S.; Bouwstra, J.A.; Sparr, E.; Topgaard, D. Solid and fluid segments within the same molecule of stratum corneum ceramide lipid. Q. Rev. Biophys. 2018, 51, e7. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, T.; Lange, S.; Sonnenberger, S.; Dobner, B.; Deme, B.; Neubert, R.H.H.; Gooris, G.; Bouwstra, J.A. Determination of the influence of C24 D/(2R)- and L/(2S)-isomers of the CER[AP] on the lamellar structure of stratum corneum model systems using neutron diffraction. Chem. Phys. Lipids 2017, 209, 29–36. [Google Scholar] [CrossRef]
- Yoshida, S.; Obata, Y.; Onuki, Y.; Utsumi, S.; Ohta, N.; Takahashi, H.; Takayama, K. Molecular Interaction between Intercellular Lipids in the Stratum Corneum and l-Menthol, as Analyzed by Synchrotron X-ray Diffraction. Chem. Pharm. Bull. 2017, 65, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Paz Ramos, A.; Gooris, G.; Bouwstra, J.; Lafleur, M. Evidence of hydrocarbon nanodrops in highly ordered stratum corneum model membranes. J. Lipid Res. 2018, 59, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, T.; Gupta, R.; Lange, S.; Sonnenberger, S.; Dobner, B.; Hauss, T.; Rai, B.; Neubert, R.H.H. Impact of the ceramide subspecies on the nanostructure of stratum corneum lipids using neutron scattering and molecular dynamics simulations. Part I: Impact of CER[NS]. Chem. Phys. Lipids 2018, 214, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Sakdiset, P.; Todo, H.; Sugibayashi, K. Potential of Stratum Corneum Lipid Liposomes for Screening of Chemical Skin Penetration Enhancers. Chem. Pharm. Bull. 2017, 65, 776–783. [Google Scholar] [CrossRef] [PubMed]
- Kovacik, A.; Vogel, A.; Adler, J.; Pullmannova, P.; Vavrova, K.; Huster, D. Probing the role of ceramide hydroxylation in skin barrier lipid models by 2H solid-state NMR spectroscopy and X-ray powder diffraction. Biochim. Biophys. Acta Biomembr. 2018, 1860, 1162–1170. [Google Scholar] [CrossRef] [PubMed]
- Eichner, A.; Sonnenberger, S.; Dobner, B.; Hauss, T.; Schroeter, A.; Neubert, R.H.H. Localization of methyl-branched ceramide [EOS] species within the long-periodicity phase in stratum corneum lipid model membranes: A neutron diffraction study. Biochim. Biophys. Acta 2016, 1858, 2911–2922. [Google Scholar] [CrossRef] [PubMed]
- Engelbrecht, T.; Hauß, T.; Süβ, K.; Vogel, A.; Roark, M.; Feller, S.E.; Neubert, R.H.H.; Dobner, B. Characterisation of a new ceramide EOS species: Synthesis and investigation of the thermotropic phase behaviour and influence on the bilayer architecture of stratum corneum lipid model membranes. Soft Matter 2011, 7, 8998–9011. [Google Scholar] [CrossRef]
- Madsen, H.B.; Arboe-Andersen, H.M.; Rozlosnik, N.; Madsen, F.; Ifversen, P.; Kasimova, M.R.; Nielsen, H.M. Investigation of the interaction between modified ISCOMs and stratum corneum lipid model systems. Biochim. Biophys. Acta 2010, 1798, 1779–1789. [Google Scholar] [CrossRef] [PubMed]
- Beddoes, C.M.; Gooris, G.S.; Bouwstra, J.A. Preferential arrangement of lipids in the long-periodicity phase of a stratum corneum matrix model. J. Lipid Res. 2018, 59, 2329–2338. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, T.; Lange, S.; Dobner, B.; Sonnenberger, S.; Hauss, T.; Neubert, R.H.H. Investigation of a CER[NP]- and [AP]-Based Stratum Corneum Modeling Membrane System: Using Specifically Deuterated CER Together with a Neutron Diffraction Approach. Langmuir 2018, 34, 1742–1749. [Google Scholar] [CrossRef]
- Paz Ramos, A.; Gooris, G.; Bouwstra, J.; Molinari, M.; Lafleur, M. Raman and AFM-IR chemical imaging of stratum corneum model membranes. Can. J. Chem. 2020, 98, 495–501. [Google Scholar] [CrossRef]
- Beddoes, C.M.; Gooris, G.S.; Barlow, D.J.; Lawrence, M.J.; Dalgliesh, R.M.; Malfois, M.; Deme, B.; Bouwstra, J.A. The importance of ceramide headgroup for lipid localisation in skin lipid models. Biochim. Biophys. Acta Biomembr. 2022, 1864, 183886. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, T.; Lange, S.; Sonnenberger, S.; Dobner, B.; Deme, B.; Langner, A.; Neubert, R.H.H. The long periodicity phase (LPP) controversy part I: The influence of a natural-like ratio of the CER[EOS] analogue [EOS]-br in a CER[NP]/[AP] based stratum corneum modelling system: A neutron diffraction study. Biochim. Biophys. Acta Biomembr. 2019, 1861, 306–315. [Google Scholar] [CrossRef]
- Nadaban, A.; Gooris, G.S.; Beddoes, C.M.; Dalgliesh, R.M.; Bouwstra, J.A. Phytosphingosine ceramide mainly localizes in the central layer of the unique lamellar phase of skin lipid model systems. J. Lipid Res. 2022, 63, 100258. [Google Scholar] [CrossRef] [PubMed]
- Groen, D.; Gooris, G.S.; Barlow, D.J.; Lawrence, M.J.; van Mechelen, J.B.; Deme, B.; Bouwstra, J.A. Disposition of ceramide in model lipid membranes determined by neutron diffraction. Biophys. J. 2011, 100, 1481–1489. [Google Scholar] [CrossRef]
- Mojumdar, E.H.; Groen, D.; Gooris, G.S.; Barlow, D.J.; Lawrence, M.J.; Deme, B.; Bouwstra, J.A. Localization of cholesterol and fatty acid in a model lipid membrane: A neutron diffraction approach. Biophys. J. 2013, 105, 911–918. [Google Scholar] [CrossRef] [PubMed]
- Beddoes, C.M.; Gooris, G.S.; Foglia, F.; Ahmadi, D.; Barlow, D.J.; Lawrence, M.J.; Deme, B.; Bouwstra, J.A. Arrangement of Ceramides in the Skin: Sphingosine Chains Localize at a Single Position in Stratum Corneum Lipid Matrix Models. Langmuir 2020, 36, 10270–10278. [Google Scholar] [CrossRef]
- Mojumdar, E.H.; Gooris, G.S.; Bouwstra, J.A. Phase behavior of skin lipid mixtures: The effect of cholesterol on lipid organization. Soft Matter 2015, 11, 4326–4336. [Google Scholar] [CrossRef] [PubMed]
- Beddoes, C.M.; Rensen, D.E.; Gooris, G.S.; Malfois, M.; Bouwstra, J.A. The Importance of Free Fatty Chain Length on the Lipid Organization in the Long Periodicity Phase. Int. J. Mol. Sci. 2021, 22, 3679. [Google Scholar] [CrossRef] [PubMed]
- de Sousa Neto, D.; Gooris, G.; Bouwstra, J. Effect of the omega-acylceramides on the lipid organization of stratum corneum model membranes evaluated by X-ray diffraction and FTIR studies (Part I). Chem. Phys. Lipids 2011, 164, 184–195. [Google Scholar] [CrossRef]
- Mojumdar, E.H.; Gooris, G.S.; Barlow, D.J.; Lawrence, M.J.; Deme, B.; Bouwstra, J.A. Skin lipids: Localization of ceramide and fatty acid in the unit cell of the long periodicity phase. Biophys. J. 2015, 108, 2670–2679. [Google Scholar] [CrossRef] [PubMed]
- Mojumdar, E.H.; Gooris, G.S.; Groen, D.; Barlow, D.J.; Lawrence, M.J.; Deme, B.; Bouwstra, J.A. Stratum corneum lipid matrix: Location of acyl ceramide and cholesterol in the unit cell of the long periodicity phase. Biochim. Biophys. Acta 2016, 1858, 1926–1934. [Google Scholar] [CrossRef] [PubMed]
- Stahlberg, S.; Lange, S.; Dobner, B.; Huster, D. Probing the Role of Ceramide Headgroup Polarity in Short-Chain Model Skin Barrier Lipid Mixtures by 2H Solid-State NMR Spectroscopy. Langmuir 2016, 32, 2023–2031. [Google Scholar] [CrossRef] [PubMed]
- Fandrei, F.; Havrisak, T.; Opalka, L.; Engberg, O.; Smith, A.A.; Pullmannova, P.; Kucerka, N.; Ondrejcekova, V.; Deme, B.; Novakova, L.; et al. The intriguing molecular dynamics of Cer[EOS] in rigid skin barrier lipid layers requires improvement of the model. J. Lipid Res. 2023, 64, 100356. [Google Scholar] [CrossRef] [PubMed]
- Kiselev, M.A. Conformation of ceramide 6 molecules and chain-flip transitions in the lipid matrix of the outermost layer of mammalian skin, the stratum corneum. Crystallogr. Rep. 2007, 52, 525–528. [Google Scholar] [CrossRef]
- Bouwstra, J.; Gooris, G.; Ponec, M. The lipid organisation of the skin barrier: Liquid and crystalline domains coexist in lamellar phases. J. Biol. Phys. 2002, 28, 211–223. [Google Scholar] [CrossRef] [PubMed]
- Mojumdar, E.H.; Kariman, Z.; van Kerckhove, L.; Gooris, G.S.; Bouwstra, J.A. The role of ceramide chain length distribution on the barrier properties of the skin lipid membranes. Biochim. Biophys. Acta 2014, 1838, 2473–2483. [Google Scholar] [CrossRef] [PubMed]
- Rerek, M.E.; Chen; Markovic, B.; Van Wyck, D.; Garidel, P.; Mendelsohn, R.; Moore, D.J. Phytosphingosine and Sphingosine Ceramide Headgroup Hydrogen Bonding: Structural Insights through Thermotropic Hydrogen/Deuterium Exchange. J. Phys. Chem. B 2001, 105, 9355–9362. [Google Scholar] [CrossRef]
- Raudenkolb, S.; Wartewig, S.; Neubert, R.H. Polymorphism of ceramide 6: A vibrational spectroscopic and X-ray powder diffraction investigation of the diastereomers of N-(alpha-hydroxyoctadecanoyl)-phytosphingosine. Chem. Phys. Lipids 2005, 133, 89–102. [Google Scholar] [CrossRef]
- Bouwstra, J.A.; Gooris, G.S.; Bras, W.; Downing, D.T. Lipid organization in pig stratum corneum. J. Lipid Res. 1995, 36, 685–695. [Google Scholar] [CrossRef]
- Vávrová, K.; Kováčik, A.; Opálka, L. Ceramides in the skin barrier. Eur. Pharm. J. 2017, 64, 28–35. [Google Scholar] [CrossRef]
- Uche, L.E.; Gooris, G.S.; Beddoes, C.M.; Bouwstra, J.A. New insight into phase behavior and permeability of skin lipid models based on sphingosine and phytosphingosine ceramides. Biochim. Biophys. Acta Biomembr. 2019, 1861, 1317–1328. [Google Scholar] [CrossRef] [PubMed]
- Stahlberg, S.; Skolova, B.; Madhu, P.K.; Vogel, A.; Vavrova, K.; Huster, D. Probing the role of the ceramide acyl chain length and sphingosine unsaturation in model skin barrier lipid mixtures by 2H solid-state NMR spectroscopy. Langmuir 2015, 31, 4906–4915. [Google Scholar] [CrossRef] [PubMed]
- Groen, D.; Poole, D.S.; Gooris, G.S.; Bouwstra, J.A. Investigating the barrier function of skin lipid models with varying compositions. Eur. J. Pharm. Biopharm. 2011, 79, 334–342. [Google Scholar] [CrossRef]
- Groen, D.; Poole, D.S.; Gooris, G.S.; Bouwstra, J.A. Is an orthorhombic lateral packing and a proper lamellar organization important for the skin barrier function? Biochim. Biophys. Acta 2011, 1808, 1529–1537. [Google Scholar] [CrossRef] [PubMed]
- Ochalek, M.; Heissler, S.; Wohlrab, J.; Neubert, R.H. Characterization of lipid model membranes designed for studying impact of ceramide species on drug diffusion and penetration. Eur. J. Pharm. Biopharm. 2012, 81, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Groen, D.; Berthaud, F.; Bouwstra, J.A.; Chapuis, C.; Gooris, G.S.; Boncheva, M. In vitro model systems for studying the impact of organic chemicals on the skin barrier lipids. Biochim. Biophys. Acta 2014, 1838, 310–318. [Google Scholar] [CrossRef] [PubMed]
- Ghonaim, H.; Periasamy, N.; Noro, M.G.; Anwar, J. Towards a simplified model membrane of skin lipids: Preparation and characterisation of a ternary lipid mixture. Int. J. Pharm. Pharm. Sci. 2014, 6, 148–152. [Google Scholar]
- Mojumdar, E.H.; Helder, R.W.; Gooris, G.S.; Bouwstra, J.A. Monounsaturated fatty acids reduce the barrier of stratum corneum lipid membranes by enhancing the formation of a hexagonal lateral packing. Langmuir 2014, 30, 6534–6543. [Google Scholar] [CrossRef]
- Skolova, B.; Janusova, B.; Vavrova, K. Ceramides with a pentadecasphingosine chain and short acyls have strong permeabilization effects on skin and model lipid membranes. Biochim. Biophys. Acta 2016, 1858, 220–232. [Google Scholar] [CrossRef]
- Uchiyama, M.; Oguri, M.; Mojumdar, E.H.; Gooris, G.S.; Bouwstra, J.A. Free fatty acids chain length distribution affects the permeability of skin lipid model membranes. Biochim. Biophys. Acta 2016, 1858, 2050–2059. [Google Scholar] [CrossRef]
- Curikova, B.A.; Prochazkova, K.; Filkova, B.; Diblikova, P.; Svoboda, J.; Kovacik, A.; Vavrova, K.; Zbytovska, J. Simplified stratum corneum model membranes for studying the effects of permeation enhancers. Int. J. Pharm. 2017, 534, 287–296. [Google Scholar] [CrossRef]
- Uche, L.E.; Gooris, G.S.; Bouwstra, J.A.; Beddoes, C.M. Barrier Capability of Skin Lipid Models: Effect of Ceramides and Free Fatty Acid Composition. Langmuir 2019, 35, 15376–15388. [Google Scholar] [CrossRef] [PubMed]
- Sochorova, M.; Audrlicka, P.; Cervena, M.; Kovacik, A.; Kopecna, M.; Opalka, L.; Pullmannova, P.; Vavrova, K. Permeability and microstructure of cholesterol-depleted skin lipid membranes and human stratum corneum. J. Colloid Interface Sci. 2019, 535, 227–238. [Google Scholar] [CrossRef] [PubMed]
- Uche, L.E.; Gooris, G.S.; Bouwstra, J.A.; Beddoes, C.M. Increased Levels of Short-Chain Ceramides Modify the Lipid Organization and Reduce the Lipid Barrier of Skin Model Membranes. Langmuir 2021, 37, 9478–9489. [Google Scholar] [CrossRef]
- Uche, L.E.; Gooris, G.S.; Bouwstra, J.A.; Beddoes, C.M. High concentration of the ester-linked omega-hydroxy ceramide increases the permeability in skin lipid model membranes. Biochim. Biophys. Acta Biomembr. 2021, 1863, 183487. [Google Scholar] [CrossRef] [PubMed]
- Opalka, L.; Kovacik, A.; Pullmannova, P.; Maixner, J.; Vavrova, K. Effects of omega-O-acylceramide structures and concentrations in healthy and diseased skin barrier lipid membrane models. J. Lipid Res. 2020, 61, 219–228. [Google Scholar] [CrossRef]
- Opalka, L.; Meyer, J.M.; Ondrejcekova, V.; Svatosova, L.; Radner, F.P.W.; Vavrova, K. omega-O-Acylceramides but not omega-hydroxy ceramides are required for healthy lamellar phase architecture of skin barrier lipids. J. Lipid Res. 2022, 63, 100226. [Google Scholar] [CrossRef]
- Fandrei, F.; Engberg, O.; Opalka, L.; Jancalkova, P.; Pullmannova, P.; Steinhart, M.; Kovacik, A.; Vavrova, K.; Huster, D. Cholesterol sulfate fluidizes the sterol fraction of the stratum corneum lipid phase and increases its permeability. J. Lipid Res. 2022, 63, 100177. [Google Scholar] [CrossRef]
- Nakov, A.; Magalhães, C.; Faria-Silva, C.; Ascensão, L.; Marto, J.; Ribeiro, H.M.; Simões, S. Lipid-coated membranes as skin surrogates for permeability assessment. Materialia 2022, 21, 101354. [Google Scholar] [CrossRef]
- Sinko, B.; Garrigues, T.M.; Balogh, G.T.; Nagy, Z.K.; Tsinman, O.; Avdeef, A.; Takacs-Novak, K. Skin-PAMPA: A new method for fast prediction of skin penetration. Eur. J. Pharm. Sci. 2012, 45, 698–707. [Google Scholar] [CrossRef] [PubMed]
- Engesland, A.; Skar, M.; Hansen, T.; Skalko-Basnet, N.; Flaten, G.E. New applications of phospholipid vesicle-based permeation assay: Permeation model mimicking skin barrier. J. Pharm. Sci. 2013, 102, 1588–1600. [Google Scholar] [CrossRef] [PubMed]
- Palac, Z.; Engesland, A.; Flaten, G.E.; Skalko-Basnet, N.; Filipovic-Grcic, J.; Vanic, Z. Liposomes for (trans)dermal drug delivery: The skin-PVPA as a novel in vitro stratum corneum model in formulation development. J. Liposome Res. 2014, 24, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Engesland, A.; Skalko-Basnet, N.; Flaten, G.E. Phospholipid vesicle-based permeation assay and EpiSkin® in assessment of drug therapies destined for skin administration. J. Pharm. Sci. 2015, 104, 1119–1127. [Google Scholar] [CrossRef] [PubMed]
- Engesland, A.; Skalko-Basnet, N.; Flaten, G.E. In vitro models to estimate drug penetration through the compromised stratum corneum barrier. Drug Dev. Ind. Pharm. 2016, 42, 1742–1751. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.; Di, H.J.; Zhang, H.; Yao, J.H.; Dong, J.; Yan, G.J.; Qiao, H.Z.; Chen, J. Development of phospholipid vesicle-based permeation assay models capable of evaluating percutaneous penetration enhancing effect. Drug Dev. Ind. Pharm. 2017, 43, 2055–2063. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhu, X.; Shen, J.; Xu, H.; Ma, M.; Gu, W.; Jiang, Q.; Chen, J.; Duan, J. Characterization of a liposome-based artificial skin membrane for in vitro permeation studies using Franz diffusion cell device. J. Liposome Res. 2017, 27, 302–311. [Google Scholar] [CrossRef] [PubMed]
- Shakel, Z.; Nunes, C.; Costa Lima, S.A.; Reis, S. Development of a novel human stratum corneum model, as a tool in the optimization of drug formulations. Int. J. Pharm. 2019, 569, 118571. [Google Scholar] [CrossRef] [PubMed]
- Moniz, T.; Costa Lima, S.A.; Reis, S. Application of the human stratum corneum lipid-based mimetic model in assessment of drug-loaded nanoparticles for skin administration. Int. J. Pharm. 2020, 591, 119960. [Google Scholar] [CrossRef]
- Karadzovska, D.; Riviere, J.E. Assessing vehicle effects on skin absorption using artificial membrane assays. Eur. J. Pharm. Sci. 2013, 50, 569–576. [Google Scholar] [CrossRef]
- Flaten, G.E.; Dhanikula, A.B.; Luthman, K.; Brandl, M. Drug permeability across a phospholipid vesicle based barrier: A novel approach for studying passive diffusion. Eur. J. Pharm. Sci. 2006, 27, 80–90. [Google Scholar] [CrossRef] [PubMed]
- Flaten, G.E.; Bunjes, H.; Luthman, K.; Brandl, M. Drug permeability across a phospholipid vesicle-based barrier 2. Characterization of barrier structure, storage stability and stability towards pH changes. Eur. J. Pharm. Sci. 2006, 28, 336–343. [Google Scholar] [CrossRef] [PubMed]
- Franz, T.J.; Lehman, P.A.; Raney, S.G. Use of excised human skin to assess the bioequivalence of topical products. Ski. Pharmacol. Physiol. 2009, 22, 276–286. [Google Scholar] [CrossRef]
- 76/768/EEC; Council Directive of 27 July 1976 on the Approximation of the Laws of the Member States Relating to Cosmetic Products. European Parliament, The Council of the European Communities: Brussels, Belgium, 1976.
- Wever, B.D.; Petersohn, D.; Mewes, K.R. Overview of human three-dimensional (3D) skin models used for dermal toxicity assessment Part 1. HPC Today 2013, 8, 18–22. [Google Scholar]
- Di Cagno, M.P.; Bauer-Brandl, A. Assembly for Assessing Drug Permeability with Adjustable Biomimetic Properties. WO/2016/078667, 26 May 2016. [Google Scholar]
- Liu, Y.; Thomas, A. Biomimetic Device. US20150361386A1, 17 December 2015. [Google Scholar]
- Voelcker, N.; Tong, Z.; Tong, W.; Oddo, A.; Thissen, H.; Peng, B. Microfluidic Device for Investigating Interactions of Substances with Cells. WO/2021/168511A1, 2 September 2021. [Google Scholar]
- Sun, S.X.; Choudhury, M.lK. A Novel, Organ-on-a-Chip Device for Assessing Trans-Epithelial Transport and Uses Thereof. US/2022/265176A1/WO/2021/007300A1, 25 August 2022. [Google Scholar]
- Chen, J.; Wei, X.; Dong, J.; Gu, W. Keratin Liposome Artificial Skin Membrane and Application Thereof in External Preparations and Cosmetics. CN/114577678A, 3 June 2022. [Google Scholar]
- Duan, Y. Biomimetic Cell Membrane of Phospholipid Polymer, Preparation Method and Use Thereof. WO/2008/011812A1, 31 January 2008. [Google Scholar]
Lipid Model Composition | Main Objective | Characterisation Techniques | Temperature (T) and pH Conditions | Main Outcomes | Ref. |
---|---|---|---|---|---|
Cer[AP]:Chol:PA:ChS (55:25:15:5 wt%) | Study the OA impact on bilayer architecture | Neutron diffraction | T: 32 °C pH: 9.5 |
| [104] |
Determine the electron density profile of SPP at full hydration and at different pH | Neutron diffraction | T: 25–60 °C pH: 5.0–9.0 |
| [105] | |
| |||||
Elucidate the IPM mechanism of action as a SC permeation enhancer | Neutron diffraction | T: 32 °C pH: ND |
| [106] | |
Cer[AP]:Chol:SA:ChS (55:25:15:5 wt%) | Synthesis and application of a deuterated Cer[AP]-SA in a SC lipid model | Neutron diffraction | T: 32 °C pH: ND |
| [107] |
Cer[AP]:Chol:FFA:ChS (55:20:15:10 or 66:10:18:6 wt%) FFA = PA:SA:AA:BA:LA:CA (1.3:3.3:6.8:42.0:36.2:6.7 molar ratio) | Investigate the effects of different Chol–ChS ratios on the hydration and structure of a SC lipid model with a realistic FFA mixture | Neutron diffraction | T: 20 and 32 °C pH: ND |
| [108] |
Cer[AP]:Chol:SA (1:0.7:1 molar ratio) | Explore the influence of hydrophilic permeation enhancer DMSO in SC model | Neutron diffraction, PCS, IR, and leakage studies | T: 32 °C pH: 7 and 10 |
| [109] |
Cer[AP]:Chol:SA (1:0.7:1 molar ratio) | Develop and optimise an oligolamellar SC model | X-ray reflectivity and FTIR | ND |
| [110] |
Study the influence of hydrophilic (urea and taurine) permeation enhancers on SC model | Neutron reflectivity, IR, SWAXS, carboxyfluorescein leakage, PCS, Langmuir isotherms, BAM, and IRRAS | T: 21 °C pH: 5.5 and 7.4 |
| [111] | |
Elucidate the IPM mechanism of action as SC permeation enhancer | Langmuir isotherms, IRRAS, BAM, and GIXD | T: 21 °C pH: 5.5 |
| [112] | |
Cer[AP]:Chol:FFA:ChS (55:20:15:10 or 66:10:18:15 wt%) FFA 1 = PA:SA:AA:BA:LA:CA (1.3:3.3:6.7:41.7:36:6.7 molar ratio) FFA 2 = BA:LA:CA (8.8:7.7:1.4 molar ratio) | Study the influence of hydration and composition in the temperature behaviour of SC model | Neutron diffraction | T: 20–72 °C pH: ND |
| [113] |
Cer[AS]:Chol:PA (Variable ratio) | Characterise the fluidity and microstructure of a SC lipid model | Fluorescence anisotropy and SAXS | T: 25 to 80 °C pH: 5 |
| [114] |
Cer[AS]:Chol:PA (26.5:13.9:59.6 mol%) | Investigate the effects of l- and d-menthols as permeation enhancers | Fluorescence anisotropy, DSC, and WAXS | T: 25 to 80 °C pH: 5 |
| [115] |
Cer[NP]:Chol:LA (1:1:1 molar ratio) | Investigate the SC model in a temperature range | Neutron diffraction and 2H solid-state NMR spectroscopy | T: 25–80 °C pH: ND |
| [116] |
Explore the effect of ethanol on SC model | DSC, FTIR, and 2H-NMR | T: 25–75 °C pH: 5.4 |
| [117] | |
Cer[NS]:Chol:BA (1:0:0 or 1:0.3:1 molar ratio) | Study the interactions between NIPAM nanogels cross-linked with MBA and SC lipid models | Neutron reflectivity and TEM | T: 24–42 °C pH: ND |
| [118] |
Cer[NS]:Chol:(BA:LA) (1:1:1 molar ratio) | Explore the effect of various surfactants on the structure of SC model | Neutron scattering and MD | T: 32 °C pH: ND |
| [119] |
Cer[NS]:Chol:FFA (1:1:1 molar ratio) FFA = LA, PA or PA:SA:AA:BA:LA (1.8:4:7.6:47.8:38.9 mol%) | Examine the effect of chain length of FFAs on thermotropic phase behaviour and mixing properties of SC mixtures | FTIR and Raman imaging spectroscopy | T: 20–90 °C pH: 5 |
| [120] |
Cer[NdS]:Chol:PA (1:1:1 molar ratio) D-erythro- or L-threo-[NdS] | Investigate the contribution of stereochemistry of Cer[NdS] in SC model | DSC and SWAXS | T: 20–180 °C pH: ND |
| [121] |
Cer[AP]/Cer[NS]:Chol:SA (1:1:1 molar ratio) | Develop an IR spectroscopy approach for studying lateral phase separation and lamellar structure formation in SC models | FTIR | T: 31 °C pH: 5.5 |
| [122] |
Cer:Chol:PA (1:1:1 molar ratio) Cer = [AS], [NP], [NP]-SA or [NS] | Investigate the structure of hydrated SC lipid model | Mid-IR spectroscopy | T: 30–35 °C pH: 5.5 |
| [123] |
Cer[AP]/Cer[NP]:Chol:SA (55:25:20 wt%) | Investigate the lamellar structure of SC model | Neutron diffraction and NMR | T: 32 °C pH: 7.4 |
| [42] |
Cer[EOS]:Chol:FFA (Variable ratio) FFA = PA:SA:AA:BA:TA:LA:CA (1.8:4:7.7:42.6:5.2:34.7: 4.1 molar ratio) | Investigate the molecular assembly and lipid packing in SC model | SAXS | T: 20–100 °C pH: ND |
| [124] |
Cer[AdS]:Chol:PA (Variable ratio) | Examine the quantitative effect of Chol reduction in SC model | Raman, DSC, PXRD, and SAXS | T: 20–120 °C pH: ND |
| [125] |
Cer[NS16]/Cer[NS24]:Chol:FFA:ChS (1:1:1 molar ratio + 5 wt%) FFA = LA or PA:SA:AA:BA:LA (1.8:4:7.6:47.8:38.8 wt%) | Investigate the membrane behaviour of long and very long Cer[NS] in SC model | FTIR | T: 28–100 °C pH: 5.5 |
| [126] |
Cer[NS16]/Cer[NS24]:Chol:FFA (1:1:1 molar ratio) FFA = PA, LA, AA or LA:AA:SA:PA (84.6:8.75:4.57:2.05 mol%) | Study the influence of acyl chain length on lipid mixing properties in SC model | Raman and IR | T: 33 °C pH: 5 |
| [127] |
BBCer[NP]:Chol:SA (1:1:1 or 0.5:1:1 molar ratio) | Investigate the thermotropic and kinetics of lipid dynamics and domain formation in normal and Cer deficient SC model | FTIR | T: 19–85 °C pH: 5.5 |
| [128] |
BBCer:Chol:SA (1:1:1 molar ratio) | Study the water vapor uptake and surfactant sorption onto SC model | QCM | T: 22 °C pH: ND |
| [129] |
DPPC:Chol (7:3 molar ratio) Cer[AP]:Chol:SA (14:10:14 molar ratio) | Explore the effect of a natural and four synthetic surfactants on two SC monolayer models | Langmuir isotherms, surface dilatational rheology, and fluorescence microscopy | T: 21 °C pH: ND |
| [130] |
Cer[EOS]:Cer[AP]: Chol:BA (23:10:33:33 wt%) | Study the effect of IPM in the SC lipid model assembly | Neutron diffraction | T: 32, 50 and 70 °C pH: ND |
| [131] |
Cer[EOS]:Cer[AP]: Chol:PA:ChS (30:30:20:15:5 wt%) | Characterise the LPP SC lipid model in excess water | SAXS | T: ND pH: 7.2 or 9 |
| [132] |
Cer:Chol:SA+ChS (1:1:1 molar ratio + 5 wt%) Cer = [NP]:[AP], [NP]:[NS], [AP]:[NS] or [NP]:[AP]:[NS] (1:1 or 1:1:1 molar ratio) | Characterise each Cer role in the SC membrane: effects on assembly, miscibility, and thermotropic behaviour | SWAXS and IR spectroscopy | T: 20–80 °C pH: ND |
| [133] |
Cer[NS]:Cer[EOS]:FFA:Chol:ChS (Variable ratio) FFA = PA:SA:AA:BA:LA (1.8:4:7.6:47.8:38.8 mol%) | Investigate the lamellar structure in SC model | SAXS | ND |
| [134] |
Cer[NP]:Cer[AP]:Chol:FFA (Variable ratio) | Understand the SC lipid matrix assembly | Neutron Diffraction and MD | ND |
| [135] |
Cer[EOS]:Cer[NS]: Chol:FFA (variable ratio) FFA = PA:SA:AA:BA:LA (4:8:48:40 mol%) | Investigate the effects of replacing Cer[NS] by Cer[EOS] | SAXS and solid-state and diffusion NMR | T: 32 °C pH: ND |
| [136] |
Cer[NP]:D-/L-Cer[AP]:Chol:LA (0.66:0.34:0.7:1 or 0:1:0.7:1 molar ratio) | Study the influence of the Cer[AP] conformation on the lamellar structure of SC model | Neutron diffraction and SAXS | T: 32 °C pH: ND |
| [137] |
Cer[EOS]:Cer[NS]: Chol:PA (Variable ratio) | Investigate the effects of vaporised L-menthol on SC lipid matrix | DSC, SAXS, and ATR-FTIR | T: 20–120 °C pH 5 |
| [138] |
Cer[EOS]:Cer[NS]: Chol:FFA (0.4:0.6:1:1 molar ratio) FFA = LA:BA:SA:PA (84.6:8.75:4.57:2.05 molar ratio) | Characterise the chain order of Cer[EOS] in SC model forming LPP | SAXS, H-NMR, and IR | T: 25–70 °C pH: 5 |
| [139] |
Cer[NS]:Cer[AP]:Chol:LA (variable ratio) | Explore the impact of Cer[NS] on SC model structure | Neutron diffraction and MD | T: 32 °C pH: ND |
| [140] |
Cer[NP]:Cer[AP]:Chol:ChS:LA:PA:SA (33:22:25:5:7.5:3.75:3.75 mol%) | Investigate the effect of model CPEs on SC liposomes | Sodium fluorescein leakage and fluorescence anisotropy | T: 25 °C pH: 9 |
| [141] |
Investigate the potential of SC liposomes for CPEs permeation study (ethanol as model) and comparison with animal skin permeation studies | Fluorescein leakage, fluorescence anisotropy, animal skin impedance, and hairless rat skin permeation | T: 25 °C pH: 9 |
| [37] | |
Cer:Chol:LA (1:1:1 molar ratio) Cer = [NS]:[NH] or [NS]:[AP] (1:1 molar ratio) | Understand the basic structure of SC membranes | NMR, DSC, and WAXS | T: 20–120 °C pH: 5.5 |
| [142] |
Cer[AP]:brCer[EOS]: Chol:BA (10:23:33:33 wt%) | Explore the localisation of brCer[EOS] species within LPP of SC model | Neutron diffraction | ND |
| [143] |
brCer[EOS]:Cer[AP]: Chol:BA (23:10:33:33 wt%) | Synthesis of new artificial Cer[EOS] species and implication to SC model structure | DSC, FTIR, Raman, Neutron diffraction, and MD | T: 20–120 °C pH: ND |
| [144] |
Cer[NS]:Cer[AS]:Chol:PA:ChS (25:15:25:25:10 wt%) | Understand the nature of PosintroTM permeation into SC lipid matrix | FRET, ITC, AFM, Cryo-TEM, and EIS | T: 5, 15, 25 or 37 °C pH: 7.4 |
| [145] |
Cer[EOS]:Cer[NS]: Chol:FFA (0.4:0.6:1:1 molar ratio) FFA = PA:SA:AA:BA:LA (1.8:4:7.6:47.8:38.8 mol%) | Study the interaction between Cer[NS] and FFA chains in LPP | FTIR and SAXS | T: 0–90 °C pH: ND |
| [146] |
Cer[NP]:Cer[AP]:Chol:LA (0.66:0.34:0.7:1 or 0.34:0.66:0.7:1 molar ratio) | Investigate the influence of Cer[NP] and Cer[AP] on SC nanostructure | Neutron diffraction | T: 32–37 °C pH: ND |
| [147] |
Cer[NS]:Cer[EOS]: Chol:FFA (0.6:0.4:1:1 molar ratio) FFA = LA:AA:SA:PA (84.6:8.75:4.57:2.05 mol%) | Study the lipid spatial distribution of SC model | Raman spectroscopy and AFM-IR | T: 33 °C pH: 5.0 |
| [148] |
Cer[EOS]:Cer[NS]:SP: SA:Chol:LA (Variable ratio) | Determine the effect of Cer reduced concentration on LPP structure | Neutron diffraction, SAXS, and FTIR | T: 23 or 37 °C pH: 5.0 |
| [149] |
Cer[NP]:Cer[AP]:brCer[EOS]:Chol:LA (0.6:0.3:0.1:0.7:1 molar ratio) | Examine the lamellar and nanostructure of SC model | Neutron diffraction | T: 32 °C pH: ND |
| [150] |
Cer[EOS]:Cer[NS]: Cer[NP]:Chol:LA (0.4:0.3:0.3:1:1 molar ratio) | Examine the location of Cer[NP] and Cer[NS] in LPP unit cell | Neutron diffraction | T: 37 °C pH: 5.0 |
| [151] |
Cer:Chol:FFA (1:1:1 molar ratio) Cer = [NS]:[NP24]:[AS]: [NP16]:[AP] (60:19:5:11:6 molar ratio) FFA = PA:SA:AA:BA:TA:LA:CA (1.8:4:7.7:42.6:5.2:34.7: 4.1 molar ratio) | Study the molecular assembly of SPP | Neutron diffraction | T: 25 °C pH: 5.0 |
| [152] |
Determine the FFA and Chol location into SPP of SC model | Neutron diffraction | T: 25 °C pH: ND |
| [153] | |
Cer:Chol:FFA (1:1:1 molar ratio) Cer = [EOS]:[NS]:[NP]:[AS]: [NP16]:[AP] or [EOS]:[NS] (39:38:10:3:6:4 or 40:60 mol%) FFA = PA:SA:AA:BA:TA:LA:CA (1.8:4:7.6:47.8:38.8 mol%) | Explore both assembly and conformation of Cer[NS] within LPP unit cell | Neutron diffraction and SAXS | T: 25 and 32 °C pH: ND |
| [154] |
Cer:Chol:FFA (1:0–1:0/1 molar ratio) Cer = [EOS]:[NS]:[NP24]: [AS]:[NP16]:[AP] (0:60:18:5:10:7 or 40:36:11:3:6:4 mol%) FFA = PA:SA:AA:BA:TA:LA:CA (1.8:4:7.7:42.6:5.2:34.7: 4.1 mol%) | Explore the effect of Chol on lipid assembly in each lamellar phase | FTIR and SAXS | T: 20–60 °C pH: 5.0 |
| [155] |
Cer:Chol:FFA (1:1:1 molar ratio) Cer = [EOS]:[NS]:[NP24]: [AS]:[NP16]:[AP] (40:60:0:0:0:0 or 40:36:11:3:6:4 mol%) FFA = PA:SA:AA:BA:TA:LA:CA:MA (1.8:4:7.7:42.6:5.2:34.7: 4.19 mol% with increased amount of PA) | Investigate the effects of FFA chain lengths (C16–C28) on lamellar phase and lateral packing of SC model | SAXS, FTIR, and transepidermal water loss measurements | T: 0–90 °C pH: 5.0 |
| [156] |
Cer:Chol:FFA (1:1:1 molar ratio) Cer = L-/O-/S-[EOS]: [NP]:[NS24]:[AS]: [NS16]:[AP] (30:42:13:3.4:7.5:4.1 mol%) FFA = PA:SA:AA:BA:TA:LA:CA (1.3:3.2:6.9:42:5.3:37:4.7 mol%) | Study the influence of Cer[EOS] moiety on SC lipid assembly | FTIR and SAXS | T: −9.5–90 °C pH: 5.0 |
| [157] |
Cer:Chol:FFA (1:1:1 molar ratio) Cer = [EOS]:[NS]:[NP24]: [AS]:[NP16]: [AP] (13.3:12:3.7:1:1:1.3 mol%) FFA = PA:SA:AA:BA:TA:LA:CA (0.6:1.3:2.6:14.2:1.7:11.5:1.4 mol%) | Study the molecular assembly of LPP in the SC | Neutron diffraction | T: 25 °C pH: 5.0 |
| [158] |
Cer:Chol:FFA (1:1:1 molar ratio) Cer = [EOS]:[NS]:[NP24]: [AS]:[NP16]:[AP] (13.3:12:3.7:1:2:1.3 mol%) FFA = PA:SA:AA:BA:TA:LA:CA (0.6:1.3:2.6:14.2:1.7:11.5:1.4 mol%) | Determine the lipid components’ location in the LPP unit cell | Neutron diffraction | T: 25 °C pH: ND |
| [159] |
Cer[NS18]/Cer[NP18]: SA:Chol (1:1:1 molar ratio) | Explore the chain-matched and headgroup influence on SC assembly | 2H-NMR | T: 32, 50 and 75 °C pH: ND |
| [160] |
Cer[EOS]:Cer[NS]: Chol:FFA (0.3:0.7:0.45:1 molar ratio) FFA = PA:SA:AA:BA:LA (1.8:3.9:7.5:47.8:39 wt%) | Study the Cer[EOS] molecular behaviour in a SC lipid model | SAXS, WAXS, 2H-NMR, and Neutron diffraction | T: 32 °C pH: 5.4 |
| [161] |
SC Lipid Model Composition | Porous Substrate | Characterisation Techniques | Model Compounds | Main Outcomes | Ref. |
---|---|---|---|---|---|
Airbrush approaches | |||||
Cer:Chol:FFA (1:1:1 mol ratio) Cer = [EOS]:[NS]:[NP24]: [AS]:[NP16]:[AP] (15:51:16:4:9:5 molar ratio) FFA = PA:SA:AA:BA:TA:LA:CA (1.3:3.3:6.7:41.7:5.4:36.8:4.7 molar ratio) | Polycarbonate 50 nm filter | SWAXS and CryoEM | n.a. |
| [58] |
Diffusion studies | PABA, ethyl-PABA, and butyl-PABA |
| [30] | ||
Cer:Chol:FFA (1:1:1 molar ratio) Cer = [EOS]:[NS]:[NP24]: [AS]:[NP16]:[AP] (15:51:16:4:9:5 molar ratio) FFA = PA:SA:AA:BA:TA:LA:CA (1.8:4:7.7:42.6:5.2:34.7:4.1 molar ratio) | Polycarbonate 50 nm filter | Different airbrush methods, SAXS, and diffusion studies | Benzoic acid |
| [79] |
Cer:Chol:FFA:ChSO4 (Variable ratio) Cer = [EOS]:[NS]:[NP24]: [AS]:[NP16]:[AP] (15:51:16:4:9:5 molar ratio) FFA = PA:SA:AA:BA:TA:LA:CA (1.8:4:7.7:42.6:5.2:34.7:4.1 mol%) | Polycarbonate 50 nm filter | FTIR, SAXS, and permeability studies | Benzoic acid |
| [171] |
Cer:Chol:FFA (1:1:1 molar ratio) Cer = [EOS]:[NS]:[NP]:[AP] (15:51:16:4:9:5 molar ratio) FFA = PA:SA:AA:BA:TA:LA:CA or MyA:PA:SA:AA:BA (Variable ratio) | Polycarbonate 50 nm filter | SAXS, EM, and permeation studies | Benzoic acid |
| [172] |
Cer[AP]:Chol:PA:ChS (55:25:15:5 wt%) | Polycarbonate 50 nm filter | SAXS, polarisation, confocal and ESEM microscopies, Raman imaging, FTIR, and diffusion studies | Urea |
| [173] |
Cer:Chol:FFA (1:1:1 molar ratio) Cer = [EOS]:[NS]:[NP24]:[NP16] (16:56:18:10 mol%) | Polycarbonate 50 nm filter | FTIR and interaction studies | γ-undecalactone, DDA, and diethyl 1,4-cyclohexanedicarboxylate |
| [174] |
Cer[NS]:Chol:PA (1:1:1 molar ratio) | Polycarbonate 50 nm filter | Laurdan fluorescence, SEM, Raman scattering, and permeability studies | Benzoic acid and CAF |
| [175] |
Cer:Chol:FFA (1:1:1 molar ratio) pigCer or synCer = [EOS]:[EOP]:[NS]:[NP24]: [AS]:[NP16]:[AP] (Variable ratio) FFA = PA:SA:AA:BA:TA:LA:CA (1.8:4:7.7:42.6:5.2:34.7:4.1 mol%) | Polycarbonate 50 nm filter | SAXS, FTIR, and permeation studies | HC |
| [164] |
Cer:Chol:FFA (1:1:1 molar ratio) Cer = [EOS]:[NS]:[NP24]: [AS]:[NP16]:[AP] (15:51:16:4:9:5 molar ratio) FFA = PA:SA:AA:BA:TA:LA:CA (1.8:4:7.7:42.6:5.2:34.7:4.1 mol%) | Polycarbonate 50 nm filter | SAXS, FTIR, TEWL, and permeation studies | HC |
| [176] |
aCer:Chol:LA:ChS (1:1:1 molar ratio + 5 wt%) | Polycarbonate 15 nm filter | IR, SWAXS, and permeation studies | TH and IND |
| [177] |
Cer:Chol:FFA (1:1:1 molar ratio) Cer = [NS] or [NS]:[NP24]:[AS]:[NP16]: [AP] (60:19:5:11:6 mol%) FFA = PA:SA:AA:BA:LA(1.8:4:7.6:47.8:38.9 mol%) | Polycarbonate 50 nm filter | FTIR, XRD, and permeability studies | ethyl-PABA |
| [178] |
Cer:Chol:SA:ChS (1:1:1 molar ratio + 5 wt%) Cer = [NP]:[AP] (Variable ratio) | Polycarbonate 15 nm filter | IR, EI, EM, and permeation studies | TH and IND |
| [179] |
Cer:Chol:FFA (1:1:1 molar ratio) Cer = [EOS]:[NS], [EOS]:[AS], [EOS]:[NP] or [EOS]:[AP] (40:60 mol%) FFA = PA:SA:AA:BA:LA (1.8:4:7.6:47.8:38.8 mol%) | Polycarbonate 50 nm filter | FTIR, X-ray, and permeability studies | ethyl-PABA |
| [169] |
Cer:Chol:FFA (1:1:1 molar ratio) Cer = [EOS]:[NS]:[NS24]: [NS16]:[NP]:[AS24]: [AS16]:[AP24] (Variable ratio) FFA = PA:SA:AA:BA:LA (Variable ratio) | Polycarbonate 50 nm filter | FTIR, SWAXS, permeability studies, and TEWL | ethyl-PABA |
| [180] |
hCer:Chol:FFA:ChS (1:1:1 molar ratio + 5 wt%) FFA = PA:SA:AA:BA:LA (1.8:4:7.6:47.8:38.8 mol%) Cer[NS]:Cer[EOS]:Chol: LA:ChS (Variable ratio) | Polycarbonate 15 nm filter | WAXS, FTIR, TEWL, electrical impedance, and permeation studies | TH and IND |
| [181] |
aCer[NS]:Chol:LA:ChS (1:1:1 molar ratio + 5 wt%) | Polycarbonate 15 nm filter | XRD, IR spectroscopy, permeability studies, water loss, and electrical impedance | TH and IND |
| [36] |
Cer:Chol:LA (1:1:1 molar ratio) Cer = [EOS]:[NS24] or [EOS:NS16] (Variable ratio) | Polycarbonate 50 nm filter | FTIR, SAXS, and permeation studies | ethyl-PABA |
| [182] |
Cer:Chol:FFA+ChS (1:1:1 molar ratio + 5 wt%) Cer = [NS], R-/S-[AS], [NdS], R-/S-[AdS], [NP] or R-/S-[AP] | Polycarbonate 15 nm filters | XRD, FTIR, and permeability studies | TH and IND |
| [37] |
Cer:Chol:FFA (1:1:1 molar ratio) Cer = [EOS]:[NS] (10–90:90–10 mol%) FFA = PA:SA:AA:BA:LA (1.8:4:7.6:47.8:38.8 mol%) | Polycarbonate 50 nm filters | SAXS, FTIR, permeation studies, and TEWL | ethyl-PABA |
| [183] |
Cer:Chol:FFA:ChS (1:1:1 molar ratio + 5 wt%) Cer = [EOP]:[EOdS]:[EOS]: [AP]:[AS]:[NP]:[NS]: [NdS]:[AdS] (Variable ratio) FFA = BA:LA:AA:SA:PA (47.1:41.4:6.9:3.3:1.3 mol%) | Polycarbonate 15 nm filter | XRD, FTIR, electrical impedance, and permeability studies | TH and IND |
| [184] |
| [185] | ||||
Cer[NS]:Chol:FFA:ChS (Variable ratio) FFA = PA:SA:AA:BA:LA (1.8:3.9:7.5:47.8:39 mol%) | Polycarbonate 15 nm filters | H-NMR, SAXS, WAXS, zeta potential, and permeability studies | TH and IND |
| [186] |
Cer[NS]:Chol:PA (1:1:1 molar ratio) | Polycarbonate 50 nm filters | SEM, DLS, and permeation studies | CAF |
| [187] |
Skin-PAMPATM approaches | |||||
Certramides:Chol:SA (0 to 1:1:1 molar ratio) | Multiscreen-IP 450 nm pores | Permeability studies | CIP, NFD, and VER |
| [80] |
Certramides:Chol:SA: Si oil | StirwellTM PAMPA | Permeability studies | APAP, DCF, FUR, NAP, PEF, TH, and VER |
| [188] |
PVPA-based approaches | |||||
E80:BSCCer:Chol:PA:ChS (77:23:0:0:0 or 50:27.5:12.5:7.5:2.5 wt%) | Mixed cellulose ester 650 nm filters | Permeation studies | Flu, IBP, IND, SAL, FITC-dextran, and CAL |
| [189] |
E80:BSCCer:Chol:PA:ChS (50:27.5:12.5:2.5:7.5 wt%) | Mixed cellulose ester 650 nm filters | Permeation and stability studies | Liposomal formulations of DCF |
| [190] |
E80:BSCCer:Chol:PA:ChS (77:23:0:0:0 or 50:27.5:12.5:7.5:2.5 wt%) | Mixed cellulose ester 650 nm filters | Stability and permeation studies | CAF, ACV, CPL, and CAL (liposomal formulation and/or aqueous solution) |
| [191] |
Diffusion studies | CAF, DCF, CAP and CAL |
| [192] | ||
EPC/SPC:BSCCer:Chol:PA:ChS (25–80:41–11:18–5: 3.75–1:11.25–3 wt%) | Nylon 450 nm filters | Menthol enhancer permeation studies, comparison with porcine ear skin and ATR-FTIR | FCA, PF, ALB, THC, and THP |
| [193] |
EPC:Chol (77:23 wt%) | Nylon 450 nm filters | SEM, electrical resistance, ATR-FTIR, and permeation studies | FCA, PF, ALB, THC, and THP |
| [194] |
Cer:EPC:Chol:SA:ChS (50:25:12.5:10:2.5 wt%) | Polycarbonate 400 nm filters | SEM, electrical resistance permeation, and stability studies | CAL, CAF, CSP, DCF, MTX, and NAP |
| [195] |
Stability studies and permeability studies | CAL |
| [196] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandes, E.; Lopes, C.M.; Lúcio, M. Lipid Biomimetic Models as Simple Yet Complex Tools to Predict Skin Permeation and Drug–Membrane Biophysical Interactions. Pharmaceutics 2024, 16, 807. https://doi.org/10.3390/pharmaceutics16060807
Fernandes E, Lopes CM, Lúcio M. Lipid Biomimetic Models as Simple Yet Complex Tools to Predict Skin Permeation and Drug–Membrane Biophysical Interactions. Pharmaceutics. 2024; 16(6):807. https://doi.org/10.3390/pharmaceutics16060807
Chicago/Turabian StyleFernandes, Eduarda, Carla M. Lopes, and Marlene Lúcio. 2024. "Lipid Biomimetic Models as Simple Yet Complex Tools to Predict Skin Permeation and Drug–Membrane Biophysical Interactions" Pharmaceutics 16, no. 6: 807. https://doi.org/10.3390/pharmaceutics16060807
APA StyleFernandes, E., Lopes, C. M., & Lúcio, M. (2024). Lipid Biomimetic Models as Simple Yet Complex Tools to Predict Skin Permeation and Drug–Membrane Biophysical Interactions. Pharmaceutics, 16(6), 807. https://doi.org/10.3390/pharmaceutics16060807