Acid-Responsive Decomposable Nanomedicine Based on Zeolitic Imidazolate Frameworks for Near-Infrared Fluorescence Imaging/Chemotherapy Combined Tumor Theranostics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the Cy5.5&DOX@ZIF-8 NPs
2.3. Surface Modification of the Cy5.5&DOX@ZIF-8-Dex NPs
2.4. Characterization
2.5. In Vitro Release of Cy5.5 and DOX from pH-Sensitive Cy5.5&DOX@ZIF-8-Dex NPs
2.6. Cell Culture Experiments
2.7. In Vitro Cytotoxicity
2.8. Evaluation of the Cellular Uptake
2.9. Animal Preparation and Tumor Models
2.10. In Vivo NIRF Imaging Experiments
2.11. Evaluation of In Vivo Chemotherapy
2.12. Histopathological Analysis
2.13. Statistical Analysis
3. Results and Discussion
3.1. Preparation of the Cy5.5&DOX@ZIF-8-Dex NPs
3.2. Characterization of the Cy5.5&DOX@ZIF-8-Dex NPs
3.3. Cytotoxicity and Cellular Uptake
3.4. In Vivo NIR Fluorescence Imaging
3.5. In Vivo Chemotherapy Effect
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, M.; Dong, R.H.; Zhang, J.J.; Tang, H.; Li, Q.Z.; Shao, H.W.; Jiang, X.Y. Nanoscale Metal–Organic Frameworks That Are Both Fluorescent and Hollow for Self-Indicating Drug Delivery. ACS Appl. Mater. Inter. 2021, 13, 18554–18562. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Zhang, X.; Chang, Q.; Zhang, H.; Zhang, Z.; Li, K.; Liu, H.; Liu, D.; An, L.; Tian, Q. Tumor microenvironment–mediated NIR-I-to-NIR-II transformation of Au self-assembly for theranostics. Acta Biomater. 2023, 168, 606–616. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Wang, L.; Guan, Y.; Pei, Q.; Jiang, J.; Xie, Z. Integration of metal-organic framework with a photoactive porous-organic polymer for interface enhanced phototherapy. Biomaterials 2020, 235, 119792. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wong, C.; Lim, C.Z.J.; Chen, Q.; Yu, Z.; Natalia, A.; Wang, Z.; Pang, Q.; Lim, S.W.; Loh, T.P.; et al. Multiplexed RNA profiling by regenerative catalysis enables blood-based subtyping of brain tumors. Nat. Commun. 2023, 14, 4278. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yu, D.; Fang, J.; Cao, C.; Liu, Z.; Ren, J.; Qu, X. Renal-Clearable Porphyrinic Metal-Organic Framework Nanodots for Enhanced Photodynamic Therapy. ACS Nano 2019, 13, 9206–9217. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Deng, Y.; Huang, J.; Fan, X.; Cheng, C.; Nie, C.; Ma, L.; Zhao, W.; Zhao, C. Size-Transformable Metal-Organic Framework-Derived Nanocarbons for Localized Chemo-Photothermal Bacterial Ablation and Wound Disinfection. Adv. Funct. Mater. 2019, 29, 1900143. [Google Scholar] [CrossRef]
- Corma, A.; García, H.; Llabrés i Xamena, F.X. Engineering Metal Organic Frameworks for Heterogeneous Catalysis. Chem. Rev. 2010, 110, 4606–4655. [Google Scholar] [CrossRef]
- Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; O’Keeffe, M.; Yaghi, O.M. High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture. Science 2008, 319, 939–943. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Wang, C. Excited State Energy Transfer in Metal-Organic Frameworks. Adv. Mater. 2021, 33, 2005819. [Google Scholar] [CrossRef]
- Yang, G.L.; Jiang, X.L.; Xu, H.; Zhao, B. Applications of MOFs as Luminescent Sensors for Environmental Pollutants. Small 2021, 17, 2005327. [Google Scholar] [CrossRef]
- Chen, Y.; Lyu, R.; Wang, J.; Cheng, Q.; Yu, Y.; Yang, S.; Mao, C.; Yang, M. Metal–organic frameworks nucleated by silk fibroin and modified with tumor-targeting peptides for targeted multimodal cancer therapy. Adv. Sci. 2023, 10, 2302700. [Google Scholar] [CrossRef]
- Hayashi, H.; Côté, A.P.; Furukawa, H.; O’Keeffe, M.; Yaghi, O.M. Zeolite A imidazolate frameworks. Nat. Mater. 2007, 6, 501–506. [Google Scholar] [CrossRef] [PubMed]
- Ding, H.; Wei, J.; Fang, L.; Feng, L.; Gai, S.; He, F.; Wu, L.; Rehman, Z.; Yang, P. A multichannel metabolic pathway interference strategy for complete energy depletion-mediated cancer therapy. Adv. Funct. Mater. 2024, 34, 2312429. [Google Scholar] [CrossRef]
- Sun, Q.; Bi, H.; Wang, Z.; Li, C.; Wang, X.; Xu, J.; Zhu, H.; Zhao, R.; He, F.; Gai, S.; et al. Hyaluronic acid-targeted and pH-responsive drug delivery system based on metal-organic frameworks for efficient antitumor therapy. Biomaterials 2019, 223, 119473. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Shu, G.; Zhu, J.; Fu, Y.; Gu, Z.; Yang, D. Persistent luminescent metal-organic frameworks with long-lasting near infrared emission for tumor site activated imaging and drug delivery. Biomaterials 2019, 217, 119332. [Google Scholar] [CrossRef]
- Sun, X.; Liang, X.; Wang, Y.; Ma, P.; Xiong, W.; Qian, S.; Cui, Y.; Zhang, H.; Chen, X.; Tian, F.; et al. A tumor microenvironment-activatable nanoplatform with phycocyanin-assisted in-situ nanoagent generation for synergistic treatment of colorectal cancer. Biomaterials 2023, 301, 122263. [Google Scholar] [CrossRef]
- Lv, Y.; Ding, D.; Zhuang, Y.; Feng, Y.; Shi, J.; Zhang, H.; Zhou, T.; Chen, H.; Xie, R. Chromium-Doped Zinc Gallogermanate@Zeolitic Imidazolate Framework-8: A Multifunctional Nanoplatform for Rechargeable In Vivo Persistent Luminescence Imaging and pH-Responsive Drug Release. ACS Appl. Mater. Inter. 2019, 11, 1907–1916. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Li, Q.; Liu, R.; Zhang, X.; Li, Z.; Luan, Y. A Versatile Prodrug Strategy to In Situ Encapsulate Drugs in MOF Nanocarriers: A Case of Cytarabine-IR820 Prodrug Encapsulated ZIF-8 toward Chemo-Photothermal Therapy. Adv. Funct. Mater. 2018, 28, 1802830. [Google Scholar] [CrossRef]
- Wang, T.; Li, S.; Zou, Z.; Hai, L.; Yang, X.; Jia, X.; Zhang, A.; He, D.; He, X.; Wang, K.A. zeolitic imidazolate framework-8-based indocyanine green theranostic agent for infrared fluorescence imaging and photothermal therapy. J. Mater. Chem. B 2018, 6, 3914–3921. [Google Scholar] [CrossRef]
- Chen, H.; Yang, J.; Sun, L.; Zhang, H.; Guo, Y.; Qu, J.; Jiang, W.; Chen, W.; Ji, J.; Yang, Y.; et al. Synergistic Chemotherapy and Photodynamic Therapy of Endophthalmitis Mediated by Zeolitic Imidazolate Framework-Based Drug Delivery Systems. Small 2019, 15, 1903880. [Google Scholar] [CrossRef]
- Dong, J.; Chai, X.; Xue, Y.; Shen, S.; Chen, Z.; Wang, Z.; Yinwang, E.; Wang, S.; Chen, L.; Wu, F.; et al. ZIF-8-Encapsulated Pexidartinib Delivery via Targeted Peptide-Modified M1 Macrophages Attenuates MDSC-Mediated Immunosuppression in Osteosarcoma. Small 2024, 2309038. [Google Scholar] [CrossRef]
- Wang, Q.; Yu, Y.; Chang, Y.; Xu, X.; Wu, M.; Ediriweera, G.R.; Peng, H.; Zhen, X.; Jiang, X.; Searles, D.J.; et al. Fluoropolymer-MOF Hybrids with Switchable Hydrophilicity for 19F MRI-Monitored Cancer Therapy. ACS Nano 2023, 17, 8483–8498. [Google Scholar] [CrossRef]
- Bhattacharjee, S.; Jang, M.S.; Kwon, H.J.; Ahn, W.S. Zeolitic Imidazolate Frameworks: Synthesis, Functionalization, and Catalytic/Adsorption Applications. Catal. Surv. Asia 2014, 18, 101–127. [Google Scholar] [CrossRef]
- Shen, J.; Ma, M.; Zhang, H.; Yu, H.; Xue, F.; Hao, N.; Chen, H. Microfluidics-Assisted Surface Tri-Functionalization of Zeolitic Imidazolate Framework Nanocarrier for Targeted and Controllable Multitherapies of Tumor. ACS Appl. Mater. Inter. 2020, 12, 45838–45849. [Google Scholar] [CrossRef]
- Pan, Y.; Liu, Y.; Zeng, G.; Zhao, L.; Lai, Z. Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system. Chem. Commun. 2011, 47, 2071–2073. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Zhang, Y.; Liu, L.; Wan, W.; Guo, P.; Nyström, A.M.; Zou, X. One-pot Synthesis of Metal–Organic Frameworks with Encapsulated Target Molecules and Their Applications for Controlled Drug Delivery. J. Am. Chem. Soc. 2016, 138, 962–968. [Google Scholar] [CrossRef]
- Han, Y.; Zhao, S.; Wang, F.; Jiang, J. In Situ Transformable Pro-nanotheranostic Platform for Activable Photoacoustic Imaging and Synergistic Photothermal/Chemodynamic Cancer Therapy. Anal. Chem. 2023, 95, 9453–9461. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Hong, S.; Liu, M.D.; Yu, W.Y.; Zhang, M.K.; Zhang, L.; Zeng, X.; Zhang, X.Z. pH-sensitive MOF integrated with glucose oxidase for glucose-responsive insulin delivery. J. Control. Release 2020, 320, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Shu, F.; Lv, D.; Song, X.L.; Huang, B.; Wang, C.; Yu, Y.; Zhao, S.C. Fabrication of a hyaluronic acid conjugated metal organic framework for targeted drug delivery and magnetic resonance imaging. RSC Adv. 2018, 8, 6581–6589. [Google Scholar] [CrossRef]
- Wang, X.; Li, X.; Liang, X.; Liang, J.; Zhang, C.; Yang, J.; Wang, C.; Kong, D.; Sun, H. ROS-responsive capsules engineered from green tea polyphenol–metal networks for anticancer drug delivery. J. Mater. Chem. B 2018, 6, 1000–1010. [Google Scholar] [CrossRef]
- Liang, Z.; Yang, Z.; Yuan, H.; Wang, C.; Qi, J.; Liu, K.; Cao, R.; Zheng, H. A protein@metal–organic framework nanocomposite for pH-triggered anticancer drug delivery. Dalton Trans. 2018, 47, 10223–10228. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, J.; Kuo, C.H.; Chou, L.Y.; Liu, D.Y.; Weerapana, E.; Tsung, C.K. Optimized Metal–Organic-Framework Nanospheres for Drug Delivery: Evaluation of Small-Molecule Encapsulation. ACS Nano 2014, 8, 2812–2819. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Liu, L.; Hu, Q.; Dou, H. Monodisperse ZIF-8@dextran Nanoparticles Co-loaded with Hydrophilic and Hydrophobic Functional Cargos for Combined Near-infrared Fluorescence Imaging and Photothermal Therapy. Acta Biomater. 2022, 137, 290–304. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Liu, L.; Hu, Q.; Dou, H. Mixed Solvent Method for Improving the Size Uniformity and Cargo-Loading Efficiency of ZIF-8 Nanoparticles. Langmuir 2021, 37, 10089–10099. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Kuang, W.; Zheng, Z.; Yang, S.; Liu, Y.; Su, L.; Zhao, K.; Liang, G. Carboxylesterase-Cleavable Biotinylated Nanoparticle for Tumor-Dual Targeted Imaging. Theranostics 2019, 9, 7359–7367. [Google Scholar] [CrossRef]
- Liang, X.; Fang, L.; Li, X.; Zhang, X.; Wang, F. Activatable near infrared dye conjugated hyaluronic acid-based nanoparticles as a targeted theranostic agent for enhanced fluorescence/CT/photoacoustic imaging guided photothermal therapy. Biomaterials 2017, 132, 72–84. [Google Scholar] [CrossRef]
- Li, J.; Li, X.; Gong, S.; Zhang, C.; Qian, C.; Qiao, H.; Sun, M. Dual-mode avocado-like all-iron nanoplatform for enhanced T1/T2 MRI-guided cancer theranostic therapy. Nano Lett. 2020, 20, 4842–4849. [Google Scholar] [CrossRef] [PubMed]
- Ma, B.; Zhuang, W.; He, H.; Su, X.; Yu, T.; Hu, J.; Yang, L.; Li, G.; Wang, Y. Two-photon AIE probe conjugated theranostic nanoparticles for tumor bioimaging and pH-sensitive drug delivery. Nano Res. 2019, 12, 1703–1712. [Google Scholar] [CrossRef]
- Duan, X.; Li, Y. Physicochemical Characteristics of Nanoparticles Affect Circulation, Biodistribution, Cellular Internalization, and Trafficking. Small 2013, 9, 1521–1532. [Google Scholar] [CrossRef]
- Simone, E.A.; Dziubla, T.D.; Muzykantov, V.R. Polymeric carriers: Role of geometry in drug delivery. Expert Opin. Drug Del. 2008, 5, 1283–1300. [Google Scholar] [CrossRef]
- Huang, W.; Leng, T.; Gao, M.; Hu, Q.; Liu, L.; Dou, H. Scalable dextran-polypyrrole nano-assemblies with photothermal/photoacoustic dual capabilities and enhanced biocompatibility. Carbohydr. Polym. 2020, 241, 116224. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Guan, W.; Chen, R.; Levi-Kalisman, Y.; Xu, Y.; Zhang, L.; Zhou, M.; Xu, G.; Dou, H. Fluorescent glycan nanoparticle-based FACS assays for the identification of genuine drug-resistant cancer cells with differentiation potential. Nano Res. 2020, 13, 3110–3122. [Google Scholar] [CrossRef]
- Mukwaya, V.; Zhang, P.; Guo, H.; Dang-I, A.Y.; Hu, Q.; Li, M.; Mann, S.; Dou, H. Fluorescent glycan nanoparticle-based FACS assays for the identification of genuine drug-resistant cancer cells with differentiation potential. Nano Res. 2020, 14, 7899–7910. [Google Scholar]
- Decuzzi, P.; Godin, B.; Tanaka, T.; Lee, S.Y.; Chiappini, C.; Liu, X.; Ferrari, M. Size and shape effects in the biodistribution of intravascularly injected particles. J. Control. Release 2010, 141, 320–327. [Google Scholar] [CrossRef] [PubMed]
- Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J.F.; Heurtaux, D.; Clayette, P.; Kreuz, C.; et al. Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nature Mater. 2009, 9, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, A.U.; Freitas, A.P.; Boutin, A.; Fuchs, A.H.; Coudert, F.X. What makes zeolitic imidazolate frameworks hydrophobic or hydrophilic? The impact of geometry and functionalization on water adsorption. Phys. Chem. Chem. Phys. 2014, 16, 9940–9949. [Google Scholar] [CrossRef] [PubMed]
- Gan, L.; Chidambaram, A.; Fonquernie, P.G.; Light, M.E.; Choquesillo-Lazarte, D.; Huang, H.; Solano, E.; Fraile, J.; Viñas, C.; Teixidor, F.; et al. A Highly Water-Stable meta-Carborane-Based Copper Metal–Organic Framework for Efficient High-Temperature Butanol Separation. J. Am. Chem. Soc. 2020, 142, 8299–8311. [Google Scholar] [CrossRef]
- Qiao, X.; Su, B.; Liu, C.; Song, Q.; Luo, D.; Mo, G.; Wang, T. Selective Surface Enhanced Raman Scattering for Quantitative Detection of Lung Cancer Biomarkers in Superparticle@MOF Structure. Adv. Mater. 2017, 30, 1702275. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, H.; Mukwaya, V.; Wu, D.; Xiong, S.; Dou, H. Acid-Responsive Decomposable Nanomedicine Based on Zeolitic Imidazolate Frameworks for Near-Infrared Fluorescence Imaging/Chemotherapy Combined Tumor Theranostics. Pharmaceutics 2024, 16, 823. https://doi.org/10.3390/pharmaceutics16060823
Guo H, Mukwaya V, Wu D, Xiong S, Dou H. Acid-Responsive Decomposable Nanomedicine Based on Zeolitic Imidazolate Frameworks for Near-Infrared Fluorescence Imaging/Chemotherapy Combined Tumor Theranostics. Pharmaceutics. 2024; 16(6):823. https://doi.org/10.3390/pharmaceutics16060823
Chicago/Turabian StyleGuo, Heze, Vincent Mukwaya, Daikun Wu, Shuhan Xiong, and Hongjing Dou. 2024. "Acid-Responsive Decomposable Nanomedicine Based on Zeolitic Imidazolate Frameworks for Near-Infrared Fluorescence Imaging/Chemotherapy Combined Tumor Theranostics" Pharmaceutics 16, no. 6: 823. https://doi.org/10.3390/pharmaceutics16060823
APA StyleGuo, H., Mukwaya, V., Wu, D., Xiong, S., & Dou, H. (2024). Acid-Responsive Decomposable Nanomedicine Based on Zeolitic Imidazolate Frameworks for Near-Infrared Fluorescence Imaging/Chemotherapy Combined Tumor Theranostics. Pharmaceutics, 16(6), 823. https://doi.org/10.3390/pharmaceutics16060823