Investigation of the Electrokinetic Potential of Granules and Optimization of the Pelletization Method Using the Quality by Design Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Risk Assessment
2.3. Preparation of Blank Pellets
2.4. Design of Experiment (DoE)
2.4.1. Screening Design
Code | Parameter | Low Level (−1) | Center Level (0) | High Level (+1) |
---|---|---|---|---|
X1 | Impeller speed (rpm) | 500 | 1000 | 1500 |
X2 | Chopper speed (rpm) | 1000 | 1500 | 2000 |
X3 | Liquid volume (mL) | 55 | 57.5 | 60 |
X4 | Binder amount (g) | 1 | 2 | 3 |
X5 | Addition rate (mL/min) | 5 | 7.5 | 10 |
2.4.2. Two-Level Full Factorial Design
2.4.3. Central Composite Design
2.5. Physical Characteristics of Pellets
2.5.1. Size Distribution and Yield Percent
2.5.2. Aspect Ratio and Roundness
2.5.3. Hardness and Deformation Properties
2.6. Drug-Loaded Pellet Test
2.6.1. Dissolution Test
2.6.2. Electrokinetic Potential Measurement (SurPass)
2.6.3. Content Uniformity
2.6.4. FT-IR Spectroscopy
3. Results and Discussion
3.1. Risk Assessment
3.1.1. Ishikawa Diagram
3.1.2. Risk Estimation Matrix and Pareto Chart
QTPP | Goal | Justification |
---|---|---|
Morphological feature | Spherical particles with a narrow size distribution | To enhance flow properties during the manufacturing process, solubility, and release kinetics of the drug [21,22,23] |
Mechanical properties | High tensile strength Low friability | Pellets must be able to withstand mechanical forces during various technological processes, such as filling and coating [9] |
Efficacy | Optimum content uniformity | Multiparticulate particles are freely distributed in the gastrointestinal tract, which leads to enhanced absorption, in addition to the control of drug release according to the required purpose [1,21,22]. |
Safety | Low toxicity | Small particle size reduces dose dumping and, consequently, gastrointestinal tract irritation and drug toxicity [23,24,25] |
Dosage form | Capsule and tablet | Most applicable dosage forms due to accuracy, stability, and patient compliance [26] |
CQA | Goal | Justification |
---|---|---|
Size | 500–1500 µm | To minimize segregation hazard and better coating [21,24] |
Aspect ratio and roundness | <1.2 | Spherical particles have good flow properties, which is a critical factor in the preparation of solid dosage forms [27] |
Hardness | Within a good range | To ensure good tableting compression, capsule-filling, and coating [27,28] |
Friability | ||
Angle of repose | 25–40 | Good rheological properties can be used as an indicator of the degree of sphericity. On the other hand, flow properties with compressibility behavior are very important for the direct compression of tablets and filling of capsules [21,23] |
Hausner factor | 1–1.34 | |
Cumulative drug release percent | >80% | To ensure high drug absorption and bioavailability [29] |
Content uniformity | Within the required range (depending on the drug) | To obtain an optimum therapeutic effect with the lowest toxicity and side effects |
3.2. Preparation of Blank Pellets
3.3. Design of the Experiment
3.3.1. Screening Design
3.3.2. Two-Level Full Factorial Design
3.3.3. Central Composite Design
3.3.4. Process Optimization and Validation
3.4. Drug-Loaded Pellets
3.4.1. Physical Tests
3.4.2. Content Uniformity Results
3.4.3. Dissolution Test
Test | Amlodipine Besylate | Hydrochlorothiazide | Drug-Free Pellet |
---|---|---|---|
Aspect ratio | 1.14 | 1.19 | 1.192 |
Yield percent (%) | 82 | 79 | 83.36 |
Hardness (N) | 35.89 | 37.86 | 34.02 |
Sample | Zeta potential (mV) |
---|---|
Vivapur powder | −5.01 |
Drug-free pellets | −11.87 |
Amlodipine besylate pellets | −10.13 |
Hydrochlorothiazide pellets | −6.55 |
3.4.4. FT-IR Spectroscopy
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Soh, J.; Sarkar, S.; Heng, P.; Liew, C. Pelletization Techniques. In Encyclopedia of Pharmaceutical Science and Technology; CRC Press/Taylor & Francis Group: Boca Raton, FL, USA, 2013; pp. 2515–2524. [Google Scholar]
- Chitu, T.M.; Oulahna, D.; Hemati, M. Wet Granulation in Laboratory-Scale High Shear Mixers: Effect of Chopper Presence, Design and Impeller Speed. Powder Technol. 2011, 206, 34–43. [Google Scholar] [CrossRef]
- Dévay, A.; Mayer, K.; Pál, S.; Antal, I. Investigation on Drug Dissolution and Particle Characteristics of Pellets Related to Manufacturing Process Variables of High-Shear Granulation. J. Biochem. Biophys. Methods 2006, 69, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Mahours, G.M.; Shaaban, D.E.Z.; Shazly, G.A.; Auda, S.H. The Effect of Binder Concentration and Dry Mixing Time on Granules, Tablet Characteristics and Content Uniformity of Low Dose Drug in High Shear Wet Granulation. J. Drug Deliv. Sci. Technol. 2017, 39, 192–199. [Google Scholar] [CrossRef]
- Benali, M.; Gerbaud, V.; Hemati, M. Effect of Operating Conditions and Physico–Chemical Properties on the Wet Granulation Kinetics in High Shear Mixer. Powder Technol. 2009, 190, 160–169. [Google Scholar] [CrossRef]
- Chitu, T.M.; Oulahna, D.; Hemati, M. Wet Granulation in Laboratory Scale High Shear Mixers: Effect of Binder Properties. Powder Technol. 2011, 206, 25–33. [Google Scholar] [CrossRef]
- Žižek, K.; Hraste, M.; Gomzi, Z. High Shear Granulation of Dolomite—I: Effect of Shear Regime on Process Kinetics. Chem. Eng. Res. Des. 2013, 91, 70–86. [Google Scholar] [CrossRef]
- Briens, L.; Logan, R. The Effect of the Chopper on Granules from Wet High-Shear Granulation Using a PMA-1 Granulator. AAPS PharmSciTech 2011, 12, 1358–1365. [Google Scholar] [CrossRef] [PubMed]
- Kristó, K.; Csík, E.; Sebők, D.; Kukovecz, Á.; Sovány, T.; Regdon, G.; Csóka, I.; Penke, B.; Pintye-Hódi, K. Effects of the Controlled Temperature in the Production of High-Shear Granulated Protein-Containing Granules. Powder Technol. 2022, 395, 758–765. [Google Scholar] [CrossRef]
- Kristó, K.; Kovács, O.; Kelemen, A.; Lajkó, F.; Klivényi, G.; Jancsik, B.; Pintye-Hódi, K.; Regdon, G. Process Analytical Technology (PAT) Approach to the Formulation of Thermosensitive Protein-Loaded Pellets: Multi-Point Monitoring of Temperature in a High-Shear Pelletization. Eur. J. Pharm. Sci. 2016, 95, 62–71. [Google Scholar] [CrossRef]
- Kornchankul, W.; Parikh, N.; Sakr, A. Effect of Process Variables on the Content Uniformity of a Low Dose Drug in a High Shear Mixer. Pharm. Ind. 2000, 62, 305–311. [Google Scholar]
- Žižek, K.; Hraste, M.; Gomzi, Z. High Shear Granulation of Dolomite—II: Effect of Amount of Binder Liquid on Process Kinetics. Chem. Eng. Res. Des. 2014, 92, 1091–1106. [Google Scholar] [CrossRef]
- Rahmanian, N.; Naji, A.; Ghadiri, M. Effects of Process Parameters on Granules Properties Produced in a High Shear Granulator. Chem. Eng. Res. Des. 2011, 89, 512–518. [Google Scholar] [CrossRef]
- Bajdik, J.; Baki, G.; Szent-Királlyi, Z.; Knop, K.; Kleinebudde, P.; Pintye-Hódi, K. Evaluation of the Composition of the Binder Bridges in Matrix Granules Prepared with a Small-Scale High-Shear Granulator. J. Pharm. Biomed. Anal. 2008, 48, 694–701. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Wang, J.; Zeng, J.; Zhao, L.; Wang, Y.; Feng, Y.; Du, R. A Review of High Shear Wet Granulation for Better Process Understanding, Control and Product Development. Powder Technol. 2021, 381, 204–223. [Google Scholar] [CrossRef]
- Fayed, M.H.; Abdel-Rahman, S.I.; Alanazi, F.K.; Ahmed, M.O.; Tawfeek, H.M.; Al-Shdefat, R.I. New Gentle-Wing High-Shear Granulator: Impact of Processing Variables on Granules and Tablets Characteristics of High-Drug Loading Formulation Using Design of Experiment Approach. Drug Dev. Ind. Pharm. 2017, 43, 1584–1600. [Google Scholar] [CrossRef] [PubMed]
- Kasemiire, A.; Avohou, H.T.; De Bleye, C.; Sacre, P.-Y.; Dumont, E.; Hubert, P.; Ziemons, E. Design of Experiments and Design Space Approaches in the Pharmaceutical Bioprocess Optimization. Eur. J. Pharm. Biopharm. 2021, 166, 144–154. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, I.; Pinto, C.; Moreira, C.; Saviano, A.; Lourenço, F. Design of Experiments (DoE) Applied to Pharmaceutical and Analytical Quality by Design (QbD). Braz. J. Pharm. Sci. 2018, 54, e01006. [Google Scholar] [CrossRef]
- Sovány, T.; Tislér, Z.; Kristó, K.; Kelemen, A.; Regdon, G. Estimation of Design Space for an Extrusion–Spheronization Process Using Response Surface Methodology and Artificial Neural Network Modelling. Eur. J. Pharm. Biopharm. 2016, 106, 79–87. [Google Scholar] [CrossRef]
- Kan, S.; Lu, J.; Liu, J.; Wang, J.; Zhao, Y. A Quality by Design (QbD) Case Study on Enteric-Coated Pellets: Screening of Critical Variables and Establishment of Design Space at Laboratory Scale. Asian J. Pharm. Sci. 2014, 9, 268–278. [Google Scholar] [CrossRef]
- Supriya, P.; Rajni, B.; Rana, A.C. Pelletization Techniques: A Literature Review. Int. Res. J. Pharm. 2012, 3, 43–47. [Google Scholar]
- Lavanya, K.; Senthil, V.; Rathi, V. Pelletization technology: A quick review. Int. J. Pharm. Sci. Res. 2011, 2, 1337–1355. [Google Scholar]
- Ratul, D.; Ahmed, A. Pellets and Pelletization Techniques: A Critical Review. Int. Res. J. Pharm. 2013, 4, 90–95. [Google Scholar]
- Dumpala, R.; Patil, C.A. Review on Pellets and Pelletization Techniques. Int. J. Res. Trends Innov. 2020, 2, 9–21. [Google Scholar]
- Ahir, A.; Mali, S.; Hajare, A.; Bhagwat, D.; Patrekar, P. Pelletization Technology: Methods and Applications—A Review. Res. J. Pharm. Technol. 2015, 8, 131–138. [Google Scholar] [CrossRef]
- Arshad, M.S.; Zafar, S.; Yousef, B.; Alyassin, Y.; Ali, R.; AlAsiri, A.; Chang, M.-W.; Ahmad, Z.; Elkordy, A.A.; Faheem, A.; et al. A Review of Emerging Technologies Enabling Improved Solid Oral Dosage Form Manufacturing and Processing. Adv. Drug Deliv. Rev. 2021, 178, 113840. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, Y.H.Y.; Wobuoma, P.; Kristó, K.; Lajkó, F.; Klivényi, G.; Jancsik, B.; Regdon Jr, G.; Pintye-Hódi, K.; Sovány, T. Effect of Processing Conditions and Material Attributes on the Design Space of Lysozyme Pellets Prepared by Extrusion/Spheronization. J. Drug Deliv. Sci. Technol. 2021, 66, 102714. [Google Scholar] [CrossRef]
- Gryczová, E.; Kubova Dvorackova, K.; Rabiškova, M. Evaluation of Pellet Friability. Ces Slov. Farm. 2009, 58, 9–13. [Google Scholar]
- Zhou, Q.T.; Li, T. Formulation and Manufacturing of Solid Dosage Forms. Pharm. Res. 2018, 36, 16. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, S.; Fernandes, J.; Shaikh, F.; Patel, V. Quality Aspects in the Development of Pelletized Dosage Forms. Heliyon 2022, 8, e08956. [Google Scholar] [CrossRef]
- Goyanes, A.; Souto, C.; Martínez-Pacheco, R. Control of Drug Release by Incorporation of Sorbitol or Mannitol in Microcrystalline-Cellulose-Based Pellets Prepared by Extrusion-Spheronization. Pharm. Dev. Technol. 2010, 15, 626–635. [Google Scholar] [CrossRef]
- Badawy, S.I.F.; Narang, A.S.; LaMarche, K.; Subramanian, G.; Varia, S.A. Mechanistic Basis for the Effects of Process Parameters on Quality Attributes in High Shear Wet Granulation. Int. J. Pharm. 2012, 439, 324–333. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.; Pai, R.S.; Devi, V.K. Response Surface Methodology and Process Optimization of Sustained Release Pellets Using Taguchi Orthogonal Array Design and Central Composite Design. J. Adv. Pharm. Technol. Res. 2012, 3, 30–40. [Google Scholar] [PubMed]
- Čudina, O.; Karljiković-Rajić, K.; Ruvarac-Bugarčić, I.; Janković, I. Interaction of hydrochlorothiazide with cationic surfactant micelles of cetyltrimethylammonium bromide. Colloid Surfaces A 2005, 256, 225–232. [Google Scholar] [CrossRef]
- Tokumura, T.; Watarai, Y.; Morita, Y. Adsorption of Amlodipine Besylate to Corn Starch and Microcrystalline Cellulose Suspended in Aqueous Solution. J. Pharm. Sci. Technol. Jpn. 2021, 81, 200–204. [Google Scholar]
- Alhamdany, A.; Abbas, A. Formulation and in Vitro Evaluation of Amlodipine Gastroretentive Floating Tablets Using a Combination of Hydrophilic and Hydrophobic Polymers. Int. J. Appl. Pharm. 2018, 10, 126–134. [Google Scholar] [CrossRef]
- Padmavathi, Y.; Chilka, R.; Tummala, R.; Pulla, G. Development and validation of FTIR spectroscopic method for simultaneous estimation of telmisartan and hydrochlorothiazide in pure and pharmaceutical dosage forms. Int. J. Pharm. Sci. Res. 2020, 11, 862–872. [Google Scholar]
- Pravallika, Y.V.; Rajyalakshmi, K. Formulation and evaluation of Gastroretentive hydrochlorothiazide Floating Microspheres: Statistical Analysis. PharmaTutor 2016, 4, 28–36. [Google Scholar]
Experiment No. | Impeller Speed (rpm) | Chopper Speed (rpm) | Liquid Addition Rate (mL/min) | Granulating Liquid Volume (mL) | Binder Amount (g) |
---|---|---|---|---|---|
1 | 500 | 1000 | 10 | 55 | 3 |
2 | 1500 | 1000 | 5 | 55 | 1 |
3 | 500 | 2000 | 5 | 55 | 3 |
4 | 1500 | 2000 | 10 | 55 | 1 |
5 | 500 | 1000 | 10 | 60 | 1 |
6 | 1500 | 1000 | 5 | 60 | 3 |
7 | 500 | 2000 | 5 | 60 | 1 |
8 | 1500 | 2000 | 10 | 60 | 3 |
Experiment No. | Impeller Speed (rpm) | Chopper Speed (rpm) | Granulating Liquid Volume (mL) | Binder Amount (g) |
---|---|---|---|---|
1 | 500 | 1000 | 55 | 1 |
2 | 1500 | 1000 | 55 | 1 |
3 | 500 | 2000 | 55 | 1 |
4 | 1500 | 2000 | 55 | 1 |
5 | 500 | 1000 | 55 | 3 |
6 | 1500 | 1000 | 55 | 3 |
7 | 500 | 2000 | 55 | 3 |
8 | 1500 | 2000 | 55 | 3 |
9 | 500 | 1000 | 60 | 1 |
10 | 1500 | 1000 | 60 | 1 |
11 | 500 | 2000 | 60 | 1 |
12 | 1500 | 2000 | 60 | 1 |
13 | 500 | 1000 | 60 | 3 |
14 | 1500 | 1000 | 60 | 3 |
15 | 500 | 2000 | 60 | 3 |
16 | 1500 | 2000 | 60 | 3 |
17(c) | 1000 | 1500 | 57.5 | 2 |
Experiment No. | Impeller Speed (rpm) | Chopper Speed (rpm) | Granulating Liquid Volume (mL) | Binder Amount (g) |
---|---|---|---|---|
18 | 1500 | 1500 | 57.5 | 2 |
19 | 1000 | 1000 | 57.5 | 2 |
20 | 1000 | 2000 | 57.5 | 2 |
21 | 1000 | 1500 | 55.0 | 2 |
22 | 1000 | 1500 | 60.0 | 2 |
23 | 1000 | 1500 | 57.5 | 1 |
24 | 1000 | 1500 | 57.5 | 3 |
25 | 1000 | 1500 | 57.5 | 2 |
26 | 1000 | 1500 | 57.5 | 2 |
27 | 500 | 1500 | 57.5 | 2 |
Experiment No. | Aspect Ratio | Yield Percent (%) | Hardness (N) |
---|---|---|---|
1 | 1.287 | 73 | 41.834 |
2 | 1.258 | 61 | 32.437 |
3 | 1.57 | 58 | 37.757 |
4 | 1.534 | 54 | 32.808 |
5 | 1.773 | 12 | 32.265 |
6 | 1.933 | 24 | 40.102 |
7 | 1.753 | 11 | 33.523 |
8 | 1.9 | 21 | 35.431 |
Experiment No. | Aspect Ratio | Yield Percent (%) | Hardness (N) |
---|---|---|---|
1 | 1.204 | 69 | 30.938 |
2 | 1.258 | 61 | 32.437 |
3 | 1.229 | 61 | 30.593 |
4 | 1.436 | 71 | 30.214 |
5 | 1.524 | 67 | 32.084 |
6 | 1.237 | 78 | 34.347 |
7 | 1.57 | 58 | 37.757 |
8 | 1.842 | 35 | 32.054 |
9 | 1.845 | 11 | 30.559 |
10 | 2.292 | 13 | 31.556 |
11 | 1.753 | 11 | 33.523 |
12 | 2.023 | 27 | 37.45 |
13 | 1.582 | 7 | 31.129 |
14 | 1.933 | 24 | 40.102 |
15 | 1.396 | 54 | 39.54 |
16 | 1.95 | 20 | 41.55 |
17 (c) | 1.22 | 65 | 31.73 |
Experiment No. | Aspect Ratio | Yield Percent (%) | Hardness (N) |
---|---|---|---|
17 | 1.184 | 73 | 33.96 |
18 | 1.215 | 62 | 33.81 |
19 | 1.456 | 14 | 29.74 |
20 | 1.667 | 35 | 34.21 |
21 | 1.333 | 61 | 30.914 |
22 | 1.183 | 65 | 35.19 |
23 | 1.220 | 69 | 32.53 |
24 | 1.288 | 94 | 36.2 |
25 | 1.252 | 64 | 32.85 |
26 | 1.219 | 67 | 31.26 |
Coefficients for X Values | Y1 | Y2 | Y3 |
---|---|---|---|
X1 | 0.194722 | −14.3333 | 1.4023 |
X2 | - | −11.5556 | 1.9642 |
X3 | 0.107556 | −5.3333 | 0.9361 |
X4 | - | −2.2778 | 1.34511 |
X12 | - | - | 0.9498 |
X22 | 0.353415 | −24.8056 | 0.9602 |
X32 | - | - | 1.4298 |
X42 | 0.049915 | - | - |
X1X2 | 0.131125 | 2.625 | - |
X1X3 | 0.086 | - | 1.1137 |
X1X4 | −0.0865 | −2.25 | 1.1445 |
X2X4 | 0.04 | - | - |
X3X4 | 0.046125 | - | −0.8927 |
Experiment No. | Impeller Speed (rpm) | Chopper Speed (rpm) | Aspect Ratio | Yield Percent (%) | Hardness (N) | |||
---|---|---|---|---|---|---|---|---|
Expected Value | Practical Value | Expected Value | Practical Value | Expected Value | Practical Value | |||
1 | 500 | 1500 | 1.204 | 1.192 | 87.31 | 83.36 | 34.99 | 34.72 |
2 | 600 | 1300 | 1.16 | 1.14 | 84.73 | 80.02 | 34 | 34.02 |
3 | 700 | 1200 | 1.204 | 1.23 | 80.83 | 77.93 | 33.43 | 33.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahmoud, A.A.K.; Hassan, A.A.A.; Dobó, D.G.; Ludasi, K.; Janovák, L.; Regdon, G., Jr.; Csóka, I.; Kristó, K. Investigation of the Electrokinetic Potential of Granules and Optimization of the Pelletization Method Using the Quality by Design Approach. Pharmaceutics 2024, 16, 848. https://doi.org/10.3390/pharmaceutics16070848
Mahmoud AAK, Hassan AAA, Dobó DG, Ludasi K, Janovák L, Regdon G Jr., Csóka I, Kristó K. Investigation of the Electrokinetic Potential of Granules and Optimization of the Pelletization Method Using the Quality by Design Approach. Pharmaceutics. 2024; 16(7):848. https://doi.org/10.3390/pharmaceutics16070848
Chicago/Turabian StyleMahmoud, Azza A. K., Alharith A. A. Hassan, Dorina Gabriella Dobó, Krisztina Ludasi, László Janovák, Géza Regdon, Jr., Ildikó Csóka, and Katalin Kristó. 2024. "Investigation of the Electrokinetic Potential of Granules and Optimization of the Pelletization Method Using the Quality by Design Approach" Pharmaceutics 16, no. 7: 848. https://doi.org/10.3390/pharmaceutics16070848
APA StyleMahmoud, A. A. K., Hassan, A. A. A., Dobó, D. G., Ludasi, K., Janovák, L., Regdon, G., Jr., Csóka, I., & Kristó, K. (2024). Investigation of the Electrokinetic Potential of Granules and Optimization of the Pelletization Method Using the Quality by Design Approach. Pharmaceutics, 16(7), 848. https://doi.org/10.3390/pharmaceutics16070848