Histological Assessment of Respiratory Tract and Liver of BALB/c Mice Nebulized with Tocilizumab
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
- Control group: 6 control mice exposed to saline (5 mL of saline solution, 0.9% NaCl);
- Group 1: 10 mice exposed to nebulized tocilizumab (2.5 mg in a volume of 5 mL completed with saline) and euthanized after 48 h;
- Group 2: 10 mice exposed to nebulized tocilizumab (5 mg; 5 mL final volume) and euthanized after 48 h;
- Group 3: 10 mice exposed to nebulized tocilizumab (10 mg; 5 mL final volume) and euthanized after 48 h.
2.2. Histopathological Evaluation
2.3. Statistical Study
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thakur, A.K.; Chellappan, D.K.; Dua, K.; Mehta, M.; Satija, S.; Singh, I. Patented therapeutic drug delivery strategies for targeting pulmonary diseases. Expert. Opin. Ther. Pat. 2020, 30, 375–387. [Google Scholar] [CrossRef] [PubMed]
- Lalan, M.; Tandel, H.; Lalani, R.; Patel, V.; Misra, A. Inhalation Drug Therapy: Emerging Trends in Nasal and Pulmonary Drug Delivery. In Novel Drug Delivery Technologies; Misra, A., Shahiwala, A., Eds.; Springer: Singapore, 2019; pp. 291–333. ISBN 9789811336416. [Google Scholar]
- Newman, S.P. Delivering drugs to the lungs: The history of repurposing in the treatment of respiratory diseases. Adv. Drug Deliv. Rev. 2018, 133, 5–18. [Google Scholar] [CrossRef] [PubMed]
- Mihara, M.; Nishimoto, N.; Ohsugi, Y. The therapy of autoimmune diseases by anti-interleukin-6 receptor antibody. Expert. Opin. Biol. Ther. 2005, 5, 683–690. [Google Scholar] [CrossRef] [PubMed]
- De Benedetti, F.; Brunner, H.I.; Ruperto, N.; Kenwright, A.; Wright, S.; Calvo, I.; Cuttica, R.; Ravelli, A.; Schneider, R.; Woo, P.; et al. Randomized trial of tocilizumab in systemic juvenile idiopathic arthritis. N. Engl. J. Med. 2012, 367, 2385–2395. [Google Scholar] [CrossRef] [PubMed]
- Teitsma, X.M.; Marijnissen, A.K.A.; Bijlsma, J.W.J.; Lafeber, F.P.J.; Jacobs, J.W.G. Tocilizumab as monotherapy or combination therapy for treating active rheumatoid arthritis: A meta-analysis of efficacy and safety reported in randomized controlled trials. Arthritis Res. Ther. 2016, 18, 211. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.A.; Beg, S.; Lopez-Olivo, M.A. Tocilizumab for rheumatoid arthritis. Cochrane Database Syst. Rev. 2010, 7, CD008331. [Google Scholar] [CrossRef]
- Vela, D.; Vela-Gaxha, Z.; Rexhepi, M.; Olloni, R.; Hyseni, V.; Nallbani, R. Efficacy and safety of tocilizumab versus standard care/placebo in patients with COVID-19; a systematic review and meta-analysis of randomized clinical trials. Br. J. Clin. Pharmacol. 2022, 88, 1955–1963. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Leisman, D.E.; Ronner, L.; Pinotti, R.; Taylor, M.D.; Sinha, P.; Calfee, C.S.; Hirayama, A.V.; Mastroiani, F.; Turtle, C.J.; Harhay, M.O.; et al. Cytokine elevation in severe and critical COVID-19: A rapid systematic review, meta-analysis, and comparison with other inflammatory syndromes. Lancet Respir. Med. 2020, 8, 1233–1244. [Google Scholar] [CrossRef]
- Recovery Collaborative Group; Horby, P.; Lim, W.S.; Emberson, J.R.; Mafham, M.; Bell, J.L.; Linsell, L.; Staplin, N.; Brightling, C.; Ustianowski, A.; et al. Dexamethasone in Hospitalized Patients with COVID-19. N. Engl. J. Med. 2021, 384, 693–704. [Google Scholar] [CrossRef]
- Recovery Collaborative Group. Baricitinib in patients admitted to hospital with COVID-19 (RECOVERY): A randomised, controlled, open-label, platform trial and updated meta-analysis. Lancet 2022, 400, 359–368. [Google Scholar] [CrossRef]
- Amstutz, A.; Speich, B.; Mentré, F.; Rueegg, C.S.; Belhadi, D.; Assoumou, L.; Burdet, C.; Murthy, S.; Dodd, L.E.; Wang, Y.; et al. Effects of remdesivir in patients hospitalised with COVID-19: A systematic review and individual patient data meta-analysis of randomised controlled trials. Lancet Respir. Med. 2023, 11, 453–464. [Google Scholar] [CrossRef]
- Huang, S.-F.; Ying-Jung Wu, A.; Shin-Jung Lee, S.; Huang, Y.-S.; Lee, C.-Y.; Yang, T.-L.; Wang, H.-W.; Chen, H.J.; Chen, Y.C.; Ho, T.-S.; et al. COVID-19 associated mold infections: Review of COVID-19 associated pulmonary aspergillosis and mucormycosis. J. Microbiol. Immunol. Infect. 2022, 56, 442–454. [Google Scholar] [CrossRef]
- Markovskaya, Y.; Gavioli, E.M.; Cusumano, J.A.; Glatt, A.E. Coronavirus disease 2019 (COVID-19): Secondary bacterial infections and the impact on antimicrobial resistance during the COVID-19 pandemic. Antimicrob. Steward. Heal. Epidemiol. 2022, 2, e114. [Google Scholar] [CrossRef]
- Jenks, N.P.; Driscoll, B.; Locke, T. Strongyloidiasis Hyperinfection Syndrome in COVID-19 Positive Migrants Treated with Corticosteroids. J. Immigr. Minor. Health 2022, 24, 1431–1434. [Google Scholar] [CrossRef] [PubMed]
- Monk, P.D.; Marsden, R.J.; Tear, V.J.; Brookes, J.; Batten, T.N.; Mankowski, M.; Gabbay, F.J.; Davies, D.E.; Holgate, S.T.; Ho, L.-P.; et al. Safety and efficacy of inhaled nebulised interferon beta-1a (SNG001) for treatment of SARS-CoV-2 infection: A randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Respir. Med. 2021, 9, 196–206. [Google Scholar] [CrossRef]
- Griesel, M.; Wagner, C.; Mikolajewska, A.; Stegemann, M.; Fichtner, F.; Metzendorf, M.-I.; Nair, A.A.; Daniel, J.; Fischer, A.-L.; Skoetz, N. Inhaled corticosteroids for the treatment of COVID-19. Cochrane Database Syst. Rev. 2022, 3, CD015125. [Google Scholar] [CrossRef]
- Selickman, J.; Vrettou, C.S.; Mentzelopoulos, S.D.; Marini, J.J. COVID-19-Related ARDS: Key Mechanistic Features and Treatments. J. Clin. Med. 2022, 11, 4896. [Google Scholar] [CrossRef]
- Pitiot, A.; Heuzé-Vourc’h, N.; Sécher, T. Alternative Routes of Administration for Therapeutic Antibodies-State of the Art. Antibodies 2022, 11, 56. [Google Scholar] [CrossRef] [PubMed]
- Thibon, C.; Vecellio, L.; Dubus, J.-C.; Kabamba, B.; Reychler, G. Nebulization and COVID-19: Is the risk of spread actual? Respir. Med. 2022, 197, 106854. [Google Scholar] [CrossRef]
- Chilkoti, G.T.; Gondode, P.G.; Tiwari, S.S. MDI or nebulization in moderate to severe COVID-19 disease with COPD: Which one is better? Ain-Shams J. Anesthesiol. 2021, 13, 24. [Google Scholar] [CrossRef]
- Sethi, S.; Barjaktarevic, I.Z.; Tashkin, D.P. The use of nebulized pharmacotherapies during the COVID-19 pandemic. Ther. Adv. Respir. Dis. 2020, 14, 1753466620954366. [Google Scholar] [CrossRef] [PubMed]
- Renne, R.; Brix, A.; Harkema, J.; Herbert, R.; Kittel, B.; Lewis, D.; March, T.; Nagano, K.; Pino, M.; Rittinghausen, S.; et al. Proliferative and nonproliferative lesions of the rat and mouse respiratory tract. Toxicol. Pathol. 2009, 37, 5S–73S. [Google Scholar] [CrossRef] [PubMed]
- Fisher, S.; Burgess, W.L.; Hines, K.D.; Mason, G.L.; Owiny, J.R. Interstrain Differences in CO2-Induced Pulmonary Hemorrhage in Mice. J. Am. Assoc. Lab. Anim. Sci. 2016, 55, 811–815. [Google Scholar] [PubMed]
- van Eeden, S.F.; Yeung, A.; Quinlam, K.; Hogg, J.C. Systemic response to ambient particulate matter: Relevance to chronic obstructive pulmonary disease. Proc. Am. Thorac. Soc. 2005, 2, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Li, X.Y.; Gilmour, P.S.; Donaldson, K.; MacNee, W. Free radical activity and pro-inflammatory effects of particulate air pollution (PM10) in vivo and in vitro. Thorax 1996, 51, 1216–1222. [Google Scholar] [CrossRef] [PubMed]
- Miyata, R.; van Eeden, S.F. The innate and adaptive immune response induced by alveolar macrophages exposed to ambient particulate matter. Toxicol. Appl. Pharmacol. 2011, 257, 209–226. [Google Scholar] [CrossRef] [PubMed]
- Blot, F.; Tavakoli, R.; Sellam, S.; Epardeau, B.; Faurisson, F.; Bernard, N.; Becquemin, M.H.; Frachon, I.; Stern, M.; Pocidalo, J.J. Nebulized cyclosporine for prevention of acute pulmonary allograft rejection in the rat: Pharmacokinetic and histologic study. J. Heart Lung Transplant. 1995, 14, 1162–1172. [Google Scholar] [PubMed]
- Cui, N.; Zhao, J. Application and evaluation of topical amphotericin B for the treatment of respiratory fungal infections. BMC Infect. Dis. 2024, 24, 439. [Google Scholar] [CrossRef]
- Buendía, J.A.; Guerrero Patiño, D.; Zuluaga Salazar, A.F. Efficacy of adjunctive inhaled colistin and tobramycin for ventilator-associated pneumonia: Systematic review and meta-analysis. BMC Pulm. Med. 2024, 24, 213. [Google Scholar] [CrossRef]
- Leyva-Grado, V.H.; Tan, G.S.; Leon, P.E.; Yondola, M.; Palese, P. Direct administration in the respiratory tract improves efficacy of broadly neutralizing anti-influenza virus monoclonal antibodies. Antimicrob. Agents Chemother. 2015, 59, 4162–4172. [Google Scholar] [CrossRef] [PubMed]
- Sécher, T.; Dalonneau, E.; Ferreira, M.; Parent, C.; Azzopardi, N.; Paintaud, G.; Si-Tahar, M.; Heuzé-Vourc’h, N. In a murine model of acute lung infection, airway administration of a therapeutic antibody confers greater protection than parenteral administration. J. Control Release 2019, 303, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Larios Mora, A.; Detalle, L.; Gallup, J.M.; Van Geelen, A.; Stohr, T.; Duprez, L.; Ackermann, M.R. Delivery of ALX-0171 by inhalation greatly reduces respiratory syncytial virus disease in newborn lambs. MAbs 2018, 10, 778–795. [Google Scholar] [CrossRef] [PubMed]
- Hertel, S.P.; Winter, G.; Friess, W. Protein stability in pulmonary drug delivery via nebulization. Adv. Drug Deliv. Rev. 2015, 93, 79–94. [Google Scholar] [CrossRef] [PubMed]
- Bodier-Montagutelli, E.; Respaud, R.; Perret, G.; Baptista, L.; Duquenne, P.; Heuzé-Vourc’h, N.; Vecellio, L. Protein stability during nebulization: Mind the collection step! Eur. J. Pharm. Biopharm. 2020, 152, 23–34. [Google Scholar] [CrossRef]
- Mayor, A.; Thibert, B.; Huille, S.; Respaud, R.; Audat, H.; Heuzé-Vourc’h, N. Inhaled antibodies: Formulations require specific development to overcome instability due to nebulization. Drug Deliv. Transl. Res. 2021, 11, 1625–1633. [Google Scholar] [CrossRef]
Histological Changes | Degree | Control (N = 6) | Group 1 (N = 10) | Group 2 (N = 10) | Group 3 (N = 10) | p Value * |
---|---|---|---|---|---|---|
Vacuole on epithelial cells | Absence | 6 (100%) | 9 (90%) | 8 (80%) | 9 (90%) | 0.665 |
Mild | 0 | 1 (10%) | 2 (20%) | 1 (10%) | ||
Moderate | 0 | 0 | 0 | 0 | ||
Severe | 0 | 0 | 0 | 0 | ||
Bronchiole detritus | Absence | 2 (33.3%) | 9 (90%) | 10 (100%) | 9 (90%) | 0.004 |
Mild | 4 (66.6%) | 1 (10%) | 0 | 1 (10%) | ||
Moderate | 0 | 0 | 0 | 0 | ||
Severe | 0 | 0 | 0 | 0 | ||
Perivascular infiltration | Absence | 6 (100%) | 9 (90%) | 8 (80%) | 8 (80%) | 0.633 |
Mild | 0 | 1 (10%) | 2 (20%) | 2 (20%) | ||
Moderate | 0 | 0 | 0 | 0 | ||
Severe | 0 | 0 | 0 | 0 | ||
Intra-alveolar macrophage infiltration | Absence | 6 (100%) | 4 (40%) | 0 | 3 (30%) | <0.001 |
Mild | 0 | 6 (60%) | 10 (100%) | 7 (70%) | ||
Moderate | 0 | 0 | 0 | 0 | ||
Severe | 0 | 0 | 0 | 00 | ||
Thickening of alveolar septa | Absence | 1 (16.6%) | 5 (50%) | 3 (30%) | 3 (30%) | 0.337 |
Mild | 4 (66.6%) | 5 (50%) | 7 (70%) | 7 (70%) | ||
Moderate | 1 (16.6%) | 0 | 0 | 0 | ||
Severe | 0 | 0 | 0 | 0 | ||
Intra-alveolar fibrin | Absence | 3 (50%) | 8 (80%) | 5 (50%) | 6 (60%) | 0.505 |
Mild | 3 (50%) | 2 (20%) | 5 (50%) | 4 (40%) | ||
Moderate | 0 | 0 | 0 | 0 | ||
Severe | 0 | 0 | 0 | 0 | ||
Intra-alveolar edema | Absence | 3 (50%) | 10 (100%) | 10 (100%) | 9 (90%) | 0.008 |
Mild | 3 (50%) | 0 | 0 | 1 (10%) | ||
Moderate | 0 | 0 | 0 | 0 | ||
Severe | 0 | 0 | 0 | 0 | ||
Vascular congestion | Absence | 1 (16.6%) | 2 (20%) | 0 | 1 (10%) | 0.452 |
Mild | 3 (50%) | 5 (50%) | 5 (50%) | 8 (80%) | ||
Moderate | 2 (33.3%) | 3 (30%) | 5 (50%) | 1 (1%) | ||
Severe | 0 | 0 | 0 | 0 | ||
Hemorrhages | Absence | 1 (16.6%) | 6 (60%) | 7 (70%) | 9 (90%) | 0.016 |
Mild | 5 (83.4%) | 2 (20%) | 3 (30%) | 1 (10%) | ||
Moderate | 0 | 2 (20%) | 0 | 0 | ||
Severe | 0 | 0 | 0 | 0 | ||
Platelet aggregation | Absence | 4 (66.6%) | 5 (50%) | 7 (70%) | 3 (30%) | 0.288 |
Mild | 2 (33.3%) | 5 (50%) | 3 (30%) | 7 (70%) | ||
Moderate | 0 | 0 | 0 | 0 | ||
Severe | 0 | 0 | 0 | 0 |
Category * | Control (N = 6) | Group 1 (N = 10) | Group 2 (N = 10) | Group 3 (N = 10) | p Value |
---|---|---|---|---|---|
0 | 0 | 0 | 0 | 0 | 0.251 |
1 | 3 (50%) | 9 (90%) | 8 (80%) | 6 (60%) | |
2 | 3 (50%) | 1 (10%) | 2 (20%) | 4 (40%) | |
3 | 0 | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Andres, P.J.; Ferreiro, S.; Flores, A.; Garcia, A.; Henriquez-Camacho, C. Histological Assessment of Respiratory Tract and Liver of BALB/c Mice Nebulized with Tocilizumab. Pharmaceutics 2024, 16, 862. https://doi.org/10.3390/pharmaceutics16070862
de Andres PJ, Ferreiro S, Flores A, Garcia A, Henriquez-Camacho C. Histological Assessment of Respiratory Tract and Liver of BALB/c Mice Nebulized with Tocilizumab. Pharmaceutics. 2024; 16(7):862. https://doi.org/10.3390/pharmaceutics16070862
Chicago/Turabian Stylede Andres, Paloma Jimena, Sergio Ferreiro, Angela Flores, Almudena Garcia, and Cesar Henriquez-Camacho. 2024. "Histological Assessment of Respiratory Tract and Liver of BALB/c Mice Nebulized with Tocilizumab" Pharmaceutics 16, no. 7: 862. https://doi.org/10.3390/pharmaceutics16070862
APA Stylede Andres, P. J., Ferreiro, S., Flores, A., Garcia, A., & Henriquez-Camacho, C. (2024). Histological Assessment of Respiratory Tract and Liver of BALB/c Mice Nebulized with Tocilizumab. Pharmaceutics, 16(7), 862. https://doi.org/10.3390/pharmaceutics16070862