Oxyresveratrol in Breast Cancer Cells: Synergistic Effect with Chemotherapeutics Doxorubicin or Melphalan on Proliferation, Cell Cycle Arrest, and Cell Death
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Cell Cultures
2.3. Cell Viability Assay
2.4. Selectivity Index Calculation (SI)
2.5. Isobologram Construction
2.6. Test of Colony Formation (CFU)
2.7. Detection of Reactive Oxygen Species
2.8. Measurement of the Mitochondrial Membrane Potential
2.9. Cell Cycle Analysis
2.10. Annexin V Binding Assay
2.11. Immunocytochemistry
2.12. Samples and Analyte Extraction
2.13. Standards and Their Metabolites
2.14. Chromatographic Method
2.15. In Silico Analyses
2.16. Statistical Analysis
3. Results
3.1. Oxyresveratrol and Chemotherapeutic Agents Doxorubicin and Melphalan against Non-Tumor Breast Cells and Breast Cancer Cells
3.2. Isobolographic Analysis of the Oxyresveratrol + Doxorubicin and Oxyresveratrol + Melphalan Associations in Breast Cancer Cell Lines
3.3. Formation of MCF-7 and MDA-MB-231 Colonies after Treatment with Oxyresveratrol, Doxorubicin, Melphalan, and Associations
3.4. Morphological Analysis of Breast Cancer Cells after Treatment with Oxyresveratrol, Doxorubicin, Melphalan, and Associations
3.5. Effects of Oxyresveratrol, Doxorubicin, Melphalan, and Associations on Production of Reactive Oxygen Species and Alteration of Mitochondrial Membrane Potential in Breast Cancer Cell Lines
3.6. Evaluation of Cell Cycle through the Analysis of DNA Content of Breast Cancer Cells after Treatment with Oxyresveratrol, Doxorubicin, Melphalan, and Associations
3.7. Effects of Oxyresveratrol, Doxorubicin, Melphalan, and Associations on the Type of Cell Death
3.8. The Effects of Oxyresveratrol, Doxorubicin, Melphalan, and Associations on the Expression of Caspases Involved in Apoptosis
3.9. Targeted Metabolomics of Oxyresveratrol, Doxorubicin, and Melphalan in the MCF-7 and MDA-MB-231 Cell Lines
3.10. In Silico Analyses of the Oxyresveratrol, Doxorubicin, Melphalan, Doxorubicinol, and 7-Deoxidoxorubicinone
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wilkinson, L.; Gathani, T. Understanding breast cancer as a global health concern. Br. J. Radiol. 2022, 95, 20211033. [Google Scholar] [CrossRef] [PubMed]
- Tesch, M.E.; Partridge, A.H. Treatment of breast cancer in young adults. Am. Soc. Clin. Oncol. Educ. Book 2022, 42, 1–12. [Google Scholar] [CrossRef]
- Niedzwiecki, A.; Roomi, M.W.; Kalinovsky, T.; Rath, M. Anticancer efficacy of polyphenols and their combinations. Nutrients 2016, 8, 552. [Google Scholar] [CrossRef] [PubMed]
- Telang, N.T. Natural products as drug candidates for breast cancer (Review). Oncol. Lett. 2023, 26, 349. [Google Scholar] [CrossRef]
- Talib, W.H.; Awajan, D.; Hamed, R.A.; Azzam, A.O.; Mahmod, A.I.; Al-Yasari, I.H. Combination anticancer therapies using selected phytochemicals. Molecules 2022, 27, 5452. [Google Scholar] [CrossRef] [PubMed]
- Mohan, A.; Narayanan, S.; Sethuraman, S.; Krishnan, U.M. Combinations of plant polyphenols & anti-cancer molecules: A novel treatment strategy for cancer chemotherapy. Anticancer Agents Med. Chem. 2013, 13, 281–295. [Google Scholar] [CrossRef]
- Rai, G.; Mishra, S.; Suman, S.; Shukla, Y. Resveratrol improves the anticancer effects of doxorubicin in vitro and in vivo models: A mechanistic insight. Phytomedicine 2016, 3, 233–242. [Google Scholar] [CrossRef]
- Casanova, F.; Quarti, J.; da Costa, D.C.; Ramos, C.A.; da Silva, J.L.; Fialho, E. Resveratrol chemosensitizes breast cancer cells to melphalan by cell cycle arrest. J. Cell Biochem. 2012, 8, 2586–2596. [Google Scholar] [CrossRef] [PubMed]
- Likhitwitayawuid, K. Oxyresveratrol: Sources, productions, biological activities, pharmacokinetics, and delivery systems. Molecules 2021, 26, 4212. [Google Scholar] [CrossRef]
- Radapong, S.; Chan, K.; Sarker, S.D.; Ritchie, K.J. Oxyresveratrol modulates genes associated with apoptosis, cell cycle control and DNA repair in MCF-7 cells. Front. Pharmacol. 2021, 12, 694562. [Google Scholar] [CrossRef]
- Alves Passos, C.L. Efeito do Oxyresveratrol em células de cancer de mama humano e sua associação com os quimioterápicos doxorrubicina e melfalano. Master’s Thesis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil, 2020. [Google Scholar]
- Passos, C.L.A.; Polinati, R.M.; Ferreira, C.; Dos Santos, N.A.N.; Lima, D.G.V.; da Silva, J.L.; Fialho, E. Curcumin and melphalan cotreatment induces cell cycle arrest and apoptosis in MDA-MB-231 breast cancer cells. Sci. Rep. 2023, 13, 13446. [Google Scholar] [CrossRef]
- Passos, C.L.; Ferreira, C.; Soares, D.C.; Saraiva, E.M. Leishmanicidal effect of synthetic trans-resveratrol analogs. PLoS ONE 2015, 10, e0141778. [Google Scholar] [CrossRef]
- Chou, T.C. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol. Rev. 2006, 58, 621–681. [Google Scholar] [CrossRef] [PubMed]
- Guimarães, D.A.B.; De Castro, D.D.S.B.; de Oliveira, F.L.; Nogueira, E.M.; da Silva, M.A.M.; Teodoro, A.J. Pitaya extracts induce growth inhibition and proapoptotic effects on human cell lines of breast cancer via downregulation of estrogen receptor gene expression. Oxid. Med. Cell Longev. 2017, 2017, 7865073. [Google Scholar] [CrossRef]
- Costa, P.S.D.; Ramos, P.S.; Ferreira, C.; Silva, J.L.; El-Bacha, T.; Fialho, E. Pro-Oxidant Effect of Resveratrol on Human Breast Cancer MCF-7 Cells is Associated with CK2 Inhibition. Nutr. Cancer 2022, 74, 2142–2151. [Google Scholar] [CrossRef] [PubMed]
- Garcia, A.R.; Amorim, M.M.B.; Amaral, A.C.F.; da Cruz, J.D.; Vermelho, A.B.; Nico, D.; Rodrigues, I.A. Anti-Leishmania amazonensis activity, cytotoxic features, and chemical profile of Allium sativum (garlic) essential oil. Trop. Med. Infect. Dis. 2023, 8, 375. [Google Scholar] [CrossRef] [PubMed]
- Fisusi, F.A.; Akala, E.O. Drug Combinations in Breast Cancer Therapy. Pharm. Nanotechnol. 2019, 1, 3–23. [Google Scholar] [CrossRef]
- Zorova, L.D.; Popkov, V.A.; Plotnikov, E.Y.; Silachev, D.N.; Pevzner, I.B.; Jankauskas, S.S.; Babenko, V.A.; Zorov, S.D.; Balakireva, A.V.; Juhaszova, M.; et al. Mitochondrial membrane potential. Anal. Biochem. 2018, 552, 50–59. [Google Scholar] [CrossRef]
- Wei, J.; Chen, J.R.; Pais, E.M.A.; Wang, T.Y.; Miao, L.; Li, L.; Li, L.Y.; Qiu, F.; Hu, L.M.; Gao, X.M.; et al. Oxyresveratrol is a phytoestrogen exerting anti-inflammatory effects through NF-κB and estrogen receptor signaling. Inflammation 2017, 4, 1285–1296. [Google Scholar] [CrossRef]
- Wu, L.S.; Wang, X.J.; Wang, H.; Yang, H.W.; Jia, A.Q.; Ding, Q. Cytotoxic polyphenols against breast tumor cell in Smilax china L. J. Ethnopharmacol. 2010, 3, 460–464. [Google Scholar] [CrossRef]
- Lin, T.A.; Lin, W.S.; Chou, Y.C.; Nagabhushanam, K.; Ho, C.T.; Pan, M.H. Oxyresveratrol inhibits human colon cancer cell migration through regulating epithelial-mesenchymal transition and microRNA. Food Funct. 2021, 12, 9658–9668. [Google Scholar] [CrossRef] [PubMed]
- Sprouse, A.A.; Herbert, B.S. Resveratrol augments paclitaxel treatment in MDA-MB-231 and paclitaxel-resistant MDA-MB-231 breast cancer cells. Anticancer Res. 2014, 10, 5363–5374. [Google Scholar]
- Roychoudhury, S.; Kumar, A.; Bhatkar, D.; Sharma, N.K. Molecular avenues in targeted doxorubicin cancer therapy. Future Oncol. 2020, 11, 687–700. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, J.; Dass, C.R. Doxorubicin action on mitochondria: Relevance to Oosteosarcoma therapy? Curr. Drug Targets 2018, 5, 432–438. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, P.; Roychowdhury, S.; Engelmann, M.; Wolf, G.; Horn, T.F. Oxyresveratrol and resveratrol are potent antioxidants and free radical scavengers: Effect on nitrosative and oxidative stress derived from microglial cells. Nitric Oxide 2003, 2, 64–76. [Google Scholar] [CrossRef] [PubMed]
- Pasculli, B.; Barbano, R.; Parrella, P. Epigenetics of breast cancer: Biology and clinical implication in the era of precision medicine. Semin. Cancer Biol. 2018, 51, 22–35. [Google Scholar] [CrossRef] [PubMed]
- Kumari, A.; Bhawal, S.; Kapila, S.; Yadav, H.; Kapila, R. Health-promoting role of dietary bioactive compounds through epigenetic modulations: A novel prophylactic and therapeutic approach. Crit. Rev. Food Sci. Nutr. 2022, 62, 619–639. [Google Scholar] [CrossRef] [PubMed]
- Häcker, G. The morphology of apoptosis. Cell Tissue Res. 2000, 1, 5–17. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.A.; Bishayee, K.; Sadra, A.; Huh, S.O. Oxyresveratrol activates parallel apoptotic and autophagic cell death pathways in neuroblastoma cells. Biochim. Biophys. Acta Gen. Subj. 2017, 2, 23–36. [Google Scholar] [CrossRef]
- Sunilkumar, D.; Drishya, G.; Chandrasekharan, A.; Shaji, S.K.; Bose, C.; Jossart, J.; Perry, J.J.P.; Mishra, N.; Kumar, G.B.; Nair, B.G. Oxyresveratrol drives caspase-independent apoptosis-like cell death in MDA-MB-231 breast cancer cells through the induction of ROS. Biochem. Pharmacol. 2020, 173, 113724. [Google Scholar] [CrossRef]
- Jones, I.C.; Dass, C.R. Doxorubicin-induced cardiotoxicity: Causative factors and possible interventions. J. Pharm. Pharmacol. 2022, 74, 1677–1688. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, K.; Zhang, J.; Honbo, N.; Karliner, J.S. Doxorubicin cardiomyopathy. Cardiology 2010, 115, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Carrasco, R.; Ramirez, M.C.; Nes, K.; Schuster, A.; Aguayo, R.; Morales, M.; Ramos, C.; Hasson, D.; Sotomayor, C.G.; Henriquez, P.; et al. Prevention of doxorubicin-induced cardiotoxicity by pharmacological non-hypoxic myocardial preconditioning based on docosahexaenoic acid (DHA) and carvedilol direct antioxidant effects: Study protocol for a pilot, randomized, double-blind, controlled trial (CarDHA trial). Trials 2020, 21, 137. [Google Scholar] [CrossRef] [PubMed]
- Sakai-Kato, K.; Saito, E.; Ishikura, K.; Kawanishi, T. Analysis of intracellular doxorubicin and its metabolites by ultra-high-performance liquid chromatography. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2010, 878, 1466–1470. [Google Scholar] [CrossRef] [PubMed]
- Siebel, C.; Lanvers-Kaminsky, C.; Würthwein, G.; Hempel, G.; Boos, J. Bioanalysis of doxorubicin aglycone metabolites in human plasma samples-implications for doxorubicin drug monitoring. Sci. Rep. 2020, 10, 18562. [Google Scholar] [CrossRef]
- El-Bassiouny, N.A.; Helmy, M.W.; Hassan, M.A.E.; Khedr, G.A. The cardioprotective effect of vitamin D in breast cancer patients receiving adjuvant doxorubicin-based chemotherapy. Clin. Breast Cancer 2022, 22, 359–366. [Google Scholar] [CrossRef]
- Piska, K.; Koczurkiewicz, P.; Bucki, A.; Wójcik-Pszczoła, K.; Kołaczkowski, M.; Pękala, E. Metabolic carbonyl reduction of anthracyclines—Role in cardiotoxicity and cancer resistance. Reducing enzymes as putative targets for novel cardioprotective and chemosensitizing agents. Investig. New Drugs 2017, 35, 375–385. [Google Scholar] [CrossRef]
- Kadan, R.U.; Roy, N. Recent trends in drug likeness prediction: A comprehensive review of in silico methods. Indian J. Pharmac. Sci. 2007, 69, 609–615. [Google Scholar] [CrossRef]
- Manikandan, P.; Nagini, S. Cytochrome P450 structure, function and clinical significance: A review. Curr. Drug Targets 2018, 19, 38–54. [Google Scholar] [CrossRef]
- Hyrsova, L.; Vanduchova, A.; Dusek, J.; Smutny, T.; Carazo, A.; Maresova, V.; Trejtnar, F.; Barta, P.; Anzenbacher, P.; Dvorak, Z.; et al. Trans-resveratrol, but not other natural stilbenes occurring in food, carries the risk of drug-food interaction via inhibition of cytochrome P450 enzymes or interaction with xenosensor receptors. Toxicol. Lett. 2019, 300, 81–91. [Google Scholar] [CrossRef]
- Chow, H.H.; Garland, L.L.; Hsu, C.H.; Vining, D.R.; Chew, W.M.; Miller, J.A.; Perloff, M.; Crowell, J.A.; Alberts, D.S. Resveratrol modulates drug- and carcinogen-metabolizing enzymes in a healthy volunteer study. Cancer Prev. Res. 2010, 3, 1168–1175. [Google Scholar] [CrossRef] [PubMed]
- Breuer, C.; Wolf, G.; Andrabi, S.A.; Lorenz, P.; Horn, T.F. Blood-brain barrier permeability to the neuroprotectant oxyresveratrol. Neurosci. Lett. 2006, 393, 113–118. [Google Scholar] [CrossRef] [PubMed]
DRUGS | IC50 MCF-10A (µM) | IC50 MCF-7 (µM) | SI * | IC50 MDA-MB-231 (µM) | SI # |
---|---|---|---|---|---|
OXYRESVERATROL | >300 | 164.10 ± 19.17 | >1.83 | 287.08 ± 11.09 | >1.05 |
DOXORUBICIN | 26.54 ± 4.81 | 22.60 ± 1.61 | 1.17 | 32.55 ± 17.80 | 0.82 |
MELPHALAN | 195.97 ± 11.07 | 155.70 ± 6.21 | 1.26 | 240.26 ± 25.46 | 0.82 |
CELL LINES | COMBINATION DOSES (µM) | * FIC | EFFECTS |
---|---|---|---|
MCF-7 | OXY 93.61 + DOX 5.65 | 0.82 | Moderate Synergism |
OXY 42.95 + DOX 11.30 | 0.76 | Moderate Synergism | |
OXY 10.25 + MEL 29.25 | 0.25 | Strong Synergism | |
OXY 20.51 + MEL 31.34 | 0.32 | Synergism | |
OXY 41.02 + MEL 33.40 | 0.46 | Synergism | |
OXY 82.05 + MEL 32.30 | 0.63 | Synergism | |
MDA-MB-231 | OXY 211.09 + DOX 2.03 | 0.80 | Moderate Synergism |
OXY 208.09 + DOX 8.14 | 0.97 | - | |
OXY 202.30 + DOX 16.27 | 1.20 | - | |
OXY 132.93 + MEL 15.01 | 0.52 | Synergism | |
OXY 116.30 + MEL 30.03 | 0.53 | Synergism | |
OXY 87.69 + MEL 60.06 | 0.55 | Synergism | |
OXY 37.69 + MEL 120.13 | 0.63 | Synergism |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Passos, C.L.A.; Ferreira, C.; de Carvalho, A.G.A.; Silva, J.L.; Garrett, R.; Fialho, E. Oxyresveratrol in Breast Cancer Cells: Synergistic Effect with Chemotherapeutics Doxorubicin or Melphalan on Proliferation, Cell Cycle Arrest, and Cell Death. Pharmaceutics 2024, 16, 873. https://doi.org/10.3390/pharmaceutics16070873
Passos CLA, Ferreira C, de Carvalho AGA, Silva JL, Garrett R, Fialho E. Oxyresveratrol in Breast Cancer Cells: Synergistic Effect with Chemotherapeutics Doxorubicin or Melphalan on Proliferation, Cell Cycle Arrest, and Cell Death. Pharmaceutics. 2024; 16(7):873. https://doi.org/10.3390/pharmaceutics16070873
Chicago/Turabian StylePassos, Carlos Luan Alves, Christian Ferreira, Aline Gabrielle Alves de Carvalho, Jerson Lima Silva, Rafael Garrett, and Eliane Fialho. 2024. "Oxyresveratrol in Breast Cancer Cells: Synergistic Effect with Chemotherapeutics Doxorubicin or Melphalan on Proliferation, Cell Cycle Arrest, and Cell Death" Pharmaceutics 16, no. 7: 873. https://doi.org/10.3390/pharmaceutics16070873
APA StylePassos, C. L. A., Ferreira, C., de Carvalho, A. G. A., Silva, J. L., Garrett, R., & Fialho, E. (2024). Oxyresveratrol in Breast Cancer Cells: Synergistic Effect with Chemotherapeutics Doxorubicin or Melphalan on Proliferation, Cell Cycle Arrest, and Cell Death. Pharmaceutics, 16(7), 873. https://doi.org/10.3390/pharmaceutics16070873