Pulmonary Inhalation of Biotherapeutics: A Systematic Approach to Understanding the Effects of Atomisation Gas Flow Rate on Particle Physiochemical Properties and Retained Bioactivity
Abstract
:1. Introduction
2. Materials & Methods
2.1. Materials
2.2. Methodology
2.2.1. Spray-Drying
2.2.2. Enzymatic Activity
2.2.3. Moisture Content Analysis
2.2.4. Scanning Electron Microscopy (SEM)
2.2.5. Density
2.2.6. Powder X-ray Diffraction (PXRD)
2.2.7. Differential Scanning Calorimetry (DSC)
2.2.8. Particle Size Analysis (PSA)
2.2.9. Shear Cell Test
2.2.10. Design of 3-Factorial Contour Plot
3. Results and Discussion
3.1. Processing Parameters
3.2. Particle Size Distribution
3.3. Bioactivity Retention
3.4. Product Yield
3.5. Differential Scanning Calorimetry (DSC)
3.6. Residual Moisture
3.7. FT4 Flow
3.8. Density
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- P&S Intelligence. Biopharmaceutical Market Share Analysis Report—Global Industry Demand Forecast to 2030. In Biopharmaceutical Market; P&S Intelligence: Uttar Pradesh, India, 2022; p. 230. Available online: www.psmarketresearch.com (accessed on 14 March 2023).
- Kent, D.; Rickwood, S.; Di Biase, S. Disruption and Maturity: The Next Phase of Biologics; Quintile IMS: Englewood Cliffs, NJ, USA, 2017. [Google Scholar]
- Food and Drug Administration. FDA at a Glance; U.S. FDA: Silver Spring, ML, USA, 2018. [Google Scholar]
- Kesik-Brodacka, M. Progress in biopharmaceutical development. Biotechnol. Appl. Biochem. 2018, 65, 306–322. [Google Scholar] [CrossRef] [PubMed]
- Ziaee, A.; Albadarin, A.B.; Padrela, L.; Ung, M.-T.; Femmer, T.; Walker, G.; OReilly, E. A rational approach towards spray drying of biopharmaceuticals: The case of lysozyme. Powder Technol. 2020, 366, 206–215. [Google Scholar] [CrossRef]
- Walsh, G.; Walsh, E. Biopharmaceutical benchmarks 2022. Nat. Biotechnol. 2022, 40, 1722–1760. [Google Scholar] [CrossRef] [PubMed]
- Emami, F.; Vatanara, A.; Park, E.J.; Na, D.H. Drying Technologies for the Stability and Bioavailability of Biopharmaceuticals. Pharmaceutics 2018, 10, 131. [Google Scholar] [CrossRef] [PubMed]
- Kunde, S.S.; Ghosh, R.; Wairkar, S. Emerging trends in pulmonary delivery of biopharmaceuticals. Drug Discov. Today 2022, 27, 1474–1482. [Google Scholar] [CrossRef] [PubMed]
- Pilcer, G.; Amighi, K. Formulation strategy and use of excipients in pulmonary drug delivery. Int. J. Pharm. 2010, 392, 131. [Google Scholar] [CrossRef] [PubMed]
- Ameri, M.; Maa, Y.-F. Spray Drying of Biopharmaceuticals: Stability and Process Considerations. Dry. Technol. 2006, 24, 763–768. [Google Scholar] [CrossRef]
- Roy, I.; Gupta, M.N. Freeze-drying of proteins: Some emerging concerns. Biotechnol. Appl. Biochem. 2004, 39, 165–177. [Google Scholar] [CrossRef] [PubMed]
- Langford, A.; Bhatnagar, B.; Walters, R.; Tchessalov, S.; Ohtake, S. Drying technologies for biopharmaceutical applications: Recent developments and future direction. Dry. Technol. 2018, 36, 677–684. [Google Scholar] [CrossRef]
- Ziaee, A.; Albadarin, A.B.; Padrela, L.; Femmer, T.; O’Reilly, E.; Walker, G. Spray drying of pharmaceuticals and biopharmaceuticals: Critical parameters and experimental process optimization approaches. Eur. J. Pharm. Sci. 2019, 127, 300–318. [Google Scholar] [CrossRef] [PubMed]
- Andrade, F.; Moura, C.; Sarmento, B. Pulmonary Delivery of Biopharmaceuticals. In Mucosal Delivery of Biopharmaceuticals; Springer: Berlin/Heidelberg, Germany, 2014; pp. 169–195. [Google Scholar]
- Mezhericher, M.; Levy, A.; Borde, I. Heat and mass transfer of single droplet/wet particle drying. Chem. Eng. Sci. 2008, 63, 12–23. [Google Scholar] [CrossRef]
- Kasten, G.; Duarte, Í.; Paisana, M.; Löbmann, K.; Rades, T.; Grohganz, H. Process Optimization and Upscaling of Spray-Dried Drug-Amino acid Co-Amorphous Formulations. Pharmaceutics 2019, 11, 24. [Google Scholar] [CrossRef] [PubMed]
- Patel, B.B.; Patel, J.K.; Chakraborty, S.; Shukla, D. Revealing facts behind spray dried solid dispersion technology used for solubility enhancement. Saudi Pharm. J. 2013, 2, 352–365. [Google Scholar] [CrossRef] [PubMed]
- Ledet, G.A. Spray-drying of biopharmaceuticals. In Lyophilized Biologics and Vaccines: Modality-Based Approaches; Springer: Berlin/Heidelberg, Germany, 2015; pp. 273–297. [Google Scholar]
- Pinto, J.T.; Faulhammer, E.; Dieplinger, J.; Dekner, M.; Makert, C.; Nieder, M.; Paudel, A. Progress in spray-drying of protein pharmaceuticals: Literature analysis of trends in formulation and process attributes. Dry. Technol. 2021, 39, 1415–1446. [Google Scholar] [CrossRef]
- Maa, Y.-F.; Costantino, H.R.; Nguyen, P.-A.; Hsu, C.C. The Effect of Operating and Formulation Variables on the Morphology of Spray-Dried Protein Particles. Pharm. Dev. Technol. 1997, 2, 213–223. [Google Scholar] [CrossRef] [PubMed]
- Abdul-Fattah, A.M.; Kalonia, D.S.; Pikal, M.J. The Challenge of Drying Method Selection for Protein Pharmaceuticals: Product Quality Implications. J. Pharm. Sci. 2007, 96, 1886–1916. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Khamar, D.; Cullen, S.; Hayden, A.; Hughes, H. Innovative Drying Technologies for Biopharmaceuticals. Int. J. Pharm. 2021, 609, 121115. [Google Scholar] [CrossRef] [PubMed]
- Shugar, D. The measurement of lysozyme activity and the ultra-violet inactivation of lysozyme. Biochim. Biophys. Acta 1952, 8, 302–309. [Google Scholar] [CrossRef] [PubMed]
- Bergmeyer, H.-U. Methods of Enzymatic Analysis; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Banciu, R.M.; Numan, N.; Vasilescu, A. Optical biosensing of lysozyme. J. Mol. Struct. 2022, 1250, 131639. [Google Scholar] [CrossRef]
- Freeman, R. Measuring the flow properties of consolidated, conditioned and aerated powders—A comparative study using a powder rheometer and a rotational shear cell. Powder Technol. 2007, 174, 25–33. [Google Scholar] [CrossRef]
- Wang, Y.; Li, T.; Muzzio, F.J.; Glasser, B.J. Predicting feeder performance based on material flow properties. Powder Technol. 2017, 308, 135–148. [Google Scholar] [CrossRef]
- Sou, T.; Forbes, R.T.; Gray, J.; Prankerd, R.J.; Kaminskas, L.M.; McIntosh, M.P.; Morton, D.A. Designing a multi-component spray-dried formulation platform for pulmonary delivery of biopharmaceuticals: The use of polyol, disaccharide, polysaccharide and synthetic polymer to modify solid-state properties for glassy stabilisation. Powder Technol. 2016, 287, 248–255. [Google Scholar] [CrossRef]
- Lutta, A.; Knopp, M.M.; Tollemeto, M.; Pedersen, G.K.; Schmidt, S.T.; Grohganz, H.; Nielsen, L.H. The interplay between trehalose and dextran as spray drying precursors for cationic liposomes. Int. J. Pharm. 2024, 652, 123798. [Google Scholar] [CrossRef] [PubMed]
- Millinia, B.L.; Mashithah, D.; Nawatila, R.; Kartini, K. Microencapsulation of roselle (Hibiscus sabdariffa L.) anthocyanins: Effects of maltodextrin and trehalose matrix on selected physicochemical properties and antioxidant activities of spray-dried powder. Future Foods 2024, 9, 100300. [Google Scholar] [CrossRef]
- Ji, S.; Thulstrup, P.W.; Mu, H.; Hansen, S.H.; van de Weert, M.; Rantanen, J.; Yang, M. Investigation of factors affecting the stability of lysozyme spray dried from ethanol-water solutions. Int. J. Pharm. 2017, 534, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Vehring, R.; Foss, W.R.; Lechuga-Ballesteros, D. Particle formation in spray drying. J. Aerosol Sci. 2007, 38, 728–746. [Google Scholar] [CrossRef]
- Paluch, K.J.; Tajber, L.; Corrigan, O.I.; Healy, A. M Impact of process variables on the micromeritic and physicochemical properties of spray-dried porous microparticles, part I: Introduction of a new morphology classification system. J. Pharm. Pharmacol. 2012, 64, 1570–1582. [Google Scholar] [CrossRef] [PubMed]
- Rahimpour, Y.; Kouhsoltani, M.; Hamishehkar, H. Alternative carriers in dry powder inhaler formulations. Drug Discov. Today 2014, 19, 618–626. [Google Scholar] [CrossRef] [PubMed]
- Vehring, R. Pharmaceutical particle engineering via spray drying. Pharm. Res. 2008, 25, 999–1022. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, D.A.; Costa, E.; Leandro, P.; Corvo, M.L. Formulation of spray dried enzymes for dry powder inhalers: An integrated methodology. Int. J. Pharm. 2022, 615, 121492. [Google Scholar] [CrossRef]
- Weng, L.; Elliott, G.D. Distinctly Different Glass Transition Behaviors of Trehalose Mixed with Na2HPO4 or NaH2PO4: Evidence for its Molecular Origin. Pharm. Res. 2015, 32, 2217–2228. [Google Scholar] [CrossRef] [PubMed]
- Dumpa, N.; Goel, K.; Guo, Y.; McFall, H.; Pillai, A.R.; Shukla, A.; Murthy, S.N. Stability of Vaccines. AAPS PharmSciTech 2019, 20, 42. [Google Scholar] [CrossRef] [PubMed]
- Uddin, M.N.; Roni, M.A. Challenges of Storage and Stability of mRNA-Based COVID-19 Vaccines. Vaccines 2021, 9, 1033. [Google Scholar] [CrossRef] [PubMed]
- Mensink, M.A.; Frijlink, H.W.; Van Der Voort Maarschalk, K.; Hinrichs, W.L.J. How sugars protect proteins in the solid state and during drying (review): Mechanisms of stabilization in relation to stress conditions. Eur. J. Pharm. Biopharm. 2017, 114, 288–295. [Google Scholar] [CrossRef] [PubMed]
- Minne, A.; Boireau, H.; Horta, M.J.; Vanbever, R. Optimization of the aerosolization properties of an inhalation dry powder based on selection of excipients. Eur. J. Pharm. Biopharm. 2008, 70, 839–844. [Google Scholar] [CrossRef] [PubMed]
- Shetty, N.; Cipolla, D.; Park, H.; Zhou, Q.T. Physical stability of dry powder inhaler formulations. Expert Opin. Drug Deliv. 2020, 17, 77–96. [Google Scholar] [CrossRef] [PubMed]
- Farinha, S.; Sá, J.V.; Lino, P.R.; Galésio, M.; Pires, J.; Rodrigues, M.; Henriques, J. Spray Freeze Drying of Biologics: A Review and Applications for Inhalation Delivery. Pharm. Res. 2023, 40, 1115–1140. [Google Scholar] [CrossRef] [PubMed]
- Wilson, N.E.; Mutukuri, T.T.; Zemlyanov, D.Y.; Taylor, L.S.; Topp, E.M.; Zhou, Q.T. Surface Composition and Formulation Heterogeneity of Protein Solids Produced by Spray Drying. Pharm. Res. 2019, 37, 14. [Google Scholar] [CrossRef] [PubMed]
- Wendorf, J.R.; Radke, C.J.; Blanch, H.W. Reduced protein adsorption at solid interfaces by sugar excipients. Biotechnol. Bioeng. 2004, 87, 565–573. [Google Scholar] [CrossRef] [PubMed]
- Webb, S.D.; Golledge, S.L.; Cleland, J.L.; Carpenter, J.F.; Randolph, T.W. Surface adsorption of recombinant human interferon-gamma in lyophilized and spray-lyophilized formulations. J. Pharm. Sci. 2002, 91, 1474–1487. [Google Scholar] [CrossRef] [PubMed]
- Burek, M.; Waśkiewicz, S.; Wandzik, I. Trehalose—Properties, biosynthesis and applications. Methods 2015, 3, 9–10. [Google Scholar]
- Feofilova, E.P.; Usov, A.I.; Mysyakina, I.S.; Kochkina, G.A. Trehalose: Chemical structure, biological functions, and practical application. Microbiology 2014, 83, 184–194. [Google Scholar] [CrossRef]
- He, M.; He, C.Q.; Ding, N.Z. Abiotic Stresses: General Defenses of Land Plants and Chances for Engineering Multistress Tolerance. Front. Plant Sci. 2018, 9, 1771. [Google Scholar] [CrossRef] [PubMed]
- Elkordy, A.A.; Forbes, R.T.; Barry, B.W. Integrity of crystalline lysozyme exceeds that of a spray-dried form. Int. J. Pharm. 2002, 247, 79–90. [Google Scholar] [CrossRef]
- Liao, Y.; Brown, M.B.; Nazir, T.; Quader, A.; Martin, G.P. Effects of Sucrose and Trehalose on the Preservation of the Native Structure of Spray-Dried Lysozyme. Pharm. Res. 2002, 19, 1847–1853. [Google Scholar] [CrossRef] [PubMed]
- Maa, Y.F.; Nguyen, P.A.; Andya, J.D.; Dasovich, N.; Sweeney, T.D.; Shire, S.J.; Hsu, C.C. Effect of Spray Drying and Subsequent Processing Conditions on Residual Moisture Content and Physical/Biochemical Stability of Protein Inhalation Powders. Pharm. Res. 1998, 15, 768–775. [Google Scholar] [CrossRef] [PubMed]
- Towns, J.K. Moisture content in proteins: Its effects and measurement. J. Chromatogr. A 1995, 705, 115–127. [Google Scholar] [CrossRef] [PubMed]
- Gajjar, P.; Styliari, I.; Nguyen, T.; Carr, J.; Chen, X.; Elliott, J.; Hammond, R.; Burnett, T.; Roberts, K.; Withers, P.; et al. 3D characterisation of dry powder inhaler formulations: Developing X-ray micro computed tomography approaches. Eur. J. Pharm. Biopharm. 2020, 151, 32–44. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.; Karampuri, S.; Kansara, V.; Vyas, B. Inhalable dry powder containing lipid polymer hybrid nanoparticles of Nintedanib esylate: In vitro and in vivo evaluations. J. Drug Deliv. Sci. Technol. 2023, 86, 104716. [Google Scholar] [CrossRef]
- Stegemann, S.; Faulhammer, E.; Pinto, J.T.; Paudel, A. Focusing on powder processing in dry powder inhalation product development, manufacturing and performance. Int. J. Pharm. 2022, 614, 121445. [Google Scholar] [CrossRef]
- Suhaidi, D.; Dong, Y.-D.; Wynne, P.; Hapgood, K.P.; Morton, D.A.V. Bulk Flow Optimisation of Amorphous Solid Dispersion Excipient Powders through Surface Modification. Pharmaceutics 2023, 15, 1447. [Google Scholar] [CrossRef] [PubMed]
- Han, C.S.; Kang, J.H.; Kim, Y.J.; Kim, D.W.; Park, C.W. Inhalable Nano-Dimpled Microspheres Containing Budesonide-PLGA for Improved Aerodynamic Performance. Int. J. Nanomed. 2022, 17, 3405–3419. [Google Scholar] [CrossRef] [PubMed]
- Chaurasiya, B.; Zhao, Y.Y. Dry Powder for Pulmonary Delivery: A Comprehensive Review. Pharmaceutics 2020, 13, 3405. [Google Scholar] [CrossRef] [PubMed]
ID | Inputs | Outputs | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Atomisation Gas Flow Rate (L/h) | Inlet Temp (°C) | Outlet Temp (°C) ** | Feed Rate (mL/min) | Solid Conc. (wt.%) | Ratio Lys:Treh (%) | Moisture Content (wt.%) | Yield (%) | Density (g/cm3) * | Particle Size | Enzymatic Activity (%) | ||
D50 (µm) * | Span | |||||||||||
1 | 473 | 70 | 50 | 1.5 | 5 | - | 11.7 | 29.5 | 1.36 [0.007] | 12.2 [3.29] | 0.7 | 88 [0.395] |
2 | 601 | 74 | 50 | 1.5 | 5 | - | 7.2 | 61.7 | 1.37 [0.013] | 9.6 [2.71] | 0.9 | 31 [0.165] |
3 | 742 | 78 | 50 | 1.5 | 5 | - | 7.4 | 60.2 | 1.35 [0.006] | 8.9 [4.93] | 1.3 | 9 [0.183] |
4 | 473 | 73 | 50 | 1.5 | 10 | 1:1 (50:50) | 6.9 | 11.1 | - | 18.4 [6.56] | 1.2 | 92 [0.001] |
5 | 473 | 68 | 50 | 1.5 | 7.5 | 2:1 (66:33) | 6.7 | 6.6 | - | 8.2 [2.63] | 0.9 | 101 [0.0002] |
6 | 473 | 69 | 50 | 1.5 | 7.5 | 1:2 (33:66) | 6.9 | 3.3 | - | 16.6 [7.06] | 1.1 | 73 [0.0037] |
7 | 601 | 72 | 50 | 1.5 | 10 | 1:1 (50:50) | 6.3 | 21.9 | - | 9.2 [4.74] | 1.3 | 59 [0.002] |
8 | 601 | 72 | 50 | 1.5 | 7.5 | 2:1 (66:33) | 6.2 | 9.9 | - | 10.2 [5.27] | 1.1 | 72 [0.003] |
9 | 601 | 69 | 50 | 1.5 | 7.5 | 1:2 (33:66) | 6.0 | 16.2 | - | 13.8 [12.5] | 1.3 | 47 [0.001] |
10 | 742 | 72 | 50 | 1.5 | 10 | 1:1 (50:50) | 6.6 | 35.3 | - | 5.2 [1.84] | 0.9 | 68 [0.002] |
11 | 742 | 68 | 50 | 1.5 | 7.5 | 2:1 (66:33) | 9.2 | 8.4 | - | 10.9 [6.69] | 1.5 | 84 [0.001] |
12 | 742 | 72 | 50 | 1.5 | 7.5 | 1:2 (33:66) | 4.8 | 37.0 | - | 26.1 [21.0] | 1.7 | 74 [0.017] |
13 | 742 | 85 | 62 | 1.5 | 7.5 | 2:1 (66:33) | 6.3 | 56.4 | 1.38 [0.002] | 4.9 [3.09] | 1.5 | 99 [0.0004] |
14 | 742 | 95 | 70 | 1.5 | 7.5 | 2:1 (66:33) | 5.5 | 59.3 | 1.38 [0.003] | 4.5 [3.18] | 1.7 | 74 [0.002] |
15 | 742 | 105 | 77 | 1.5 | 7.5 | 2:1 (66:33) | 3.7 | 54.0 | 1.37 [0.005] | 4.1 [1.91] | 1.3 | 103 [0.002] |
ID | Cohesion KPa | Flow Function (FF) | Flow Properties |
---|---|---|---|
13 | 0.467 | 9.33 | Easy-Flowing |
14 | 0.454 | 9.52 | Easy-Flowing |
15 | 0.332 | 12.8 | Free-Flowing |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Foley, L.; Ziaee, A.; Walker, G.; O’Reilly, E. Pulmonary Inhalation of Biotherapeutics: A Systematic Approach to Understanding the Effects of Atomisation Gas Flow Rate on Particle Physiochemical Properties and Retained Bioactivity. Pharmaceutics 2024, 16, 1020. https://doi.org/10.3390/pharmaceutics16081020
Foley L, Ziaee A, Walker G, O’Reilly E. Pulmonary Inhalation of Biotherapeutics: A Systematic Approach to Understanding the Effects of Atomisation Gas Flow Rate on Particle Physiochemical Properties and Retained Bioactivity. Pharmaceutics. 2024; 16(8):1020. https://doi.org/10.3390/pharmaceutics16081020
Chicago/Turabian StyleFoley, Laura, Ahmad Ziaee, Gavin Walker, and Emmet O’Reilly. 2024. "Pulmonary Inhalation of Biotherapeutics: A Systematic Approach to Understanding the Effects of Atomisation Gas Flow Rate on Particle Physiochemical Properties and Retained Bioactivity" Pharmaceutics 16, no. 8: 1020. https://doi.org/10.3390/pharmaceutics16081020
APA StyleFoley, L., Ziaee, A., Walker, G., & O’Reilly, E. (2024). Pulmonary Inhalation of Biotherapeutics: A Systematic Approach to Understanding the Effects of Atomisation Gas Flow Rate on Particle Physiochemical Properties and Retained Bioactivity. Pharmaceutics, 16(8), 1020. https://doi.org/10.3390/pharmaceutics16081020