Quenched Zwitterionic Cyclic Arg-Gly-Asp-Containing Pentapeptide Probe for Real-Time Brain Tumor Imaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis and Characterization of Q-cRGD and ON-cRGD
2.3. In Vitro Cell Studies
2.3.1. Cell Culture
2.3.2. Targeting Specificity and Fluorescence Activation in Cell
2.3.3. Confirmation of Off-to-On Mechanism
2.4. In Vivo NIR Fluorescence Imaging
2.5. Statistical Analysis
3. Results and Discussion
3.1. Synthesis of Q-cRGD and ON-cRGD
3.2. Spectral Properties of Q-cRGD and ON-cRGD
3.3. Targeting Specificity and Fluorescence Activation in Cell
3.3.1. In Vitro Fluorescence Imaging of MCF-7 and U87-MG Cell Lines
3.3.2. Confirmation of Off-to-On Mechanism
3.4. In Vivo Imaging of U87-Xenografted Mice Model
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wen, P.Y.; Kesari, S. Malignant gliomas in adults. N. Engl. J. Med. 2008, 359, 492–507. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, S.; Dinesan, M.; Ajayakumar, T. Survival and quality of life analysis in glioblastoma multiforme with adjuvant chemoradiotherapy: A retrospective study. Rep. Pract. Oncol. Radiother. 2022, 27, 1026–1036. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Kang, H.; Baek, Y.; El Fakhri, G.; Kuang, A.; Choi, H.S. Real-Time Imaging of Brain Tumor for Image-Guided Surgery. Adv. Healthc. Mater. 2018, 7, e1800066. [Google Scholar] [CrossRef] [PubMed]
- Dixon, L.; Lim, A.; Grech-Sollars, M.; Nandi, D.; Camp, S. Intraoperative ultrasound in brain tumor surgery: A review and implementation guide. Neurosurg. Rev. 2022, 45, 2503–2515. [Google Scholar] [CrossRef] [PubMed]
- Orringer, D.A.; Golby, A.; Jolesz, F. Neuronavigation in the surgical management of brain tumors: Current and future trends. Expert. Rev. Med. Devices 2012, 9, 491–500. [Google Scholar] [CrossRef] [PubMed]
- Schupper, A.J.; Rao, M.; Mohammadi, N.; Baron, R.; Lee, J.Y.K.; Acerbi, F.; Hadjipanayis, C.G. Fluorescence-Guided Surgery: A Review on Timing and Use in Brain Tumor Surgery. Front. Neurol. 2021, 12, 682151. [Google Scholar] [CrossRef] [PubMed]
- Kamp, M.A.; Felsberg, J.; Sadat, H.; Kuzibaev, J.; Steiger, H.J.; Rapp, M.; Reifenberger, G.; Dibué, M.; Sabel, M. 5-ALA-induced fluorescence behavior of reactive tissue changes following glioblastoma treatment with radiation and chemotherapy. Acta Neurochir. 2015, 157, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Wu, Y.; Xiong, Z.; Sam Gambhir, S.; Chen, X. Near-Infrared Fluorescent RGD Peptides for Optical Imaging of Integrin αvβ3 Expression in Living Mice. Bioconjug. Chem. 2005, 16, 1433–1441. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Thawani, J.P.; Pierce, J.; Zeh, R.; Martinez-Lage, M.; Chanin, M.; Venegas, O.; Nims, S.; Learned, K.; Keating, J.; et al. Intraoperative Near-Infrared Optical Imaging Can Localize Gadolinium-Enhancing Gliomas During Surgery. Neurosurgery 2016, 79, 856–871. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Choi, H.S.; Kim, S.K.; Lee, B.I.; Choi, Y. Antigen-responsive molecular sensor enables real-time tumor-specific imaging. Theranostics 2017, 7, 952–961. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, B.S.; Kessler, H.; Kossatz, S.; Reuning, U. RGD-Binding Integrins Revisited: How Recently Discovered Functions and Novel Synthetic Ligands (Re-)Shape an Ever-Evolving Field. Cancers 2021, 13, 1711. [Google Scholar] [CrossRef] [PubMed]
- Gečys, D.; Kazlauskas, A.; Gečytė, E.; Paužienė, N.; Kulakauskienė, D.; Lukminaitė, I.; Jekabsone, A. Internalisation of RGD-Engineered Extracellular Vesicles by Glioblastoma Cells. Biology 2022, 11, 1483. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Conti, P.S.; Moats, R.A. In Vivo Near-Infrared Flurescence Imaging of Integrin αvβ3 in Brain Tumor Xenografts. Cancer Res. 2004, 64, 8009–8014. [Google Scholar] [CrossRef] [PubMed]
- Llaguno-Munive, M.; Villalba-Abascal, W.; Avilés-Salas, A.; Garcia-Lopez, P. Near-Infrared Fluorescence Imaging in Preclinical Models of Glioblastoma. J. Imaging 2023, 9, 212. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, Q.T.; Tsien, R.Y. Fluorescence-guided surgery with live molecular navigation--a new cutting edge. Nat. Rev. Cancer 2013, 13, 653–662. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.J.; Lee, S.J.; Park, S.J.; Paik, C.H.; Lee, S.M.; Kim, S.; Lee, Y.S. Activatable iRGD-based peptide monolith: Targeting, internalization, and fluorescence activation for precise tumor imaging. J. Control. Release 2016, 237, 177–184. [Google Scholar] [CrossRef] [PubMed]
- de Valk, K.S.; Deken, M.M.; Handgraaf, H.J.M.; Bhairosingh, S.S.; Bijlstra, O.D.; van Esdonk, M.J.; Terwisscha van Scheltinga, A.G.T.; Valentijn, A.R.P.M.; March, T.L.; Vuijk, J.; et al. First-in-Human Assessment of cRGD-ZW800-1, a Zwitterionic, Integrin-Targeted, Near-Infrared Fluorescent Peptide in Colon Carcinoma. Clin. Cancer Res. 2020, 26, 3990–3998. [Google Scholar] [CrossRef] [PubMed]
- Jeon, O.H.; Bao, K.; Kim, K.; Wang, H.; Yokomizo, S.; Park, G.K.; Choi, B.H.; Rho, J.; Kim, C.; Choi, H.S.; et al. Precise and safe pulmonary segmentectomy enabled by visualizing cancer margins with dual-channel near-infrared fluorescence. Int. J. Surg. 2024, 110, 2625–2635. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Cho, M.H.; Choi, H.S.; Lee, B.I.; Choi, Y. Zwitterionic near-infrared fluorophore-conjugated epidermal growth factor for fast, real-time, and target-cell-specific cancer imaging. Theranostics 2019, 9, 1085–1095. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Kim, H.Y.; Lee, E.Y.; Choi, B.K.; Jang, H.; Choi, Y. A Quenched Annexin V-Fluorophore for the Real-Time Fluorescence Imaging of Apoptotic Processes In Vitro and In Vivo. Adv. Sci. 2020, 7, 2002988. [Google Scholar] [CrossRef] [PubMed]
- Drew, R.; Miners, J.O. The effects of buthionine sulphoximine (BSO) on glutathione depletion and xenobiotic biotransformation. Biochem. Pharmacol. 1984, 33, 2989–2994. [Google Scholar] [CrossRef] [PubMed]
- Marmé, N.; Knemeyer, J.P.; Sauer, M.; Wolfrum, J. Inter- and intramolecular fluorescence quenching of organic dyes by tryptophan. Bioconjug. Chem. 2003, 14, 1133–1139. [Google Scholar] [CrossRef] [PubMed]
- Feng, R.; Konishi, Y.; Bell, A.W. High Accuracy Molecular Weight Determination and Variation Characterization of Proteins Up To 80 ku by Ionspray Mass Spectrometry. J. Am. Soc. Mass. Spectrom. 1991, 2, 387–401. [Google Scholar] [CrossRef] [PubMed]
- Patsenker, E.; Stickel, F. Role of integrins in fibrosing liver diseases. Am. J. Physiol. Gastrointest. Liver Physiol. 2011, 301, G425–G434. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.; Liu, M.; Choi, Y. Quenched Zwitterionic Cyclic Arg-Gly-Asp-Containing Pentapeptide Probe for Real-Time Brain Tumor Imaging. Pharmaceutics 2024, 16, 1034. https://doi.org/10.3390/pharmaceutics16081034
Kim H, Liu M, Choi Y. Quenched Zwitterionic Cyclic Arg-Gly-Asp-Containing Pentapeptide Probe for Real-Time Brain Tumor Imaging. Pharmaceutics. 2024; 16(8):1034. https://doi.org/10.3390/pharmaceutics16081034
Chicago/Turabian StyleKim, Hyunjin, Maixian Liu, and Yongdoo Choi. 2024. "Quenched Zwitterionic Cyclic Arg-Gly-Asp-Containing Pentapeptide Probe for Real-Time Brain Tumor Imaging" Pharmaceutics 16, no. 8: 1034. https://doi.org/10.3390/pharmaceutics16081034
APA StyleKim, H., Liu, M., & Choi, Y. (2024). Quenched Zwitterionic Cyclic Arg-Gly-Asp-Containing Pentapeptide Probe for Real-Time Brain Tumor Imaging. Pharmaceutics, 16(8), 1034. https://doi.org/10.3390/pharmaceutics16081034