T Cell-Engaging Bispecific Antibodies Targeting gp100 and PRAME: Expanding Application from Uveal Melanoma to Cutaneous Melanoma
Abstract
:1. Introduction
2. Immunological Effects of Tebentafusp
3. Updates on Tebentafusp in Uveal Melanoma
4. Adverse Events of Tebentafusp
5. T Cell-Engaging Bispecific Antibodies in Cutaneous Melanoma and Other Solid Tumors
6. Challenges and Future Directions
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lorenzo, D.; Piulats, J.M.; Ochoa, M.; Arias, L.; Gutiérrez, C.; Català, J.; Cobos, E.; Garcia-Bru, P.; Dias, B.; Padrón-Pérez, N.; et al. Clinical predictors of survival in metastatic uveal melanoma. Jpn. J. Ophthalmol. 2019, 63, 197–209. [Google Scholar] [CrossRef] [PubMed]
- Marshall, E.; Romaniuk, C.; Ghaneh, P.; Wong, H.; McKay, M.; Chopra, M.; E Coupland, S.; E Damato, B. MRI in the detection of hepatic metastases from high-risk uveal melanoma: A prospective study in 188 patients. Br. J. Ophthalmol. 2013, 97, 159–163. [Google Scholar] [CrossRef] [PubMed]
- E Schank, T.; Hassel, J.C. Tebentafusp for the treatment of metastatic uveal melanoma. Futur. Oncol. 2022, 18, 1303–1311. [Google Scholar] [CrossRef] [PubMed]
- Carvajal, R.D.; Butler, M.O.; Shoushtari, A.N.; Hassel, J.C.; Ikeguchi, A.; Hernandez-Aya, L.; Nathan, P.; Hamid, O.; Piulats, J.M.; Rioth, M.; et al. Clinical and molecular response to tebentafusp in previously treated patients with metastatic uveal melanoma: A phase 2 trial. Nat. Med. 2022, 28, 2364–2373. [Google Scholar] [CrossRef] [PubMed]
- Oliva, M.; Rullan, A.J.; Piulats, J.M. Uveal melanoma as a target for immune-therapy. Ann. Transl. Med. 2016, 4, 172. [Google Scholar] [CrossRef]
- Wang, Z.; Xie, Y.; Wang, J.-Q.; Cheng, Y.; Fleishman, J.; Chen, Z.-S.; Chen, Y. Tebentafusp: A novel drug for the treatment of metastatic uveal melanoma. Drugs Today 2023, 59, 179–193. [Google Scholar] [CrossRef]
- Middleton, M.R.; McAlpine, C.; Woodcock, V.K.; Corrie, P.; Infante, J.R.; Steven, N.M.; Evans, T.R.J.; Anthoney, A.; Shoushtari, A.N.; Hamid, O.; et al. Tebentafusp, A TCR/Anti-CD3 Bispecific Fusion Protein Targeting gp100, Potently Activated Antitumor Immune Responses in Patients with Metastatic Melanoma. Clin. Cancer Res. 2020, 26, 5869–5878. [Google Scholar] [CrossRef] [PubMed]
- Fucà, G.; Spagnoletti, A.; Ambrosini, M.; de Braud, F.; Di Nicola, M. Immune cell engagers in solid tumors: Promises and challenges of the next generation immunotherapy. ESMO Open 2021, 6, 100046. [Google Scholar] [CrossRef]
- Omer, M.H.; Shafqat, A.; Ahmad, O.; Alkattan, K.; Yaqinuddin, A.; Damlaj, M. Bispecific Antibodies in Hematological Malignancies: A Scoping Review. Cancers 2023, 15, 4550. [Google Scholar] [CrossRef]
- Simão, D.C.; Zarrabi, K.K.; Mendes, J.L.; Luz, R.; Garcia, J.A.; Kelly, W.K.; Barata, P.C. Bispecific T-Cell Engagers Therapies in Solid Tumors: Focusing on Prostate Cancer. Cancers 2023, 15, 1412. [Google Scholar] [CrossRef]
- Howlett, S.; Carter, T.J.; Shaw, H.M.; Nathan, P.D. Tebentafusp: A first-in-class treatment for metastatic uveal melanoma. Ther. Adv. Med. Oncol. 2023, 15, 17588359231160140. [Google Scholar] [CrossRef] [PubMed]
- Kidwai, N.; Chen, M.; Postow, M.A.; Hassel, J.; Callahan, M. Breaking the Mold: Trailblazing Melanoma Therapy Beyond Checkpoint Through Innovative Approaches. Am. Soc. Clin. Oncol. Educ. Book 2024, 44, e432462. [Google Scholar] [CrossRef] [PubMed]
- Reschke, R.; Enk, A.H.; Hassel, J.C. Chemokines and Cytokines in Immunotherapy of Melanoma and Other Tumors: From Biomarkers to Therapeutic Targets. Int. J. Mol. Sci. 2024, 25, 6532. [Google Scholar] [CrossRef] [PubMed]
- Rouhani, S.J.; Trujillo, J.A.; Pyzer, A.R.; Yu, J.; Fessler, J.; Cabanov, A.; Higgs, E.F.; Cron, K.R.; Zha, Y.; Lu, Y.; et al. Severe COVID-19 infection is associated with aberrant cytokine production by infected lung epithelial cells rather than by systemic immune dysfunction. Res. Sq. 2021, 3, 1083825. [Google Scholar] [CrossRef]
- Reschke, R.; Gajewski, T.F. Tissue-resident memory T cells in immune-related adverse events: Friend or foe? OncoImmunology 2023, 12, 2197358. [Google Scholar] [CrossRef] [PubMed]
- Hailemichael, Y.; Johnson, D.H.; Abdel-Wahab, N.; Foo, W.C.; Bentebibel, S.-E.; Daher, M.; Haymaker, C.; Wani, K.; Saberian, C.; Ogata, D.; et al. Interleukin-6 blockade abrogates immunotherapy toxicity and promotes tumor immunity. Cancer Cell 2022, 40, 509–523.e6. [Google Scholar] [CrossRef]
- Reschke, R.; Deitert, B.; Enk, A.H.; Hassel, J.C. The role of tissue-resident memory T cells as mediators for response and toxicity in immunotherapy-treated melanoma—Two sides of the same coin? Front. Immunol. 2024, 15, 1385781. [Google Scholar] [CrossRef]
- Hassel, J.C.; Rutkowski, P.; Baurain, J.-F.; Butler, M.O.; Schlaak, M.; Sullivan, R.; Ochsenreither, S.; Dummer, R.; Kirkwood, J.M.; Joshua, A.M.; et al. Co-primary endpoint of overall survival for tebentafusp (tebe)-induced rash in a phase 3 randomized trial comparing tebe versus investigator’s choice (IC) in first-line metastatic uveal melanoma. J. Clin. Oncol. 2021, 39, 9527. [Google Scholar] [CrossRef]
- Hassel, J.C.; Stanhope, S.; Greenshields-Watson, A.; Machiraju, D.; Enk, A.; Holland, C.; Abdullah, S.E.; Benlahrech, A.; Orloff, M.; Nathan, P.; et al. Tebentafusp induces a T cell driven rash in melanocyte-bearing skin as an adverse event consistent with the mechanism of action. J. Investig. Dermatol. 2024. [Google Scholar] [CrossRef]
- Nathan, P.; Hassel, J.C.; Rutkowski, P.; Baurain, J.-F.; Butler, M.O.; Schlaak, M.; Sullivan, R.J.; Ochsenreither, S.; Dummer, R.; Kirkwood, J.M.; et al. Overall Survival Benefit with Tebentafusp in Metastatic Uveal Melanoma. N. Engl. J. Med. 2021, 385, 1196–1206. [Google Scholar] [CrossRef]
- Reschke, R.; Gussek, P.; Ziemer, M. Identifying High-Risk Tumors within AJCC Stage IB–III Melanomas Using a Seven-Marker Immunohistochemical Signature. Cancers 2021, 13, 2902. [Google Scholar] [CrossRef] [PubMed]
- Reschke, R.; Dumann, K.; Ziemer, M. Risk Stratification and Clinical Characteristics of Patients with Late Recurrence of Melanoma (>10 Years). J. Clin. Med. 2022, 11, 2026. [Google Scholar] [CrossRef] [PubMed]
- Hassel, J.C.; Piperno-Neumann, S.; Rutkowski, P.; Baurain, J.-F.; Schlaak, M.; Butler, M.O.; Sullivan, R.J.; Dummer, R.; Kirkwood, J.M.; Orloff, M.; et al. Three-Year Overall Survival with Tebentafusp in Metastatic Uveal Melanoma. N. Engl. J. Med. 2023, 389, 2256–2266. [Google Scholar] [CrossRef] [PubMed]
- Piulats, J.; Watkins, C.; Costa-García, M.; del Carpio, L.; Piperno-Neumann, S.; Rutkowski, P.; Hassel, J.; Espinosa, E.; de la Cruz-Merino, L.; Ochsenreither, S.; et al. Overall survival from tebentafusp versus nivolumab plus ipilimumab in first-line metastatic uveal melanoma: A propensity score-weighted analysis. Ann. Oncol. 2024, 35, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Reiter, S.; Schroeder, C.; Broche, J.; Sinnberg, T.; Bonzheim, I.; Süsskind, D.; Flatz, L.; Forschner, A. Successful treatment of metastatic uveal melanoma with ipilimumab and nivolumab after severe progression under tebentafusp: A case report. Front. Oncol. 2023, 13, 1167791. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.W.; Santomasso, B.D.; Locke, F.L.; Ghobadi, A.; Turtle, C.J.; Brudno, J.N.; Maus, M.V.; Park, J.H.; Mead, E.; Pavletic, S.; et al. ASTCT Consensus Grading for Cytokine Release Syndrome and Neurologic Toxicity Associated with Immune Effector Cells. Biol. Blood Marrow Transpl. 2019, 25, 625–638. [Google Scholar] [CrossRef] [PubMed]
- Carvajal, R.D.; Nathan, P.; Sacco, J.J.; Orloff, M.; Hernandez-Aya, L.F.; Yang, J.; Luke, J.J.; Butler, M.O.; Stanhope, S.; Collins, L.; et al. Phase I Study of Safety, Tolerability, and Efficacy of Tebentafusp Using a Step-Up Dosing Regimen and Expansion in Patients With Metastatic Uveal Melanoma. J. Clin. Oncol. 2022, 40, 1939–1948. [Google Scholar] [CrossRef] [PubMed]
- Hassel, J.C.; Berking, C.; Forschner, A.; Gebhardt, C.; Heinzerling, L.; Meier, F.; Ochsenreither, S.; Siveke, J.; Hauschild, A.; Schadendorf, D. Practical guidelines for the management of adverse events of the T cell engager bispecific tebentafusp. Eur. J. Cancer 2023, 191, 112986. [Google Scholar] [CrossRef] [PubMed]
- Hamid, O.; Hassel, J.C.; Shoushtari, A.N.; Meier, F.; Bauer, T.M.; Salama, A.K.S.; Kirkwood, J.M.; A Ascierto, P.; Lorigan, P.C.; Mauch, C.; et al. Tebentafusp in combination with durvalumab and/or tremelimumab in patients with metastatic cutaneous melanoma: A phase 1 study. J. Immunother. Cancer 2023, 11, e006747. [Google Scholar] [CrossRef]
- Salama, A.; Cheshuk, V.; Siveke, J.; Berrocal, A.; Abdullah, S.; Lockwood, S.; McCully, M.; Kee, D. 1014P Characterization of cytokine release syndrome (CRS) following treatment with tebentafusp in previously untreated patients with metastatic uveal melanoma. Ann. Oncol. 2021, 32, S855. [Google Scholar] [CrossRef]
- Hamid, O.; Sato, T.; Davar, D.; Callahan, M.; Thistlethwaite, F.; Aljumaily, R.; Johnson, M.; Arkenau, H.-T.; Dumbrava, E.I.; Izar, B.; et al. 728O Results from phase I dose escalation of IMC-F106C, the first PRAME × CD3 ImmTAC bispecific protein in solid tumors. Ann. Oncol. 2022, 33, S875. [Google Scholar] [CrossRef]
- Chang, A.Y.; Dao, T.; Gejman, R.S.; Jarvis, C.A.; Scott, A.; Dubrovsky, L.; Mathias, M.D.; Korontsvit, T.; Zakhaleva, V.; Curcio, M.; et al. A therapeutic T cell receptor mimic antibody targets tumor-associated PRAME peptide/HLA-I antigens. J. Clin. Investig. 2017, 127, 2705–2718. [Google Scholar] [CrossRef] [PubMed]
- Kaczorowski, M.; Chłopek, M.; Kruczak, A.; Ryś, J.; Lasota, J.; Miettinen, M. PRAME Expression in Cancer. A Systematic Immunohistochemical Study of >5800 Epithelial and Nonepithelial Tumors. Am. J. Surg. Pathol. 2022, 46, 1467–1476. [Google Scholar] [CrossRef] [PubMed]
- Gelmi, M.C.; Gezgin, G.; van der Velden, P.A.; Luyten, G.P.M.; Luk, S.J.; Heemskerk, M.H.M.; Jager, M.J. PRAME Expression: A Target for Cancer Immunotherapy and a Prognostic Factor in Uveal Melanoma. Investig. Opthalmology Vis. Sci. 2023, 64, 36. [Google Scholar] [CrossRef] [PubMed]
- Hamid, O.; Williams, A.; Lopez, J.S.; Olson, D.; Sato, T.; Shaw, H.M.; Friedman, C.F.; Thistlethwaite, F.; Middleton, M.R.; Lebbe, C.; et al. Phase 1 safety and efficacy of IMC-F106C, a PRAME × CD3 ImmTAC bispecific, in post-checkpoint cutaneous melanoma (CM). J. Clin. Oncol. 2024, 42, 9507. [Google Scholar] [CrossRef]
- Bunk, S.; Hofmann, M.; Unverdorben, F.; Hutt, M.; Pszolla, G.; Schwöbel, F.; Wagner, C.; Yousef, S.; Schuster, H.; Missel, S.; et al. Effective Targeting of PRAME-Positive Tumors with Bispecific T Cell-Engaging Receptor (TCER®) Molecules. Blood 2019, 134, 3368. [Google Scholar] [CrossRef]
- Immatics Reports Interim Clinical Data from ACTengine® IMA203 and IMA203CD8 TCR-T Monotherapies Targeting PRAME in an Ongoing Phase 1 Trial|Immatics N.V. Available online: https://investors.immatics.com/news-releases/news-release-details/immatics-reports-interim-clinical-data-actenginer-ima203-and/ (accessed on 25 April 2024).
- Davar, D.; Ikeguchi, A.; Buchbinder, E.I.; Shoushtari, A.N.; Seedor, R.S.; Bernicker, E.; Weiss, S.A.; Daniels, G.A.; Panella, T.J.; Ryan, H.F.; et al. A phase 2/3 trial in progress on tebentafusp as monotherapy and in combination with pembrolizumab in HLA-A*02:01+ patients with previously treated advanced non-uveal melanoma (TEBE-AM). J. Clin. Oncol. 2023, 41, TPS9594. [Google Scholar] [CrossRef]
- Missel, S.; Bunk, S.; Hofmann, M.; Pszolla, G.; Hutt, M.; Schwoebel, F.; Unverdorben, F.; Wagner, C.; Jaworski, M.; Schuster, H.; et al. 753P Targeting solid tumors with IMA402, a next-generation bispecific T cell engaging receptor against PRAME. Ann. Oncol. 2022, 33, S888. [Google Scholar] [CrossRef]
- Edeline, J.; Houot, R.; Marabelle, A.; Alcantara, M. CAR-T cells and BiTEs in solid tumors: Challenges and perspectives. J. Hematol. Oncol. 2021, 14, 65. [Google Scholar] [CrossRef]
- Reschke, R.; Jäger, I.; Mehnert-Theuerkauf, A.; Ziemer, M. Therapy understanding and health related quality of life in stage III/IV melanoma patients treated with novel adjuvant therapies. JDDG J. Dtsch. Dermatol. Ges. 2021, 19, 215–221. [Google Scholar] [CrossRef]
- Yi, M.; Niu, M.; Wu, Y.; Ge, H.; Jiao, D.; Zhu, S.; Zhang, J.; Yan, Y.; Zhou, P.; Chu, Q.; et al. Combination of oral STING agonist MSA-2 and anti-TGF-β/PD-L1 bispecific antibody YM101: A novel immune cocktail therapy for non-inflamed tumors. J. Hematol. Oncol. 2022, 15, 142. [Google Scholar] [CrossRef] [PubMed]
Most Common Tx-Related Adverse Events | |
---|---|
Any Grade | Grade 3/4 |
Cytokine release syndrome 89% | Cytokine release syndrome 1% |
Rash 83% | Rash 19% |
Pyrexia 76% | Pyrexia 5% |
Pruritus 70% | Pruritus 5% |
Chills 49% | Liver-function tests 6% |
Nausea 45% | Hypertension 4% |
Fatigue 42% | Lipase increased 4% |
Hypotension 38% | Hypotension 4% |
T Cell Engagers in Cutaneous Melanoma | |||||||||
---|---|---|---|---|---|---|---|---|---|
Trial | Agents | HLA Type | Target Antigen | 2nd Medication | Phase | Tumor Type | Patients | Biomarker | Response |
Middleton [7] | Tebentafusp | HLA-A*02:01+ | gp100 | 1/2 | Metastatic cutaneous melanoma | 61 | CXCL10, IL6 | 65% Overall survival rate | |
Hamid [29] | Tebentafusp | HLA-A*02:01+ | gp100 | Anti-CTLA4 ± anti-PDL1 | 1b | Metastatic cutaneous melanoma | 85 | / | / |
Ongoing Trials | Prelim. Results # | ||||||||
NCT05315258 TebeMRD | Tebentafusp | HLA-A*02:01+ | gp100 | / | 2 | Cutaneous melanoma with MRD | 600 | ctDNA | / |
Immunocore TEBE-AM NCT05549297 [38] | Tebentafusp | HLA-A*02:01+ | gp100 | ±Anti-PD1 | 2/3 | Metastatic cutaneous melanoma | 460 | ctDNA | / |
Immatics TCER NCT05958121 [39] | IMA402 | HLA-A*02:01+ | PRAME | / | 1a, 1b, 2 | Solid tumors † | 145 | / | / |
Immunocore IMC-F106C-101 NCT04262466 [31] | IMC-F106C | HLA-A*02:01+ | PRAME | ±Anti-PD1 or tebentafusp or anti-VEGF-A or chemotherapy or kinase inhibitors | 1/2 | Solid tumors † | 727 | ctDNA | Metastatic melanoma: clinical benefit rate (CBR) of PR + SD was 61% (19/31) [35] |
Immunocore IMC-F106C PRISM-MEL-301 | IMC-F106C | HLA-A*02:01+ | PRAME | ±Anti-PD1 ±anti-LAG3 | 3 | Metastatic cutaneous melanoma | 680 | / | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reschke, R.; Enk, A.H.; Hassel, J.C. T Cell-Engaging Bispecific Antibodies Targeting gp100 and PRAME: Expanding Application from Uveal Melanoma to Cutaneous Melanoma. Pharmaceutics 2024, 16, 1046. https://doi.org/10.3390/pharmaceutics16081046
Reschke R, Enk AH, Hassel JC. T Cell-Engaging Bispecific Antibodies Targeting gp100 and PRAME: Expanding Application from Uveal Melanoma to Cutaneous Melanoma. Pharmaceutics. 2024; 16(8):1046. https://doi.org/10.3390/pharmaceutics16081046
Chicago/Turabian StyleReschke, Robin, Alexander H. Enk, and Jessica C. Hassel. 2024. "T Cell-Engaging Bispecific Antibodies Targeting gp100 and PRAME: Expanding Application from Uveal Melanoma to Cutaneous Melanoma" Pharmaceutics 16, no. 8: 1046. https://doi.org/10.3390/pharmaceutics16081046
APA StyleReschke, R., Enk, A. H., & Hassel, J. C. (2024). T Cell-Engaging Bispecific Antibodies Targeting gp100 and PRAME: Expanding Application from Uveal Melanoma to Cutaneous Melanoma. Pharmaceutics, 16(8), 1046. https://doi.org/10.3390/pharmaceutics16081046