Long-Circulating and Brain-Targeted Liposomes Loaded with Isoliquiritigenin: Formation, Characterization, Pharmacokinetics, and Distribution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Animals
2.2. Preparation of Solutions
2.3. Preparation of ISL-LP
2.4. Optimization of the ISL-LP Formulation
2.5. Characterization of ISL-LP
2.6. In Vitro Release Studies
2.7. Pharmacokinetics of ISL-LP and ISL
2.8. Tissue Distribution Study
2.9. Statistical Analysis
3. Results and Discussion
3.1. Preparation and Optimization of the LPC-LP Formulation
3.2. Characterization of ISL-LP
3.3. Pharmacokinetic Profiles of ISL and ISL-LP
3.4. Tissue Distribution and Targeting Evaluation of ISL-LP
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jiang, M.; Zhao, S.; Yang, S.; Lin, X.; He, X.; Wei, X.; Song, Q.; Li, R.; Fu, C.; Zhang, J.; et al. An “Essential Herbal Medicine”-Licorice: A Review of Phytochemicals and Its Effects in Combination Preparations. J. Ethnopharmacol. 2020, 249, 112439. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Yung, K.K.-L.; Ko, J.K.-S. Therapeutic Intervention in Cancer by Isoliquiritigenin from Licorice: A Natural Antioxidant and Redox Regulator. Antioxidants 2022, 11, 1349. [Google Scholar] [CrossRef]
- Zhao, T.-T.; Xu, Y.-Q.; Hu, H.-M.; Gong, H.-B.; Zhu, H.-L. Isoliquiritigenin (ISL) and Its Formulations: Potential Antitumor Agents. Curr. Med. Chem. 2019, 26, 6786–6796. [Google Scholar] [CrossRef]
- Ma, X.; Fang, F.; Song, M.; Ma, S. The Effect of Isoliquiritigenin on Learning and Memory Impairments Induced by High-Fat Diet via Inhibiting TNF-α/JNK/IRS Signaling. Biochem. Biophys. Res. Commun. 2015, 464, 1090–1095. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Zhou, J.; Zhu, H.; Tao, Y.; Wang, L.; Yang, L.; Wu, H.; Huang, F.; Shi, H.; Wu, X. Isoliquiritigenin Inhibits Microglia-Mediated Neuroinflammation in Models of Parkinson’s Disease via JNK/AKT/NFκB Signaling Pathway. Phytother. Res. PTR 2023, 37, 848–859. [Google Scholar] [CrossRef]
- Lin, Y.; Sun, H.; Dang, Y.; Li, Z. Isoliquiritigenin Inhibits the Proliferation and Induces the Differentiation of Human Glioma Stem Cells. Oncol. Rep. 2018, 39, 687–694. [Google Scholar] [CrossRef]
- Shi, W.; Cao, X.; Liu, Q.; Zhu, Q.; Liu, K.; Deng, T.; Yu, Q.; Deng, W.; Yu, J.; Wang, Q.; et al. Hybrid Membrane-Derived Nanoparticles for Isoliquiritin Enhanced Glioma Therapy. Pharmaceuticals 2022, 15, 1059. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Chen, Y.; Wang, Y.; Liu, X.; Liu, Y.; Li, Y.; Chen, H.; Fan, C.; Wu, D.; Yang, J. Inhibition of COX-2, mPGES-1 and CYP4A by Isoliquiritigenin Blocks the Angiogenic Akt Signaling in Glioma through ceRNA Effect of miR-194-5p and lncRNA NEAT1. J. Exp. Clin. Cancer Res. CR 2019, 38, 371. [Google Scholar] [CrossRef]
- Shi, D.; Yang, J.; Jiang, Y.; Wen, L.; Wang, Z.; Yang, B. The Antioxidant Activity and Neuroprotective Mechanism of Isoliquiritigenin. Free Radic. Biol. Med. 2020, 152, 207–215. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, J.; Huang, S.; Zhu, W.; Wang, Y.; Chen, O.; Xue, J. Neuroprotective Effects of Isoliquiritigenin against Cognitive Impairment via Suppression of Synaptic Dysfunction, Neuronal Injury, and Neuroinflammation in Rats with Kainic Acid-Induced Seizures. Int. Immunopharmacol. 2019, 72, 358–366. [Google Scholar] [CrossRef]
- Xie, Y.-J.; Wang, Q.-L.; Adu-Frimpong, M.; Liu, J.; Zhang, K.-Y.; Xu, X.-M.; Yu, J.-N. Preparation and Evaluation of Isoliquiritigenin-Loaded F127/P123 Polymeric Micelles. Drug Dev. Ind. Pharm. 2019, 45, 1224–1232. [Google Scholar] [CrossRef]
- Wong, K.; Riaz, M.; Xie, Y.; Zhang, X.; Liu, Q.; Chen, H.; Bian, Z.; Chen, X.; Lu, A.; Yang, Z. Review of Current Strategies for Delivering Alzheimer’s Disease Drugs across the Blood-Brain Barrier. Int. J. Mol. Sci. 2019, 20, 381. [Google Scholar] [CrossRef] [PubMed]
- Song, G.; Plumlee, P.; Ahn, J.Y.; Wong, S.T.; Zhao, H. Translational Strategies and Systems Biology Insights for Blood-Brain Barrier Opening and Delivery in Brain Tumors and Alzheimer’s Disease. Biomed. Pharmacother. 2023, 167, 115450. [Google Scholar] [CrossRef] [PubMed]
- Mazzotta, E.; De Santo, M.; Lombardo, D.; Leggio, A.; Pasqua, L. Mesoporous Silicas in Materials Engineering: Nanodevices for Bionanotechnologies. Mater. Today Bio 2022, 17, 100472. [Google Scholar] [CrossRef] [PubMed]
- Torchilin, V.P. Recent Advances with Liposomes as Pharmaceutical Carriers. Nat. Rev. Drug Discov. 2005, 4, 145–160. [Google Scholar] [CrossRef] [PubMed]
- Rabha, B.; Bharadwaj, K.K.; Pati, S.; Choudhury, B.K.; Sarkar, T.; Kari, Z.A.; Edinur, H.A.; Baishya, D.; Atanase, L.I. Development of Polymer-Based Nanoformulations for Glioblastoma Brain Cancer Therapy and Diagnosis: An Update. Polymers 2021, 13, 4114. [Google Scholar] [CrossRef] [PubMed]
- Matsumura, Y.; Kataoka, K. Preclinical and Clinical Studies of Anticancer Agent-Incorporating Polymer Micelles. Cancer Sci. 2009, 100, 572–579. [Google Scholar] [CrossRef] [PubMed]
- Astruc, D.; Boisselier, E.; Ornelas, C. Dendrimers Designed for Functions: From Physical, Photophysical, and Supramolecular Properties to Applications in Sensing, Catalysis, Molecular Electronics, Photonics, and Nanomedicine. Chem. Rev. 2010, 110, 1857–1959. [Google Scholar] [CrossRef] [PubMed]
- Ranjbar, S.; Emamjomeh, A.; Sharifi, F.; Zarepour, A.; Aghaabbasi, K.; Dehshahri, A.; Sepahvand, A.M.; Zarrabi, A.; Beyzaei, H.; Zahedi, M.M.; et al. Lipid-Based Delivery Systems for Flavonoids and Flavonolignans: Liposomes, Nanoemulsions, and Solid Lipid Nanoparticles. Pharmaceutics 2023, 15, 1944. [Google Scholar] [CrossRef]
- Khot, K.B.; Gopan, G.; Bandiwadekar, A.; Jose, J. Current Advancements Related to Phytobioactive Compounds Based Liposomal Delivery for Neurodegenerative Diseases. Ageing Res. Rev. 2023, 83, 101806. [Google Scholar] [CrossRef]
- Wang, J.; Gong, J.; Wei, Z. Strategies for Liposome Drug Delivery Systems to Improve Tumor Treatment Efficacy. AAPS PharmSciTech 2021, 23, 27. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Bai, L.; Zhou, X.; Xu, P.; Li, X.; Xu, H.; Zheng, Y.; Zhao, Y.; Lu, S.; Xue, M. Development of Long-Circulating Lapachol Nanoparticles: Formation, Characterization, Pharmacokinetics, Distribution and Cytotoxicity. RSC Adv. 2020, 10, 30025–30034. [Google Scholar] [CrossRef] [PubMed]
- Habib, S.; Singh, M. Angiopep-2-Modified Nanoparticles for Brain-Directed Delivery of Therapeutics: A Review. Polymers 2022, 14, 712. [Google Scholar] [CrossRef] [PubMed]
- Pardridge, W.M. A Historical Review of Brain Drug Delivery. Pharmaceutics 2022, 14, 1283. [Google Scholar] [CrossRef]
- Jones, A.R.; Shusta, E.V. Blood-Brain Barrier Transport of Therapeutics via Receptor-Mediation. Pharm. Res. 2007, 24, 1759–1771. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Bai, L.; Yang, Y.; Wang, Y.; Xu, P.; Zhao, Y.; Zhou, X.; Li, X.; Xue, M. Long-Circulation and Brain Targeted Isoliquiritigenin Micelle Nanoparticles: Formation, Characterization, Tissue Distribution, Pharmacokinetics and Effects for Ischemic Stroke. Int. J. Nanomed. 2022, 17, 3655–3670. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Fan, Y.; Wu, H.; Na, S.; Wang, L.; Lu, C. Tissue Distribution and Targeting Evaluation of TMP after Oral Administration of TMP-Loaded Microemulsion to Mice. Drug Dev. Ind. Pharm. 2013, 39, 1951–1958. [Google Scholar] [CrossRef]
- Wang, J.X.; Sun, X.; Zhang, Z.R. Enhanced Brain Targeting by Synthesis of 3′,5′-Dioctanoyl-5-Fluoro-2′-Deoxyuridine and Incorporation into Solid Lipid Nanoparticles. Eur. J. Pharm. Biopharm. 2002, 54, 285–290. [Google Scholar] [CrossRef]
- Vonarbourg, A.; Passirani, C.; Saulnier, P.; Benoit, J.-P. Parameters Influencing the Stealthiness of Colloidal Drug Delivery Systems. Biomaterials 2006, 27, 4356–4373. [Google Scholar] [CrossRef]
- Gao, K.; Jiang, X. Influence of Particle Size on Transport of Methotrexate across Blood Brain Barrier by Polysorbate 80-Coated Polybutylcyanoacrylate Nanoparticles. Int. J. Pharm. 2006, 310, 213–219. [Google Scholar] [CrossRef]
- Gaumet, M.; Vargas, A.; Gurny, R.; Delie, F. Nanoparticles for Drug Delivery: The Need for Precision in Reporting Particle Size Parameters. Eur. J. Pharm. Biopharm. 2008, 69, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Kröger, M.; Liu, W.K. Shape Effect in Cellular Uptake of PEGylated Nanoparticles: Comparison between Sphere, Rod, Cube and Disk. Nanoscale 2015, 7, 16631–16646. [Google Scholar] [CrossRef] [PubMed]
- Chithrani, B.D.; Ghazani, A.A.; Chan, W.C.W. Determining the Size and Shape Dependence of Gold Nanoparticle Uptake into Mammalian Cells. Nano Lett. 2006, 6, 662–668. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.; Han, Y.; Xu, P.; Xia, B.; Zhao, Y.; Li, X.; Xue, M. Plasma Pharmacokinetics and Brain Distribution Kinetics of Lapachol in Rats Using LC-MS and Microdialysis Techniques. RSC Adv. 2017, 7, 53355–53361. [Google Scholar] [CrossRef]
- Bhattacharjee, S. DLS and Zeta Potential—What They Are and What They Are Not? J. Control. Release 2016, 235, 337–351. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Huo, M.; Zhou, J.; Zou, A.; Li, W.; Yao, C.; Xie, S. DDSolver: An Add-in Program for Modeling and Comparison of Drug Dissolution Profiles. AAPS J. 2010, 12, 263–271. [Google Scholar] [CrossRef]
- Vardhan, H.; Mittal, P.; Adena, S.K.R.; Upadhyay, M.; Mishra, B. Development of Long-Circulating Docetaxel Loaded Poly (3-Hydroxybutyrate-Co-3-Hydroxyvalerate) Nanoparticles: Optimization, Pharmacokinetic, Cytotoxicity and in Vivo Assessments. Int. J. Biol. Macromol. 2017, 103, 791–801. [Google Scholar] [CrossRef]
- Khalil, N.M.; do Nascimento, T.C.F.; Casa, D.M.; Dalmolin, L.F.; de Mattos, A.C.; Hoss, I.; Romano, M.A.; Mainardes, R.M. Pharmacokinetics of Curcumin-Loaded PLGA and PLGA-PEG Blend Nanoparticles after Oral Administration in Rats. Colloids Surf. B Biointerfaces 2013, 101, 353–360. [Google Scholar] [CrossRef]
- Lujan, H.; Griffin, W.C.; Taube, J.H.; Sayes, C.M. Synthesis and Characterization of Nanometer-Sized Liposomes for Encapsulation and microRNA Transfer to Breast Cancer Cells. Int. J. Nanomed. 2019, 14, 5159–5173. [Google Scholar] [CrossRef]
- Pandian, S.R.K.; Vijayakumar, K.K.; Murugesan, S.; Kunjiappan, S. Liposomes: An Emerging Carrier for Targeting Alzheimer’s and Parkinson’s Diseases. Heliyon 2022, 8, e09575. [Google Scholar] [CrossRef]
- Fam, S.Y.; Chee, C.F.; Yong, C.Y.; Ho, K.L.; Mariatulqabtiah, A.R.; Tan, W.S. Stealth Coating of Nanoparticles in Drug-Delivery Systems. Nanomaterials 2020, 10, 787. [Google Scholar] [CrossRef] [PubMed]
- Pasut, G.; Veronese, F.M. State of the Art in PEGylation: The Great Versatility Achieved after Forty Years of Research. J. Control. Release 2012, 161, 461–472. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, M.; Ajazuddin, null; Tripathi, D.K.; Saraf, S.; Saraf, S.; Antimisiaris, S.G.; Mourtas, S.; Hammarlund-Udenaes, M.; Alexander, A. Recent Advancements in Liposomes Targeting Strategies to Cross Blood-Brain Barrier (BBB) for the Treatment of Alzheimer’s Disease. J. Control. Release 2017, 260, 61–77. [Google Scholar] [CrossRef] [PubMed]
- Matougui, N.; Boge, L.; Groo, A.-C.; Umerska, A.; Ringstad, L.; Bysell, H.; Saulnier, P. Lipid-Based Nanoformulations for Peptide Delivery. Int. J. Pharm. 2016, 502, 80–97. [Google Scholar] [CrossRef] [PubMed]
- Pasut, G.; Paolino, D.; Celia, C.; Mero, A.; Joseph, A.S.; Wolfram, J.; Cosco, D.; Schiavon, O.; Shen, H.; Fresta, M. Polyethylene Glycol (PEG)-Dendron Phospholipids as Innovative Constructs for the Preparation of Super Stealth Liposomes for Anticancer Therapy. J. Control. Release 2015, 199, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wu, R.; Li, Y.; Wang, L.; Zhou, R.; Li, L.; Xiang, Y.; Wu, J.; Xing, L.; Huang, Y. Angiopep-2-Functionalized Nanoparticles Enhance Transport of Protein Drugs across Intestinal Epithelia by Self-Regulation of Targeted Receptors. Biomater. Sci. 2021, 9, 2903–2916. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Li, C.; Wei, Y.; Zheng, H.; Zheng, H.; Wang, B.; Piao, J.-G.; Li, F. Angiopep-2-Modified Calcium Arsenite-Loaded Liposomes for Targeted and pH-Responsive Delivery for Anti-Glioma Therapy. Biochem. Biophys. Res. Commun. 2021, 551, 14–20. [Google Scholar] [CrossRef]
- Shao, K.; Huang, R.; Li, J.; Han, L.; Ye, L.; Lou, J.; Jiang, C. Angiopep-2 Modified PE-PEG Based Polymeric Micelles for Amphotericin B Delivery Targeted to the Brain. J. Control. Release 2010, 147, 118–126. [Google Scholar] [CrossRef]
Levels | Factors | ||
---|---|---|---|
A | B | C | |
PC (mg) | PC: Chol (mg/mg) | (PC + Chol): ISL (mg/mg) | |
1 | 3 | 3:1 | 10:1 |
2 | 6 | 6:1 | 20:1 |
3 | 9 | 9:1 | 30:1 |
No. | Factors | EE% | ||
---|---|---|---|---|
A | B | C | ||
PC (mg) | PC: Chol (mg/mg) | (PC + Chol): ISL (mg/mg) | ||
1 | 3 | 3:1 | 10:1 | 29.23 |
2 | 3 | 6:1 | 20:1 | 58.29 |
3 | 3 | 9:1 | 30:1 | 46.95 |
4 | 6 | 3:1 | 20:1 | 62.09 |
5 | 6 | 6:1 | 30:1 | 73.86 |
6 | 6 | 9:1 | 10:1 | 50.84 |
7 | 9 | 3:1 | 30:1 | 73.01 |
8 | 9 | 6:1 | 10:1 | 62.49 |
9 | 9 | 9:1 | 20:1 | 77.74 |
K1 | 44.82 | 54.78 | 47.52 | |
K2 | 62.26 | 64.88 | 66.04 | |
K3 | 71.08 | 58.51 | 64.61 | |
R | 26.26 | 10.1 | 18.52 |
Model | Equation | R2 |
---|---|---|
Zero-order | F = 1.759t | 0.8008 |
First-order | ln(1 − F/100) = −0.04t | 0.9231 |
Higuchi | F = 10.913t0.5 | 0.9216 |
Weibull | ln[ln[1/(1 − F/100)]] = 0.537lnt − 1.929 | 0.9640 |
Parameters | Unit | ISL Suspension | ISL-LP |
---|---|---|---|
t1/2α | h | 0.07 ± 0.01 | 0.07 ± 0.02 |
t1/2β | h | 0.70 ± 0.22 | 1.37 ± 0.52 * |
AUC(0→t) | μg/L·h | 306.78 ± 92.53 | 496.19 ± 126.29 * |
AUC(0→∞) | μg/L·h | 372.75 ± 105.57 | 607.59 ± 168.79 * |
MRT(0→t) | h | 0.17 ± 0.03 | 0.45 ± 0.13 ** |
CL | L/h/kg | 5.78 ± 1.74 | 3.49 ± 0.88 * |
Tissue | AUC (ng·h/g) | TE (%) | RTE (%) | TI | ||
---|---|---|---|---|---|---|
ISL Suspension | ISL-LP | ISL Suspension | ISL-LP | |||
Heart | 18.66 ± 2.11 | 37.58 ± 3.72 | 4.02 | 3.88 | −3.30 | 2.01 |
Liver | 207.70 ± 28.50 | 502.70 ± 65.75 | 44.70 | 51.95 | 16.22 | 2.42 |
Lung | 55.24 ± 6.28 | 95.81 ± 9.67 | 11.89 | 9.90 | −16.72 | 1.73 |
Kidney | 174.7 ± 9.70 | 302.80 ± 40.40 | 37.60 | 31.29 | −16.77 | 1.73 |
Brain | 8.34 ± 0.61 | 28.77 ± 2.22 | 1.79 | 2.97 | 65.64 | 3.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, W.; Bai, L.; Xu, P.; Zhao, Y.; Zhou, X.; Xiong, J.; Li, X.; Xue, M. Long-Circulating and Brain-Targeted Liposomes Loaded with Isoliquiritigenin: Formation, Characterization, Pharmacokinetics, and Distribution. Pharmaceutics 2024, 16, 975. https://doi.org/10.3390/pharmaceutics16080975
Song W, Bai L, Xu P, Zhao Y, Zhou X, Xiong J, Li X, Xue M. Long-Circulating and Brain-Targeted Liposomes Loaded with Isoliquiritigenin: Formation, Characterization, Pharmacokinetics, and Distribution. Pharmaceutics. 2024; 16(8):975. https://doi.org/10.3390/pharmaceutics16080975
Chicago/Turabian StyleSong, Weitong, Lu Bai, Pingxiang Xu, Yuming Zhao, Xuelin Zhou, Jie Xiong, Xiaorong Li, and Ming Xue. 2024. "Long-Circulating and Brain-Targeted Liposomes Loaded with Isoliquiritigenin: Formation, Characterization, Pharmacokinetics, and Distribution" Pharmaceutics 16, no. 8: 975. https://doi.org/10.3390/pharmaceutics16080975
APA StyleSong, W., Bai, L., Xu, P., Zhao, Y., Zhou, X., Xiong, J., Li, X., & Xue, M. (2024). Long-Circulating and Brain-Targeted Liposomes Loaded with Isoliquiritigenin: Formation, Characterization, Pharmacokinetics, and Distribution. Pharmaceutics, 16(8), 975. https://doi.org/10.3390/pharmaceutics16080975