Cationic Curcumin Nanocrystals Liposomes for Improved Oral Bioavailability: Formulation Development, Optimization, In Vitro and In Vivo Evaluation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Analysis Method
2.3. Fabrication of Nanocrystals
2.4. Fabrication of Liposome
2.5. Characterization
2.5.1. Size, Zeta, and PDI
2.5.2. Powder X-ray Diffraction (PXRD)
2.5.3. Transmission Electron Microscope (TEM)
2.5.4. Saturated Solubility
2.5.5. In Vitro Release Analysis
2.5.6. Stability
2.6. Bioavailability in SD Rats
2.7. Multiple-Particle Tracking In Vitro
2.8. Cellular Uptake and Mechanisms
2.9. Cell Cytotoxicity
2.10. Mucus Penetration
2.10.1. Fluorescent Labeling of Nanocrystals
2.10.2. 3D Mucus Penetration
3. Results and Discussion
3.1. CUR-NCs Formulation Development and Optimization
3.1.1. Preparation Methods for Screening CUR-NCs
3.1.2. The Selection of the Organic Phase
3.1.3. Surfactant Selection
3.1.4. Surfactant Concentration
3.2. PXRD
3.3. TEM
3.4. Fabrication of Liposomes
3.5. In Vitro Release
3.6. Stability Studies
3.7. Bioavailability
3.8. Multiple-Particle Tracking
3.9. Cellular Uptake of CUR
3.9.1. Determination of Cellular Uptake of CUR
3.9.2. Mechanisms of Cellular Uptake of CUR
3.9.3. Fluorescence Properties
3.9.4. Mucoadhesive Properties of Polycationic Chitosan Oligosaccharide
3.9.5. Mucus Penetration on Caco-2/E12 Cells
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, X.; Zhu, R.; Jiang, H.; Yin, Q.; Gu, J.; Chen, J.; Ji, X.; Wu, X.; Fu, H.; Wang, H.; et al. Autophagy enhanced by curcumin ameliorates inflammation in atherogenesis via the TFEB-P300-BRD4 axis. Acta Pharm. Sin. B 2022, 12, 2280–2299. [Google Scholar] [CrossRef] [PubMed]
- Pisano, M.; Pagnan, G.; Dettori, M.A.; Cossu, S.; Caffa, I.; Sassu, I.; Emionite, L.; Fabbri, D.; Cilli, M.; Pastorino, F.; et al. Enhanced anti-tumor activity of a new curcumin-related compound against melanoma and neuroblastoma cells. Mol. Cancer 2010, 9, 137. [Google Scholar] [CrossRef]
- Kheradpezhouh, E.; Barritt, G.J.; Rychkov, G.Y. Curcumin inhibits activation of TRPM2 channels in rat hepatocytes. Redox Biol. 2016, 7, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Ran, C.; Xu, X.; Raymond, S.B.; Ferrara, B.J.; Neal, K.; Bacskai, B.J.; Medarova, Z.; Moore, A. Design, synthesis, and testing of difluoroboron-derivatized curcumins as near-infrared probes for in vivo detection of amyloid-beta deposits. J. Am. Chem. Soc. 2009, 131, 15257–15261. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Chen, Y.; Ge, Y.; Hu, Y.; Li, M.; Jin, Y. Inhalation treatment of primary lung cancer using liposomal curcumin dry powder inhalers. Acta Pharm. Sin. B 2018, 8, 440–448. [Google Scholar] [CrossRef]
- Zhong, D.; Zhang, D.; Chen, W.; He, J.; Ren, C.; Zhang, X.; Kong, N.; Tao, W.; Zhou, M. Orally deliverable strategy based on microalgal biomass for intestinal disease treatment. Sci. Adv. 2021, 7, eabi9265. [Google Scholar] [CrossRef]
- Wang, Q.; Yu, W.; Li, Z.; Liu, B.; Hu, Y.; Chen, S.; de Vries, R.; Yuan, Y.; Erazo Quintero, L.E.; Hou, G.; et al. The stability and bioavailability of curcumin loaded α-lactalbumin nanocarriers formulated in functional dairy drink. Food Hydrocoll. 2022, 131, 107807. [Google Scholar] [CrossRef]
- Alejo, T.; Uson, L.; Landa, G.; Prieto, M.; Yus Argón, C.; Garcia-Salinas, S.; de Miguel, R.; Rodríguez-Largo, A.; Irusta, S.; Sebastian, V.; et al. Nanogels with High Loading of Anesthetic Nanocrystals for Extended Duration of Sciatic Nerve Block. ACS Appl. Mater. Interfaces 2021, 13, 17220–17235. [Google Scholar] [CrossRef]
- Hollis, C.P.; Weiss, H.L.; Leggas, M.; Evers, B.M.; Gemeinhart, R.A.; Li, T. Biodistribution and bioimaging studies of hybrid paclitaxel nanocrystals: Lessons learned of the EPR effect and image-guided drug delivery. J. Control. Release 2013, 172, 12–21. [Google Scholar] [CrossRef]
- Pant, N.; Wairkar, S. Topical nanocrystals of bioflavonoids: A new technology platform for skin ailments. Int. J. Pharm. 2022, 619, 121707. [Google Scholar] [CrossRef]
- Cristina Cardia, M.; Francesca Palmas, M.; Casula, L.; Pisanu, A.; Marceddu, S.; Valenti, D.; Sinico, C.; Pini, E.; Scerba, M.T.; Tweedie, D.; et al. Nanocrystals as an effective strategy to improve Pomalidomide bioavailability in rodent. Int. J. Pharm. 2022, 625, 122079. [Google Scholar] [CrossRef]
- Huang, D.; Gui, J.; Chen, X.; Yu, R.; Gong, T.; Zhang, Z.; Fu, Y. Chondroitin Sulfate-Derived Paclitaxel Nanocrystal via π-π Stacking with Enhanced Stability and Tumor Targetability. ACS Appl. Mater. Interfaces 2022, 14, 51776–51789. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Long, L.; Xiong, Y.; Wang, C.; Peng, C.; Yuan, Y.; Liu, Z.; Lin, Y.; Jia, Y.; Zhou, X.; et al. Facile Engineering of Indomethacin-Induced Paclitaxel Nanocrystal Aggregates as Carrier-Free Nanomedicine with Improved Synergetic Antitumor Activity. ACS Appl. Mater. Interfaces 2019, 11, 9872–9883. [Google Scholar] [CrossRef] [PubMed]
- Xiong, W.; Sang, W.; Linghu, K.G.; Zhong, Z.F.; Cheang, W.S.; Li, J.; Hu, Y.J.; Yu, H.; Wang, Y.T. Dual-functional Brij-S20-modified nanocrystal formulation enhances the intestinal transport and oral bioavailability of berberine. Int. J. Nanomed. 2018, 13, 3781–3793. [Google Scholar] [CrossRef] [PubMed]
- Pi, J.; Wang, S.; Li, W.; Kebebe, D.; Zhang, Y.; Zhang, B.; Qi, D.; Guo, P.; Li, N.; Liu, Z. A nano-cocrystal strategy to improve the dissolution rate and oral bioavailability of baicalein. Asian J. Pharm. Sci. 2019, 14, 154–164. [Google Scholar] [CrossRef]
- He, H.; Lu, Y.; Qi, J.; Zhao, W.; Dong, X.; Wu, W. Biomimetic thiamine- and niacin-decorated liposomes for enhanced oral delivery of insulin. Acta Pharm. Sin. B 2018, 8, 97–105. [Google Scholar] [CrossRef]
- Hong, S.; Wang, Y.; Park, S.Y.; Lee, H. Progressive fuzzy cation-π assembly of biological catecholamines. Sci. Adv. 2018, 4, eaat7457. [Google Scholar] [CrossRef]
- Wang, Y.; Tan, X.; Fan, X.; Zhao, L.; Wang, S.; He, H.; Yin, T.; Zhang, Y.; Tang, X.; Jian, L.; et al. Current strategies for oral delivery of BCS IV drug nanocrystals: Challenges, solutions and future trends. Expert. Opin. Drug Deliv. 2021, 18, 1211–1228. [Google Scholar] [CrossRef]
- Xu, Z.; Hou, Y.; Sun, J.; Zhu, L.; Zhang, Q.; Yao, W.; Fan, X.; Zhang, K.; Piao, J.G.; Wei, Y. Deoxycholic acid-chitosan coated liposomes combined with in situ colonic gel enhances renal fibrosis therapy of emodin. Phytomedicine 2022, 101, 154110. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, P.; Li, H.; Han, X.; Zhu, H.; Jin, X. Nanocrystal-Loaded Lipid Carriers for Improved Oral Absorption and Anticancer Efficacy of Etoposide: Formulation Development, Transport Mechanism, In Vitro and In Vivo Evaluation. Mol. Pharm. 2024, 21, 1170–1181. [Google Scholar] [CrossRef]
- Ejazi, S.A.; Louisthelmy, R.; Maisel, K. Mechanisms of Nanoparticle Transport across Intestinal Tissue: An Oral Delivery Perspective. ACS Nano 2023, 17, 13044–13061. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Yao, L.; Li, J.; Qin, X.; Qiu, Z.; Chen, W. Preparation of poly(lactide-co-glycolide) microspheres and evaluation of pharmacokinetics and tissue distribution of BDMC-PLGA-MS in rats. Asian J. Pharm. Sci. 2018, 13, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhu, Y.; Wei, X.; Chen, X.; Li, Y.; Zhu, Y.; Xia, J.; Huang, Y.; Huang, Y.; Wang, J.; et al. Nanoplateletsomes restrain metastatic tumor formation through decoy and active targeting in a preclinical mouse model. Acta Pharm. Sin. B 2022, 12, 3427–3447. [Google Scholar] [CrossRef] [PubMed]
- Zhong, L.; Liu, Y.; Xu, L.; Li, Q.; Zhao, D.; Li, Z.; Zhang, H.; Zhang, H.; Kan, Q.; Sun, J.; et al. Exploring the relationship of hyaluronic acid molecular weight and active targeting efficiency for designing hyaluronic acid-modified nanoparticles. Asian J. Pharm. Sci. 2019, 14, 521–530. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, H.; Gao, C.; Wang, Y.; Cheng, X.; Yang, Y.; Gou, Q.; Lei, L.; Chen, Y.; Wang, X.; et al. Development of a chitosan-modified PLGA nanoparticle vaccine for protection against Escherichia coli K1 caused meningitis in mice. J. Nanobiotechnol. 2021, 19, 69. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, K.; Tan, Y.; Wang, Q.; Li, J.; Mark, H.; Zhang, S. Synthesis and Characterization of Pure Copper Nanostructures Using Wood Inherent Architecture as a Natural Template. Nanoscale Res. Lett. 2018, 13, 119. [Google Scholar] [CrossRef]
- Chen, X.; Wan, Z.; Yang, L.; Song, S.; Fu, Z.; Tang, K.; Chen, L.; Song, Y. Exosomes derived from reparative M2-like macrophages prevent bone loss in murine periodontitis models via IL-10 mRNA. J. Nanobiotechnol. 2022, 20, 110. [Google Scholar] [CrossRef]
- Liu, Y.; Luo, J.; Liu, Y.; Liu, W.; Yu, G.; Huang, Y.; Yang, Y.; Chen, X.; Chen, T. Brain-Targeted Biomimetic Nanodecoys with Neuroprotective Effects for Precise Therapy of Parkinson’s Disease. ACS Cent. Sci. 2022, 8, 1336–1349. [Google Scholar] [CrossRef]
- Bianchi, M.B.; Zhang, C.; Catlin, E.; Sandri, G.; Calderón, M.; Larrañeta, E.; Donnelly, R.F.; Picchio, M.L.; Paredes, A.J. Bioadhesive eutectogels supporting drug nanocrystals for long-acting delivery to mucosal tissues. Mater. Today Bio 2022, 17, 100471. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, S.; Xu, Y.; Wang, P.; Li, S.; Liu, L.; Liu, M.; Jin, X. Etoposide Amorphous Nanopowder for Improved Oral Bioavailability: Formulation Development, Optimization, in vitro and in vivo Evaluation. Int. J. Nanomed. 2020, 15, 7601–7613. [Google Scholar] [CrossRef]
- Yang, S.; Liu, Z.; Wang, C.; Wen, S.; Meng, Q.; Huo, X.; Sun, H.; Ma, X.; Peng, J.; He, Z.; et al. Piperacillin enhances the inhibitory effect of tazobactam on β-lactamase through inhibition of organic anion transporter 1/3 in rats. Asian J. Pharm. Sci. 2019, 14, 677–686. [Google Scholar] [CrossRef]
- Yang, Y.; Tian, F.; Nie, D.; Liu, Y.; Qian, K.; Yu, M.; Wang, A.; Zhang, Y.; Shi, X.; Gan, Y. Rapid transport of germ-mimetic nanoparticles with dual conformational polyethylene glycol chains in biological tissues. Sci. Adv. 2020, 6, eaay9937. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Song, W.; Tian, F.; Dai, Z.; Zhu, Q.; Ahmad, E.; Guo, S.; Zhu, C.; Zhong, H.; Yuan, Y.; et al. Temperature- and rigidity-mediated rapid transport of lipid nanovesicles in hydrogels. Proc. Natl. Acad. Sci. USA 2019, 116, 5362–5369. [Google Scholar] [CrossRef]
- Bancaud, A.; Huet, S.; Daigle, N.; Mozziconacci, J.; Beaudouin, J.; Ellenberg, J. Molecular crowding affects diffusion and binding of nuclear proteins in heterochromatin and reveals the fractal organization of chromatin. EMBO J. 2009, 28, 3785–3798. [Google Scholar] [CrossRef] [PubMed]
- Elmotasem, H.; Awad, G.E.A. A stepwise optimization strategy to formulate in situ gelling formulations comprising fluconazole-hydroxypropyl-beta-cyclodextrin complex loaded niosomal vesicles and Eudragit nanoparticles for enhanced antifungal activity and prolonged ocular delivery. Asian J. Pharm. Sci. 2020, 15, 617–636. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Guan, H.; Li, J.; Li, M.; Sui, X.; Tian, B.; Dong, H.; Liu, B.; He, Z.; Li, N.; et al. Roles of effective stabilizers in improving oral bioavailability of naringenin nanocrystals: Maintenance of supersaturation generated upon dissolution by inhibition of drug dimerization. Asian J. Pharm. Sci. 2022, 17, 741–750. [Google Scholar] [CrossRef] [PubMed]
- Patel, K.; Patil, A.; Mehta, M.; Gota, V.; Vavia, P. Oral delivery of paclitaxel nanocrystal (PNC) with a dual Pgp-CYP3A4 inhibitor: Preparation, characterization and antitumor activity. Int. J. Pharm. 2014, 472, 214–223. [Google Scholar] [CrossRef]
- Ren, X.; Qi, J.; Wu, W.; Yin, Z.; Li, T.; Lu, Y. Development of carrier-free nanocrystals of poorly water-soluble drugs by exploring metastable zone of nucleation. Acta Pharm. Sin. B 2019, 9, 118–127. [Google Scholar] [CrossRef]
- Ma, J.; Yang, Y.; Sun, Y.; Sun, J. Optimization, characterization and in vitro/vivo evaluation of azilsartan nanocrystals. Asian J. Pharm. Sci. 2017, 12, 344–352. [Google Scholar] [CrossRef]
- Cheng, F.; Lian, L.; Li, L.; Rao, J.; Li, C.; Qi, T.; Zhang, Z.; Zhang, J.; Gao, Y. Hybrid Growth Modes of PbSe Nanocrystals with Oriented Attachment and Grain Boundary Migration. Adv. Sci. 2019, 6, 1802202. [Google Scholar] [CrossRef]
- Qiu, L.; Ge, L.; Long, M.; Mao, J.; Ahmed, K.S.; Shan, X.; Zhang, H.; Qin, L.; Lv, G.; Chen, J. Redox-responsive biocompatible nanocarriers based on novel heparosan polysaccharides for intracellular anticancer drug delivery. Asian J. Pharm. Sci. 2020, 15, 83–94. [Google Scholar] [CrossRef] [PubMed]
Independent Variables | Level | |||
---|---|---|---|---|
Temperature (°C) | 0 | 20 | 40 | 60 |
Ultrasonic time (min) | 0 | 5 | 10 | 15 |
Organic phase/aqueous phase (v/v) | 1:10 | 1:20 | 1:40 | 1:100 |
Stabilizer concentration (% w/v) | 0.15 | 0.10 | 0.05 | 0.025 |
Parameter | CUR-CCs (po) | CUR-NCs+ (po) | CUR-NCs− (po) | CUR-NCs @Lipo-CS |
---|---|---|---|---|
Tmax (h) | 0.361 ± 0.068 | 0.361 ± 0.068 | 0.333 | 0.5 |
t1/2 (h) | 3.182 ± 1.096 | 3.534 ± 1.467 | 5.796 ± 2.727 | 2.384 ± 0.44 |
Cmax (μg/L) | 92.785 ± 37.442 | 287.493 ± 26.511 | 208.871 ± 51.702 | 557.311 ± 85.443 |
AUC(0–t) (μg·h/L) | 189.899 ± 95.831 | 343.107 ± 81.295 | 233.062 ± 52.893 | 1030.536 ± 212.234 |
AUC(0–∞) (μg/L·h) | 209.477 ± 118.04 | 381.828 ± 99.082 | 305.729 ± 111.782 | 1047.894 ± 208.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, X.; Han, X.; Si, J.; Dong, C.; Ji, Z.; Zhao, S.; Wu, X.; Li, H.; Jin, X. Cationic Curcumin Nanocrystals Liposomes for Improved Oral Bioavailability: Formulation Development, Optimization, In Vitro and In Vivo Evaluation. Pharmaceutics 2024, 16, 1155. https://doi.org/10.3390/pharmaceutics16091155
Cheng X, Han X, Si J, Dong C, Ji Z, Zhao S, Wu X, Li H, Jin X. Cationic Curcumin Nanocrystals Liposomes for Improved Oral Bioavailability: Formulation Development, Optimization, In Vitro and In Vivo Evaluation. Pharmaceutics. 2024; 16(9):1155. https://doi.org/10.3390/pharmaceutics16091155
Chicago/Turabian StyleCheng, Xiang, Xiaoran Han, Jia Si, Cong Dong, Zhongjuan Ji, Shicong Zhao, Xiangting Wu, Haiyan Li, and Xiangqun Jin. 2024. "Cationic Curcumin Nanocrystals Liposomes for Improved Oral Bioavailability: Formulation Development, Optimization, In Vitro and In Vivo Evaluation" Pharmaceutics 16, no. 9: 1155. https://doi.org/10.3390/pharmaceutics16091155
APA StyleCheng, X., Han, X., Si, J., Dong, C., Ji, Z., Zhao, S., Wu, X., Li, H., & Jin, X. (2024). Cationic Curcumin Nanocrystals Liposomes for Improved Oral Bioavailability: Formulation Development, Optimization, In Vitro and In Vivo Evaluation. Pharmaceutics, 16(9), 1155. https://doi.org/10.3390/pharmaceutics16091155