Application of Nanotechnology and Phytochemicals in Anticancer Therapy
Abstract
:1. Introduction
2. Drug Delivery Strategies Using Nanotechnology
2.1. Drug Carriers Used in Advanced Nanotechnology
2.2. TGF-β Signaling-Based Nanotherapies
2.3. MAPK/PI3K/Wnt Signaling-Based Nanotherapies
Nanomedicine Name | Drug in Nanomedicine | Delivery System | Target Cancer | Experimental Model | Effect of Nanomedicine on Cancer | Ref. |
---|---|---|---|---|---|---|
Nanoliposomal siRNA | Small interfering RNA targeting B-Raf with V600E and AKT3 | Cationic nanoliposomes | Melanoma | Human melanoma cell lines; human fibroblasts | Decreased expression of B-Raf with V600E and AKT; decreased melanoma by 65% | [60] |
SFN-LNC | Sorafenib | Lipid nanocapsules | Glioblastoma | Human U87MG glioblastoma cell lines; mice with orthotopic U87MG human glioblastoma xenografts | Inhibited in vitro angiogenesis; decreased glioblastoma cell viability; decreased proliferating cells in tumor | [61] |
NH2-PS and NH2-Si NP | Amino-functionalized polystyrene and biodegradable silica | Amino-functionalized polystyrene NPs and amino-functionalized silica NPs | HCC | HCC cell lines | NH2-PS NPs trigger death of Huh7 and HepG2 cells by obstructing mTOR signaling and inducing lysosomal destabilization; NH2-Si enhances cell proliferation by activating mTOR signaling | [62] |
Iron oxide-based NPs | Magnetite core coated with carboxymethyldextran shell | Green fluorescent labeled iron oxide NPs (nano-screenMAG-CMX) and non-fluorescent magnetic particles (fluidMAG-MX) | Hepatoblastoma | Hepatic cell line (HepG2) | Induced lysosomal dysfunction; altered subcellular localizations of pmTOR and p53 proteins | [63] |
SPION NPs | MicroRNA (MIR376B) | AGO2 conjugated and anti-HER2 labeled SPIONs (SP-AH) | Breast cancer | HER2-positive breast cancer cell lines; xenograft nude mice model of breast cancer | Blocked autophagy; increased the efficacy of anticancer treatment | [64] |
Supramolecular NPs | PI103 and PI828 | Supramolecular nano-assembly using L-α-phosphatidylcholine, and DSPE-PEG [1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)] | Breast and ovarian cancers | 4T1 breast cancer and K-Ras (LSL/+)/PTEN (fl/fl) ovarian cancer models | Temporally sustained inhibition of phosphorylation of AKT, mTOR, S6K, and 4EBP in vivo; increased antitumor efficacy; abrogated insulin resistance | [67] |
NP-based pre-targeted system for the therapeutic delivery of BEZ235 | BEZ235 | Azide-functionalized BEZ235-encapsulated NPs | Non-Hodgkin’s lymphoma | Lymphoma cell lines | Improved in vivo and in vitro antitumor activity of BEZ235 by inhibiting the PI3K/mTOR pathway | [68] |
Lbl NP | AZD6244; PX-866 | Tumor targeting nanoscale drug formulation (layer-by-layer NPs) | TNBC; RAS-mutant lung tumor | Cancer cell lines (MDA-MB-231, Hep G2, KP7B, and OVCAR-3 cells) | Caused cytotoxicity in both the TNBC cell line and RAS-mutant lung tumor cell line; blocked tumor-specific phosphorylation of ERK and AKT | [70] |
Gold-chrysophanol NPs | Chrysophanol | PLGA NPs | Prostate cancer | LNCap prostate cancer cells | Induced apoptosis; increased ROS production; caused DNA damage; expressed differentially pro- and anti-apoptotic proteins; reduced tumor volume and weight | [71] |
PLGA NPs | PH-427 | PLGA NPs | Pancreatic cancer | MiaPaCa-2 pancreatic cancer model with mutant K-ras | Improved drug delivery and therapeutic efficacy against pancreatic cancer with mutant K-ras | [73] |
hGC33-modified NPs (hGC33-SFB-NP) | Sorafenib | Polyethylene glycol-b-PLGA polymer NPs | HCC | In vivo model of liver cancer | Inhibited growth and progression of liver cancer by targeting GPC3+ HCC cells; attenuated HCC cell migration; inhibited epithelial–mesenchymal transition | [74] |
2.4. PARP Signaling-Based Nanotherapies
2.5. Notch/HH Signaling-Based Nanotherapies
Nanomedicine Name | Drug in Nanomedicine | Delivery System | Target Cancer | Experimental Model | Effect of Nanomedicine on Cancer | Ref. |
---|---|---|---|---|---|---|
Silica NPs | γ-Secretase inhibitor | Mesoporous silica NPs functionalized with glucose moieties | Breast cancer | Human MCF7 and MDA-MB-231 breast cancer cell lines | Reduced cancer stem cell population | [90] |
PLGA NPs | α-Mangostin | PLGA NPs | Colorectal cancer | Human colorectal cancer (HCT116 and HT29) cell lines | Inhibited EMT, colony formation, cell viability, and induced apoptosis; suppressed Notch signaling pathway leading to inhibition of cancer stem-like cell population and self-renewal capacity | [91] |
Planetary ball-milled NPs | Thymoquine | Planetary ball-milled NPs coated with an RNA aptamer, A10 | Prostate cancer | Docetaxel-resistant C4-2B-R and LNCaP-R cells with high expression of HH signaling molecules | Inhibited HH signaling pathway, thereby suppressing prostate cancer progression | [92] |
NanoHHi | HPI-1 | Polymeric NP (PLGA-PEG) encapsulating HPI-1 | Medulloblastoma | Allografts derived from Ptch (−/+); p53 (−/−) mouse medulloblastomas; orthotopic Pa03C pancreatic cancer xenografts | Inhibited tumor growth; downregulated mGli1 and HH target genes | [93] |
High-density lipoprotein-mimetic NPs (eHNPs) | LDE225 | Apolipoprotein A1 and anti-CD15 incorporated eHNPs | Shh subtype of medulloblastoma | DAOY human medulloblastoma cells and PZp53 cells | Reduced cholesterol in Shh MB cells | [94] |
Biomimetic high-density lipoprotein NPs | Synthetic HDL NPs | High-density lipoprotein NPs | Medulloblastoma | In vitro studies using medulloblastoma cell lines | Depleted cholesterol in cancer cells; inhibited proliferation and colony formation; depleted cancer stem cell population | [95] |
PEI-SNAs | siRNA targeting Gli1 | Polyethylenimine-wrapped spherical nucleic acid NPs | Glioblastoma | Glioblastoma U87-MG cell lines | Silenced tumor-promoting HH pathway genes; decreased glioblastoma cell proliferation; promoted glioblastoma cell senescence; decreased metabolic activity and self-renewal ability of glioblastoma cells; promoted apoptosis | [96] |
NanoHHi | Gli1 | Polymeric NP-encapsulated delivery system | HCC | In vitro HCC cell lines; in vivo subcutaneous and orthotopic HCC xenografts nude mice | Inhibited invasion and proliferation of HCC cells; suppressed in vivo tumor growth; reduced systemic metastases | [97] |
2.6. Other Signaling-Based Nanotherapies
Nanomedicine Name | Drug in Nanomedicine | Delivery System | Target Cancer | Experimental Model | Effect of Nanomedicine on Cancer | Ref. |
---|---|---|---|---|---|---|
AuP NPs | Nanogold | Peanut-shaped gNPs | Ovarian cancer | In vitro study using SKOV-3 cells | Decreased proliferation and viability of ovarian cancer cells; induced autophagy and apoptosis; increased oxidative stress of cancer cells | [98] |
RNA NPs | Anti-miR21 | Chemically and thermodynamically stable RNA NPs | TNBC | In vivo and in vitro studies using TNBC and breast cancer stem-like cells | Reduced migration of cancer cells; inhibited miR21 expression; upregulated expression of tumor suppressors; efficiently inhibited tumor growth | [99] |
CF-EB/DART-dual-loaded NPs | Erlotinib (EB) and gamma-secretase inhibitor (GSI)-DAPT | PLA-based nano-platform | TNBC | In vitro studies using MDA-MB-231 cell line | Enhanced tumor penetration ability of drug; reduced side effects of drugs | [100] |
Nanographene sheets and SPION@silica nanospheres | SPION | Nanographene sheets and SPION@silica nanospheres | Breast cancer | In vitro study using MDA-MB 231 cancer cells | Enhanced apoptosis, necrosis, and oxidative stress induction in cancer cells; disrupted cell cycle phases; increased the levels of anticarcinogenic interleukins | [101] |
C-siPLK1-NP | Small interfering RNA (siRNA) against PLK1 | Cetuximab-conjugated NP | NSCLC | In vitro and in vivo studies using EGFR and NSCLC cells, A549 flank tumors, and an orthotopic lung tumor model | Reduced PLK1 expression; caused cell cycle arrest; induced reduction in tumor growth and cell death | [102] |
NanoATK | Arachidonyl trifluoromethyl ketone (ATK) | Nanoliposomal delivery system | Melanoma | Xenograft tumor model | Decreased cellular proliferation, triggered apoptosis, and inhibited melanoma xenograft tumor growth without animal weight loss; inhibited the STAT3, AKT, and cPLA2 pathways | [105] |
Nano-amorphous aspirin-loaded exosomes | Aspirin | Exosomes | Breast and colorectal cancers | Human colorectal adenocarcinoma HT29 cell line and human metastatic breast cancer MDA-MB-231 cell line | Enhanced cellular uptake, improved cytotoxicity of aspirin, increased apoptosis and autophagy, eradication of cancer stem cells, efficient delivery to in vivo tumors | [106] |
CuAuNCs | AMD3100 (also known as Plerixafor) | Gold nanoclusters | Breast cancer and lung metastasis | Mouse 4T1 orthotopic breast cancer model | Sensitive and accurate detection of CXCR4 in early-stage cancers; accurate imaging for early detection of breast cancer | [109] |
PexD | Doxorubicin and Adp-L1 | Sprayable bioresponsive gel | Melanoma | B16-F10 tumor-bearing mice | Inhibited local tumor recurrence and metastasis, induced tumor immunogenic cell death, promoted antitumor immune response, tracked and eliminated circulating tumor cells, impaired PD-1/PD-L1 pathway, restored the tumor-killing effect of cytotoxic T cells, improved tumor immune microenvironment | [113] |
IPI549@HMP | IPI549 (PI3Kγ inhibitor) | PEGylated HMnO2 (HMP)-bridged radioimmunotherapy nanoplatform | Cancer recurrence after surgery | Experimental model demonstrating the genomic landscape shaped by surgical resection and the effects on the tumor microenvironment | Suppressed/eradicated local residual and distant tumors and elicited strong immune memory effects to resist tumor rechallenge | [114] |
3. Approved Nanomedicines Currently Available for Anticancer Therapy
4. Phytochemicals Used in Anticancer Therapy
4.1. Phytochemicals against Inflammatory Microenvironment in Cancer
4.2. Phytochemicals against Postsurgical Recurrence of Cancer and Metastasis
5. Application of Nanotechnology and Phytochemicals in Clinical Trials for Anticancer Therapy
6. Current Challenges and Opportunities for Future Nanotherapeutic Strategies
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Cancer statistics for the year 2020: An overview. Int. J. Cancer 2021, 149, 778–789. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Tohme, S.; Simmons, R.L.; Tsung, A. Surgery for cancer: A trigger for metastases. Cancer Res. 2017, 77, 1548–1552. [Google Scholar] [CrossRef]
- Bu, L.L.; Yan, J.; Wang, Z.; Ruan, H.; Chen, Q.; Gunadhi, V.; Bell, R.B.; Zhen, G. Advances in drug delivery for post-surgical cancer treatment. Biomaterials 2019, 219, 119182. [Google Scholar] [CrossRef]
- Gavas, S.; Quazi, S.; Karpinski, T.M. Nanoparticles for cancer therapy: Current progress and challenges. Nanoscale Res. Lett. 2021, 16, 173. [Google Scholar] [CrossRef]
- Yao, Y.; Zhou, Y.; Liu, L.; Xu, Y.; Chen, Q.; Wang, Y.; Wu, S.; Deng, Y.; Zhang, J.; Shao, A. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Front. Mol. Biosci. 2020, 7, 193. [Google Scholar] [CrossRef]
- Gandhi, N.S.; Godeshala, S.; Koomoa-Lange, D.T.; Miryala, B.; Rege, K.; Chougule, M.B. Bioreducible poly(amino ethers) based mTOR siRNA delivery for lung cancer. Pharm. Res. 2018, 35, 188. [Google Scholar] [CrossRef]
- Riley, R.S.; June, C.H.; Langer, R.; Mitchell, M.J. Delivery technologies for cancer immunotherapy. Nat. Rev. Drug Discov. 2019, 18, 175–176. [Google Scholar] [CrossRef]
- Anand, U.; Dey, A.; Chandel, A.K.S.; Sanyal, R.; Mishra, A.; Pandey, D.K.; de Falco, V.; Upadhyay, A.; Kandimalla, R.; Chaudhary, A.; et al. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes Dis. 2022, 10, 1367–1401. [Google Scholar] [CrossRef]
- Prossomariti, A.; Piazzi, G.; Alquatti, C.; Ricciardiello, L. Are Wnt/β-Catenin and PI3K/AKT/mTORC1 distinct pathways in colorectal cancer? Cell. Mol. Gastroenterol. Hepatol. 2020, 10, 491–506. [Google Scholar] [CrossRef]
- Wilken, R.; Veena, M.S.; Wang, M.B.; Srivatsan, E.S. Curcumin: A review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Mol. Cancer 2011, 10, 12. [Google Scholar]
- Hamaya, S.; Oura, K.; Morishita, A.; Masaki, T. Cisplatin in liver cancer therapy. Int. J. Mol. Sci. 2023, 24, 10858. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Hu, M.D.; Deng, X.F.; Li, B. Genistein reinforces the inhibitory effect of Cisplatin on liver cancer recurrence and metastasis after curative hepatectomy. Asian Pac. J. Cancer Prev. 2013, 14, 759–764. [Google Scholar] [CrossRef]
- Sun, Y.; Zhou, Y.Q.; Liu, Y.K.; Zhang, H.Q.; Hou, G.G.; Meng, Q.G.; Hou, Y. Potential anti-neuroinflammatory NF-кB inhibitors based on 3,4-dihydronaphthalen-1(2H)-one derivatives. J. Enzym. Inhib. Med. Chem. 2020, 35, 1631–1640. [Google Scholar] [CrossRef] [PubMed]
- Sanoff, H.K.; Moon, D.H.; Moore, D.T.; Boles, J.; Bui, C.; Blackstock, W.; O’Neil, B.H.; Subramaniam, S.; McRee, A.J.; Carlson, C.; et al. Phase I/II trial of nano-camptothecin CRLX101 with capecitabine and radiotherapy as neoadjuvant treatment for locally advanced rectal cancer. Nanomedicine 2019, 18, 189–195. [Google Scholar] [CrossRef]
- Gajbhiye, K.R.; Salve, R.; Narwade, M.; Sheikh, A.; Kersharani, P.; Gajbhiye, V. Lipid polymer hybrid nanoparticles: A custom tailored next-generation approach for cancer therapeutics. Mol. Cancer 2023, 22, 160. [Google Scholar] [CrossRef]
- Parveen, S.; Gupta, P.; Kumar, S.; Banerjee, M. Lipid polymer hybrid nanoparticles as potent vehicles for drug delivery in nanoparticles. Med. Drug Discov. 2023, 20, 100165. [Google Scholar] [CrossRef]
- Ramasamy, T.; Haidar, Z.S.; Tran, T.H.; Choi, J.Y.; Jeong, J.H.; Shin, B.S.; Choi, H.G.; Yong, C.S.; Kim, J.O. Layer-by-layer assembly of liposomal nanoparticles with PEGylated polyelectrolytes enhances systemic delivery of multiple anticancer drugs. Acta Biomater. 2014, 10, 5116–5127. [Google Scholar] [CrossRef] [PubMed]
- Marin, E.; Tapeinos, C.; Sarasua, J.R.; Larranaga, A. Exploiting the layer-by-layer nanoarchitectonics for the fabrication of polymer capsules: A toolbox to provide multifunctional properties to target complex pathologies. Adv. Colloid Interface Sci. 2022, 304, 102680. [Google Scholar] [CrossRef]
- Urimi, D.; Hellsing, M.; Mahmoudi, N.; Söderberg, C.; Widenbring, R.; Gedda, L.; Edwards, K.; Loftsson, T.; Schipper, N. Structural characterization study of a lipid nanocapsule formulation intended for drug delivery applications using small-angle scattering techniques. Mol. Pharm. 2022, 19, 1068–1077. [Google Scholar] [CrossRef]
- Dabholkar, N.; Waghule, T.; Rapalli, V.K.; Gorantla, S.; Alexander, A.; Saha, R.N.; Singhvi, G. Lipid shell nanocapsules as smart generation lipid nanocarriers. J. Mol. Liq. 2021, 339, 117145. [Google Scholar] [CrossRef]
- Moura, R.P.; Pacheco, C.; Pêgo, A.P.; des Rieux, A.; Sarmento, B. Lipid nanocapsules to enhance drug bioavailability to the central nervous system. J. Control. Release 2020, 322, 390–400. [Google Scholar] [CrossRef] [PubMed]
- Gujrati, M.; Malamas, A.; Shin, T.; Jin, E.; Sun, Y.; Lu, Z.R. Multifunctional cationic lipid-based nanoparticles facilitate endosomal escape and reduction-triggered cytosolic siRNA release. Mol. Pharm. 2014, 11, 2734–2744. [Google Scholar] [CrossRef]
- Sun, D.; Sahu, B.; Gao, S.; Schur, R.M.; Vaidya, A.M.; Maeda, A.; Palczewski, K.; Lu, Z.R. Targeted multifunctional lipid eco plasmid DNA nanoparticles as efficient non-viral gene therapy for Leber’s congenital amaurosis. Mol. Ther. Nucleic Acids 2017, 7, 42–52. [Google Scholar] [CrossRef]
- Jorgensen, A.M.; Wibel, R.; Bernkop-Schnurch, A. Biodegradable cationic and ionizable cationic lipids: A roadmap for safer pharmaceutical excipients. Small 2023, 19, 2206968. [Google Scholar] [CrossRef]
- Jasiwal, M.; Dudhe, R.; Sharma, P.K. Nanoemulsion: An advanced mode of drug delivery system. 3 Biotech 2015, 5, 123–127. [Google Scholar] [CrossRef]
- Mushtaq, A.; Wani, S.M.; Malik, A.R.; Gull, A.; Ramniwas, S.; Nayik, G.A.; Ercisli, S.; Marc, R.A.; Ullah, R.; Bari, A. Recent insights into nanoemulsions: Their preparation, properties and applications. Food Chem. X 2023, 18, 100684. [Google Scholar] [CrossRef]
- de Groot, A.M.; Thanki, K.; Gangloff, M.; Falkenberg, E.; Zeng, X.; van Bijnen, D.C.J.; van Eden, W.; Franzyk, H.; Nielsen, H.M.; Broere, F.; et al. Immunogenicity testing of lipidoids in vitro and in silico: Modulating lipidoid-mediated TLR4 activation by nanoparticle design. Mol. Ther. Nucleic Acids 2018, 11, 159–169. [Google Scholar] [CrossRef]
- Khare, P.; Dave, K.M.; Kamte, Y.S.; Manoharan, M.A.; O’Donnell, L.A.; Manickam, D.S. Development of lipidoid nanoparticles for siRNA delivery to neural cells. AAPS J. 2021, 24, 8. [Google Scholar] [CrossRef] [PubMed]
- Zielińska, A.; Carreiró, F.; Oliveira, A.M.; Neves, A.; Pires, B.; Venkatesh, D.N.; Durazzo, A.; Lucarini, M.; Eder, P.; Silva, A.M.; et al. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology. Molecules 2020, 25, 3731. [Google Scholar] [CrossRef]
- Yeh, Y.C.; Creran, B.; Rotello, V.M. Gold nanoparticles: Preparation, properties, and applications in bionanotechnology. Nanoscale 2012, 4, 1871–1880. [Google Scholar] [CrossRef]
- Arvizo, R.; Bhattacharya, R.; Mukherjee, P. Gold nanoparticles: Opportunities and challenges in nanomedicine. Expert Opin. Drug Deliv. 2010, 6, 753–763. [Google Scholar] [CrossRef]
- Tripathi, R.M.; Chung, S.J. Biogenic nanomaterials: Synthesis, characterization, growth mechanism, and biomedical applications. J. Microbiol. Methods 2019, 157, 65–80. [Google Scholar] [CrossRef]
- Ferdous, Z.; Nemmar, A. Health impact of silver nanoparticles: A review of the biodistribution and toxicity following various routes of exposure. Int. J. Mol. Sci. 2020, 7, 2375. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Pi, J.; Cai, J. The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorg. Chem. Appl. 2018, 5, 1062562. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, J.W.; Martinez, E.; Louka, P.; Wingett, D.G. Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opin. Drug Deliv. 2010, 7, 1063–1077. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Zafar, H.; Zia, M.; Haq, I.U.; Phull, A.R.; Ali, J.S.; Hussain, A. Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol. Sci. Appl. 2016, 9, 49–67. [Google Scholar] [CrossRef]
- Malhotra, N.; Lee, J.S.; Liman, R.A.D.; Ruallo, J.M.S.; Villaflores, O.B.; Ger, T.R.; Hsiao, C.D. Potential toxicity of iron oxide magnetic nanoparticles: A review. Molecules 2020, 25, 3159. [Google Scholar] [CrossRef] [PubMed]
- Dourado, D.; Miranda, J.A.; de Oliveira, M.C.; Freire, D.T.; Xavier-Júnior, F.H.; Paredes-Gamero, E.J.; Alencar, É.D.N. Recent trends in curcumin-containing inorganic-based nanoparticles intended for in vivo cancer therapy. Pharmaceutics 2024, 16, 177. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhao, J.; Wang, W.; Geng, H.; Wang, Y.; Gao, B. Current advances in the application of nanomedicine in bladder cancer. Biomed. Pharmcother. 2023, 157, 14062. [Google Scholar] [CrossRef]
- Poshna, C.; Mailapalli, D.M. Modeling the particle size of nanomaterials synthesized in a planetary ball mill. OpenNano 2023, 14, 100191. [Google Scholar] [CrossRef]
- Dvornik, M.; Mikhailenko, E. The influence of the rotation frequency of a planetary ball mill on the limiting value of the specific surface area of the WC and Co nanopowders. Adv. Powder Technol. 2020, 31, 3937–3946. [Google Scholar] [CrossRef]
- Sen, S.; Xavier, J.; Kumar, N.; Ahmad, M.Z.; Ranjan, O.P. Exosomes as natural nanocarrier-based drug delivery system: Recent insights and future perspectives. 3 Biotech 2023, 3, 101. [Google Scholar] [CrossRef] [PubMed]
- Ulijn, R.V.; Bibi, N.; Jayawarna, V.; Thornton, P.D.; Todd, S.J.; Mart, R.J.; Smith, A.M.; Gough, J.E. Bioresponsive hydrogels. Mater. Today 2007, 10, 40–48. [Google Scholar] [CrossRef]
- Wilson, A.N.; Guiseppi-Elie, A. Bioresponsive hydrogels. Adv. Health Mater. 2013, 4, 520–532. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Thayumanavan, S. Synthesis and characterization of amine-functionalized polystyrene nanoparticles. Macromolecules 2005, 38, 5886–5891. [Google Scholar] [CrossRef]
- Machado, A.J.T.; Mataribu, B.; Serrão, C.; da Silva Silvestre, L.; Farias, D.F.; Bergami, E.; Corsi, I.; Marques-Santos, L.F. Single and combined toxicity of amino-functionalized polystyrene nanoparticles with potassium dichromate and copper sulfate on brine shrimp Artemia franciscana larvae. Environ. Sci. Pollut. Res. Int. 2021, 28, 45317–45334. [Google Scholar] [CrossRef]
- Hata, A.; Chen, Y.G. TGF-β Signaling from Receptors to Smads. Cold Spring Harb. Perspect. Biol. 2016, 8, a022061. [Google Scholar] [CrossRef]
- Baba, A.B.; Rah, B.; Bhat, G.R.; Mushtaq, I.; Parveen, S.; Hassan, R.; Zargar, M.H.; Afroze, D. Transforming growth factor-beta (TGF-β) signaling in cancer—A betrayal within. Front. Pharmacol. 2022, 13, 791272. [Google Scholar] [CrossRef]
- Parvani, J.G.; Gujrati, M.D.; Mack, M.A.; Schiemann, W.P.; Lu, Z.R. Silencing β3 integrin by targeted ECO/siRNA nanoparticles inhibits EMT and metastasis of triple-negative breast cancer. Cancer Res. 2015, 75, 2316–2325. [Google Scholar] [CrossRef]
- Liu, Y.; Xie, X.; Hou, X.; Shen, J.; Shi, J.; Chen, H.; He, Y.; Wang, Z.; Feng, N. Functional oral nanoparticles for delivering silibinin and cryptotanshinone against breast cancer lung metastasis. J. Nanobiotechnol. 2020, 18, 83. [Google Scholar] [CrossRef]
- Guo, D.D.; Li, Q.N.; Li, C.M.; Bi, H.S. Zinc oxide nanoparticles inhibit murine photoreceptor-derived cell proliferation and migration via reducing TGF-β and MMP-9 expression in vitro. Cell Prolif. 2015, 48, 198–208. [Google Scholar] [CrossRef] [PubMed]
- Casey, L.M.; Pearson, R.M.; Hughes, K.R.; Liu, J.; Rose, J.A.; North, M.G.; Wang, L.Z.; Lei, M.; Miller, S.D.; Shea, L.D. Conjugation of transforming growth factor beta to antigen-loaded poly(lactide-co-glycolide) nanoparticles enhances efficiency of antigen-specific tolerance. Bioconjugate Chem. 2018, 29, 813–823. [Google Scholar] [CrossRef] [PubMed]
- Morry, J.; Ngamcherdtrakul, W.; Gu, S.; Goodyear, S.M.; Castro, D.J.; Reda, M.M.; Sangvanich, T.; Yantasee, W. Dermal delivery of HSP47 siRNA with NOX4-modulating mesoporous silica-based nanoparticles for treating fibrosis. Biomaterials 2015, 66, 41–52. [Google Scholar] [CrossRef]
- Santarpia, L.; Lippman, S.M.; El-Naggar, A.K. Targeting the MAPK-RAS-RAF signaling pathway in cancer therapy. Expert Opin. Ther. Targets 2012, 16, 103–119. [Google Scholar] [CrossRef]
- Hu, J.-H.; Yang, J.-P.; Liu, L.; Li, C.-F.; Wang, L.-N.; Ji, F.-H.; Cheng, H. Involvement of CX3CR1 in bone cancer pain through the activation of microglia p38 MAPK pathway in the spinal cord. Brain Res. 2012, 1465, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Kim, S.C.; Yu, T.; Yi, Y.-S.; Rhee, M.H.; Sung, G.-H.; Yoo, B.C.; Cho, J.Y. Functional roles of p38 mitogen-activated protein kinase in macrophage-mediated inflammatory responses. Mediat. Inflamm. 2014, 2014, 352371. [Google Scholar] [CrossRef]
- Pal, I.; Mandal, M. PI3K and Akt as molecular targets for cancer therapy: Current clinical outcomes. Acta Pharmacol. Sin. 2012, 33, 1441–1458. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X. Targeting the Wnt/β-catenin signaling pathway in cancer. J. Hematol. Oncol. 2020, 13, 165. [Google Scholar] [CrossRef]
- Tran, M.A.; Gowda, R.; Sharma, A.; Park, E.J.; Adair, J.; Kester, M.; Smith, N.B.; Robertson, G.P. Targeting V600EB-Raf and Akt3 using nanoliposomal-small interfering RNA inhibits cutaneous melanocytic lesion development. Cancer Res. 2008, 68918, 7638–7649. [Google Scholar] [CrossRef]
- Clavreul, A.; Roger, E.; Pourbaghi-Masouleh, M.; Lemaire, L.; Tétaud, C.; Menei, P. Development and characterization of sorafenib-loaded lipid nanocapsules for the treatment of glioblastoma. Drug Deliv. 2018, 25, 1756–1765. [Google Scholar] [CrossRef] [PubMed]
- Lunova, M.; Prokhorov, A.; Jirsa, M.; Hof, M.; Olżyńska, A.; Jurkiewicz, P.; Kubinova, S.; Kubinová, S.; Lunov, O.; Dejneka, A. Nanoparticle core stability and surface functionalization drive the mTOR signaling pathway in hepatocellular cell lines. Sci. Rep. 2017, 7, 16049. [Google Scholar] [CrossRef]
- Uzhytchak, M.; Smolková, B.; Lunova, M.; Jirsa, M.; Frtús, A.; Kubinová, S.; Dejneka, A.; Lunov, O. Iron oxide nanoparticle-induced autophagic flux is regulated by interplay between p53-mTOR axis and Bcl-2 signaling in hepatic cells. Cells 2020, 9, 1015. [Google Scholar] [CrossRef] [PubMed]
- Unal, O.; Akkoc, Y.; Kocak, M.; Nalbat, E.; Dogan-Ekici, A.I.; Acar, H.Y.; Gozuacik, D. Treatment of breast cancer with autophagy inhibitory microRNAs carried by AGO2-conjugated nanoparticles. J. Nanobiotech. 2020, 18, 65. [Google Scholar] [CrossRef]
- Huijts, C.M.; Santegoets, S.J.; de Jong, T.D.; Verheul, H.M.; de Gruijl, T.D.; van der Vilet, H.J. Immunological effects of everolimus in patients with metastatic renal cell cancer. Int. J. Immunopathol. Pharmacol. 2017, 30, 341–342. [Google Scholar] [CrossRef]
- Kong, N.; Tao, W.; Ling, X.; Wang, J.; Xiao, Y.; Shi, S.; Ji, X.; Shajii, A.; Gan, S.T.; Kim, N.Y.; et al. Synthetic mRNA nanoparticle-mediated restoration of p53 tumor suppressor sensitizes p53-deficient cancers to mTOR inhibition. Sci. Transl. Med. 2019, 11, eaaw1565. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, A.A.; Roy, B.; Rao, P.S.; Wyant, G.A.; Mahmoud, A.; Ramachandran, M.; Sengupta, P.; Goldman, A.; Kotamraju, V.R.; Basu, S.; et al. Sengupta. Supramolecular nanoparticles that target phosphoinositide-3-kinase overcome insulin resistance and exert pronounced antitumor efficacy. Cancer Res. 2013, 73, 6987–6997. [Google Scholar] [CrossRef] [PubMed]
- Au, K.M.; Wang, A.Z.; Park, S.I. Pretargeted delivery of PI3K/mTOR small-molecule inhibitor-loaded nanoparticles for treatment of non-Hodgkin’s lymphoma. Sci. Adv. 2020, 6, eaaz9798. [Google Scholar] [CrossRef]
- Wu, Y.Y.; Wu, H.C.; Wu, J.E.; Huang, K.Y.; Yang, S.C.; Chen, S.X.; Tsao, C.J.; Hsu, K.F.; Chen, Y.L.; Hong, T.M. The dual PI3K/mTOR inhibitor BEZ235 restricts the growth of lung cancer tumors regardless of EGFR status, as a potent accompanist in combined therapeutic regimens. J. Exp. Clin. Cancer Res. 2019, 38, 282. [Google Scholar] [CrossRef]
- Dreaden, E.C.; Kong, Y.W.; Morton, S.W.; Correa, S.; Choi, K.Y.; Shopsowitz, K.E.; Renggli, K.; Drapkin, R.; Yaffe, M.B.; Hammond, P.T. Tumor-targeted synergistic blockade of MAPK and PI3K from a layer-by-layer nanoparticle. Clin. Cancer Res. 2015, 21, 4410–4419. [Google Scholar] [CrossRef]
- Lu, L.; Li, K.; Mao, Y.H.; Qu, H.; Yao, B.; Zhong, W.W.; Ma, B.; Wang, Z.Y. Gold-chrysophanol nanoparticles suppress human prostate cancer progression through inactivating AKT expression and inducing apoptosis and ROS generation in vitro and in vivo. Int. J. Oncol. 2017, 51, 1089–1103. [Google Scholar] [CrossRef]
- Yuan, J.; Dong, X.; Yap, J.; Hu, J. The MAPK and AMPK signalings: Interplay and implication in targeted cancer therapy. J. Hematol. Oncol. 2020, 13, 113. [Google Scholar] [CrossRef]
- Lucero-Acuña, A.; Jeffer, J.J.; Abril, E.R.; Nagle, R.B.; Guzman, R.; Pagel, M.D.; Meuillet, E.M. Nanoparticle delivery of an AKT/PDK1 inhibitor improves the therapeutic effect in pancreatic cancer. Int. J. Nanomed. 2014, 9, 5653–5665. [Google Scholar] [CrossRef]
- Shen, J.; Cai, W.; Ma, Y.; Xu, R.; Huo, Z.; Song, L.; Qiu, X.; Zhang, Y.; Li, A.; Cao, W.; et al. hGC33-modified and Sorafenib-loaded nanoparticles have a synergistic anti-hepatoma effect by inhibiting Wnt signaling pathway. Nanoscale Res. Lett. 2020, 15, 220. [Google Scholar] [CrossRef]
- Morales, J.; Li, L.; Fattah, F.J.; Dong, Y.; Bey, E.A.; Patel, M.; Gao, J.; Boothman, D.A. Review of poly (ADP-ribose) polymerase (PARP) mechanisms of action and rationale for targeting in cancer and other diseases. Crit. Rev. Eukaryot. Gene Expr. 2014, 24, 15–28. [Google Scholar] [CrossRef]
- Wang, Y.; Luo, W.; Wang, Y. PARP-1 and its associated nucleases in DNA damage response. DNA Repair 2019, 81, 102651. [Google Scholar] [CrossRef]
- Götting, I.; Jendrossek, V.; Matschke, J. A new twist in protein kinase B/Akt signaling: Role of altered cancer cell metabolism in AKT-mediated therapy resistance. Int. J. Mol. Sci. 2020, 21, 8563. [Google Scholar] [CrossRef]
- Zhang, D.; Baldwin, P.; Leal, A.S.; Carapellucci, S.; Sridhar, S.; Liby, K.T. A nano-liposome formulation of the PARP inhibitor Talazoparib enhances treatment efficacy and modulates immune cell populations in mammary tumors of BRCA-deficient mice. Theranostics 2019, 9, 6224–6238. [Google Scholar] [CrossRef]
- van de Ven, A.L.; Tangutoori, S.; Baldwin, P.; Qiao, J.; Gharagouzloo, C.; Seitzer, N.; Clohessy, J.G.; Makrigiorgos, G.M.; Cormack, R.; Pandolfi, P.P.; et al. Nanoformulation of Olaparib amplifies PARP inhibition and sensitizes PTEN/TP53-deficient prostate cancer to radiation. Mol. Cancer Ther. 2017, 16, 1279–1289. [Google Scholar] [CrossRef]
- Gonzales, J.; Kossatz, S.; Roberts, S.; Pirovano, G.; Brand, C.; Pérez-Medina, C.; Donabedian, P.; de la Cruz, M.J.; Mulder, W.J.M.; Reiner, T. Nanoemulsion-based delivery of fluorescent PARP inhibitors in mouse models of small cell lung cancer. Bioconjugate Chem. 2018, 29, 3776–3782. [Google Scholar] [CrossRef]
- Haynes, B.; Gajan, A.; Nangia-Makker, P.; Shekhar, M.P. RAD6B is a major mediator of triple negative breast cancer cisplatin resistance: Regulation of translesion synthesis/Fanconi anemia crosstalk and BRCA1 independence. Biochim. Biophys. Acta Mol. Basis Dis. 2021, 1866, 165561. [Google Scholar] [CrossRef]
- Haynes, B.; Zhang, Y.; Liu, F.; Li, J.; Petit, S.; Kothayer, H.; Bao, X.; Westwell, A.D.; Mao, G.; Shekar, M.P.V. Gold nanoparticle conjugated Rad6 inhibitor induces cell death in triple-negative breast cancer cells by inducing mitochondrial dysfunction and PARP-1 hyperactivation: Synthesis and characterization. Nanomedicine 2016, 12, 745–757. [Google Scholar] [CrossRef]
- Mensah, L.B.; Morton, S.W.; Li, J.; Xiao, H.; Quadir, M.A.; Elias, K.M.; Penn, E.; Richson, A.K.; Ghoroghchian, P.P.; Liu, J.; et al. Layer-by-layer nanoparticles for novel delivery of cisplatin and PARP inhibitors for platinum-based drug resistance therapy in ovarian cancer. Bioeng. Transl. Med. 2019, 4, e10131. [Google Scholar] [CrossRef]
- Goldberg, M.S.; Xing, D.; Ren, Y.; Orsulic, S.; Bhatia, S.N.; Sharp, P.A. Nanoparticle-mediated delivery of siRNA targeting Parp1 extends survival of mice bearing tumors derived from Brca1-deficient ovarian cancer cells. Proc. Natl. Acad. Sci. USA 2011, 108, 745–750. [Google Scholar] [CrossRef]
- Magalhães, J.A.; Arruda, D.C.; Baptista, M.S.; Tada, D.B. Co-encapsulation of methylene blue and PARP-Inhibitor into poly(lactic-co-glycolic acid) nanoparticles for enhanced PDT of cancer. Nanomaterials 2021, 11, 1514. [Google Scholar] [CrossRef]
- Jabir, M.; Sahib, U.I.; Taqi, Z.; Tasha, A.; Sulaiman, G.; Albukhaty, S.; Al-Shammari, A.; Alwahibi, M.; Soliman, D.; Dewir, Y.H.; et al. Linalool-loaded glutathione-modified gold nanoparticles conjugated with CALNN peptide as apoptosis inducer and NF-κB translocation inhibitor in SKOV-3 cell line. Int. J. Nanomed. 2020, 15, 9025–9047. [Google Scholar] [CrossRef]
- Yousefi, H.; Bahramy, A.; Zafari, N.; Delavar, M.R.; Nguyen, K.; Haghi, A.; Kandelouei, T.; Vittori, C.; Jazireian, P.; Maleki, S.; et al. Notch signaling pathway: A comprehensive prognostic and gene expression profile analysis in breast cancer. BMC Cancer 2022, 22, 1282. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Y.; Kong, D.; Sarkar, F.H. The role of notch signaling pathway in epithelial-mesenchymal transition (EMT) during development and tumor aggressiveness. Curr. Drug Targets 2010, 11, 745–751. [Google Scholar] [CrossRef]
- Jia, Y.; Wang, Y.; Xie, J. The Hedgehog pathway: Role in cell differentiation, polarity and proliferation. Arch. Toxicol. 2015, 89, 179–191. [Google Scholar] [CrossRef]
- Mamaeva, V.; Niemi, R.; Beck, M.; Özliseli, E.; Desai, D.; Landor, S.; Gronroos, T.; Kronqvist, P.; Pettersen, I.K.N.; McCormack, E.; et al. Inhibiting notch activity in breast cancer stem cells by glucose functionalized nanoparticles carrying γ-secretase inhibitors. Mol. Ther. 2016, 24, 926–936. [Google Scholar] [CrossRef]
- Boinpelly, V.C.; Verma, R.K.; Srivastav, S.; Srivastava, R.K.; Shankar, S. α-Mangostin-encapsulated PLGA nanoparticles inhibit colorectal cancer growth by inhibiting Notch pathway. J. Cell. Mol. Med. 2020, 24, 11343–11354. [Google Scholar] [CrossRef]
- Singh, S.K.; Gordetsky, J.B.; Bae, S.; Acosta, E.P.; Lillard, J.W., Jr.; Singh, R. Selective targeting of the hedgehog signaling pathway by pbm nanoparticles in docetaxel-resistant prostate cancer. Cells 2020, 9, 1976. [Google Scholar] [CrossRef]
- Chenna, V.; Hu, C.; Pramanik, D.; Aftab, B.T.; Karikari, C.; Campbell, N.R.; Hong, S.-M.; Zhao, M.; Rudek, M.A.; Khan, S.R.; et al. A polymeric nanoparticle encapsulated small-molecule inhibitor of Hedgehog signaling (NanoHHI) bypasses secondary mutational resistance to smoothened antagonists. Mol. Cancer Ther. 2012, 11, 165–173. [Google Scholar] [CrossRef]
- Kim, J.; Dey, A.; Malhotra, A.; Liu, J.; Ahn, S.I.; Sei, Y.J.; Kenney, A.M.; Macdonald, T.J.; Kim, Y. Engineered biomimetic nanoparticle for dual targeting of the cancer stem-like cell population in sonic hedgehog medulloblastoma. Proc. Natl. Acad. Sci. USA 2020, 117, 24205–24212. [Google Scholar] [CrossRef]
- Bell, J.B.; Rink, J.S.; Eckerdt, F.; Clymer, J.; Goldman, S.; Thaxton, C.S.; Platanias, L.C. HDL nanoparticles targeting sonic hedgehog subtype medulloblastoma. Sci. Rep. 2018, 8, 1211. [Google Scholar] [CrossRef]
- Melamed, J.R.; Ioele, S.A.; Hannum, A.J.; Ullman, V.M.; Day, E.S. Polyethylenimine-spherical nucleic acid nanoparticles against gli1 reduce the chemoresistance and stemness of glioblastoma cells. Mol. Pharm. 2018, 15, 5135–5145. [Google Scholar] [CrossRef]
- Xu, Y.; Chenna, V.; Hu, C.; Sun, H.X.; Khan, M.; Bai, H.; Yang, X.R.; Zhu, Q.F.; Sun, Y.F.; Maitra, A.; et al. Polymeric nanoparticle-encapsulated hedgehog pathway inhibitor HPI-1 (NanoHHI) inhibits systemic metastases in an orthotopic model of human hepatocellular carcinoma. Clin. Cancer Res. 2012, 18, 1291–1302. [Google Scholar] [CrossRef]
- Piktel, E.; Ościłowska, I.; Suprewicz, Ł.; Depciuch, J.; Marcińczyk, N.; Chabielska, E.; Wolak, P.; Wollny, T.; Janion, M.; Parlinska-Wotjan, M.; et al. ROS-mediated apoptosis and autophagy in ovarian cancer cells treated with peanut-shaped gold nanoparticles. Int. J. Nanomed. 2021, 16, 1993–2011. [Google Scholar] [CrossRef]
- Yin, H.; Xiong, G.; Guo, S.; Xu, C.; Xu, R.; Guo, P.; Shu, D. Delivery of anti-miRNA for triple-negative breast cancer therapy using RNA nanoparticles targeting stem cell marker CD133. Mol. Ther. 2019, 27, 1252–1261. [Google Scholar] [CrossRef]
- Wan, X.; Liu, C.; Lin, Y.; Fu, J.; Lu, G.; Lu, Z. pH sensitive peptide functionalized nanoparticles for co-delivery of erlotinib and DAPT to restrict the progress of triple-negative breast cancer. Drug Deliv. 2019, 26, 470–480. [Google Scholar] [CrossRef]
- Ghaemi, B.; Hajipour, M.J. Tumor acidic environment directs nanoparticle impacts on cancer cells. J. Colloid Interface Sci. 2023, 634, 684–692. [Google Scholar] [CrossRef] [PubMed]
- Reda, M.; Ngamcherdtrakul, W.; Gu, S.; Bejan, D.S.; Siriwon, N.; Gray, J.W.; Yantasee, W. PLK1 and EGFR targeted nanoparticle as a radiation sensitizer for non-small cell lung cancer. Cancer Lett. 2019, 467, 9–18. [Google Scholar] [CrossRef]
- Xu, H.; Sun, Y.; Zeng, L.; Li, Y.; Hu, S.; He, S.; Chen, H.; Zou, Q.; Luo, B. Inhibition of cytosolic phospholipase A2 alpha increases chemosensitivity in cervical carcinoma through suppressing β-catenin signaling. Cancer Biol. Ther. 2019, 20, 912–921. [Google Scholar] [CrossRef]
- Tunset, H.M.; Feuerherm, A.J.; Selvik, L.M.; Johansen, B.; Moestue, S.A. Cytosolic phospholipase A2 alpha regulates TLR signaling and migration in metastatic 4T1 cells. Int. J. Mol. Sci. 2019, 20, 4800. [Google Scholar] [CrossRef]
- Gowda, R.; Dinavahi, S.S.; Iyer, S.; Banerjee, S.; Neves, R.I.; Pameijer, C.R.; Robertson, G.P. Nanoliposomal delivery of cytosolic phospholipase A(2) inhibitor arachidonyl trimethyl ketone for melanoma treatment. Nanomedicine 2018, 14, 863–873. [Google Scholar] [CrossRef]
- Tran, P.H.L.; Wang, T.; Yin, W.; Tran, T.T.D.; Nguyen, T.N.G.; Lee, B.J.; Duan, W. Aspirin-loaded nanoexosomes as cancer therapeutics. Int. J. Pharm. 2019, 572, 118786. [Google Scholar] [CrossRef]
- Sanaei, M.J.; Pourbagheri-Sigaroodi, A.; Kaveh, V.; Abolghasemi, H.; Ghaffari, S.H.; Momeny, M.; Bashash, D. Recent advances in immune checkpoint therapy in non-small cell lung cancer and opportunities for nanoparticle-based therapy. Eur. J. Pharmacol. 2021, 909, 174404. [Google Scholar] [CrossRef]
- Lao, Y.; Shen, D.; Zhang, W.; He, R.; Jiang, M. Immune checkpoint inhibitors in cancer therapy-how to overcome drug resistance? Cancers 2022, 14, 3575. [Google Scholar] [CrossRef]
- Zhao, Y.; Detering, L.; Sultan, D.; Cooper, M.L.; You, M.; Cho, S.; Meier, S.L.; Luehmann, H.; Sun, G.; Rettig, M.; et al. Gold nanoclusters doped with (64)Cu for CXCR4 positron emission tomography imaging of breast cancer and metastasis. ACS Nano 2016, 10, 5959–5970. [Google Scholar] [CrossRef]
- Sabit, H.; Abdel-Hakem, M.; Shoala, T.; Abdel-Ghany, S.; Abdel-Latif, M.M.; Almulhim, J.; Mansy, M. Nanocarriers: A reliable tool for the delivery of anticancer drugs. Pharmaceutics 2022, 14, 1566. [Google Scholar] [CrossRef]
- Thuru, X.; Magnez, R.; El-Bouazzati, H.; Vergoten, G.; Quesnel, B.; Bailly, C. Drug repurposing to enhance antitumor response to PD-1/PD-L1 immune checkpoint inhibitors. Cancers 2022, 14, 3368. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, N.; Lapointe, R.; Lerouge, S. Biomaterials for enhanced immunotherapy. APL Bioeng. 2022, 6, 041502. [Google Scholar] [CrossRef]
- Zhao, J.; Ye, H.; Lu, Q.; Wang, K.; Chen, X.; Song, J.; Wang, H.; Lu, Y.; Cheng, M.; He, Z.; et al. Inhibition of post-surgery tumour recurrence via a sprayable chemo-immunotherapy gel releasing PD-L1 antibody and platelet-derived small EVs. J. Nanobiotechnol. 2022, 20, 62. [Google Scholar] [CrossRef] [PubMed]
- Guan, X.; Sun, L.; Shen, Y.; Jin, F.; Bo, X.; Zhu, C.; Han, X.; Li, X.; Chen, Y.; Xu, H.; et al. Nanoparticle-enhanced radiotherapy synergizes with PD-L1 blockade to limit post-surgical cancer recurrence and metastasis. Nat. Commun. 2022, 13, 2834. [Google Scholar] [CrossRef]
- Wicki, A.; Witzigmann, D.; Balasubramanian, V.; Huwyler, J. Nanomedicine in cancer therapy: Challenges, opportunities, and clinical applications. J. Control. Release 2015, 200, 138–157. [Google Scholar] [CrossRef]
- Rodríguez, F.; Caruana, P.; la Fuente, N.D.; Español, P.; Gámez, M.; Balart, J.; Llurba, E.; Rovira, R.; Ruiz, R.; Martín-Lorente, C.; et al. Nano-based approved pharmaceuticals for cancer treatment: Present and future challenges. Biomolecules 2022, 12, 784. [Google Scholar] [CrossRef]
- US NCI. Cancer Nano-Therapies in the Clinic and Clinical Trials. Available online: https://www.cancer.gov/nano/cancer-nanotechnology/current-treatments (accessed on 19 August 2024).
- Grivennikov, S.I.; Greten, F.R.; Karin, M. Immunity, inflammation, and cancer. Cell 2010, 140, 883–899. [Google Scholar] [CrossRef]
- You, P.; Fu, S.; Yu, K.; Xia, Y.; Wu, H.; Yang, Y.; Ma, C.; Liu, D.; Chen, X.; Wang, J.; et al. Scutellarin suppresses neuroinflammation via the inhibition of the AKT/NF-κB and p38/JNK pathway in LPS-induced BV-2 microglial cells. Naunyn Schmiedebergs Arch. Pharmacol. 2018, 391, 743–751. [Google Scholar] [CrossRef] [PubMed]
- Velagapudi, R.; Kumar, A.; Bhatia, H.S.; El-Bakoush, A.; Lepiarz, I.; Fiebich, B.L.; Olajide, O.A. Inhibition of neuroinflammation by thymoquinone requires activation of Nrf2/ARE signalling. Int. Immunopharmacol. 2017, 48, 17–29. [Google Scholar] [CrossRef]
- Hankittichai, P.; Lou, H.J.; Wikan, N.; Smith, D.R.; Potikanond, S.; Nimlamool, W. Oxyresveratrol inhibits IL-1β-induced inflammation via suppressing AKT and ERK1/2 activation in human microglia, HMC3. Int. J. Mol. Sci. 2020, 21, 6054. [Google Scholar] [CrossRef]
- Subedi, L.; Yumnam, S. Terpenoids from Abies holophylla attenuate LPS-Induced neuroinflammation in microglial cells by suppressing the JNK-related signaling pathway. Int. J. Mol. Sci. 2021, 22, 965. [Google Scholar] [CrossRef] [PubMed]
- Basak, U.; Sarkar, T.; Mukherjee, S.; Chakraborty, S.; Dutta, A.; Dutta, S.; Nayak, D.; Kaushik, S.; Das, T.; Sa, G. Tumor-associated macrophages: An effective player of the tumor microenvironment. Front. Immunol. 2023, 14, 1295257. [Google Scholar] [CrossRef]
- Gao, Y.; Zhuang, Z.; Lu, Y.; Tao, T.; Zhou, Y.; Liu, G.; Wang, H.; Zhang, D.; Wu, L.; Dai, H.; et al. Curcumin mitigates neuro-inflammation by modulating microglia polarization through inhibiting TLR4 axis signaling pathway following experimental subarachnoid hemorrhage. Front. Neurosci. 2019, 13, 1223. [Google Scholar] [CrossRef] [PubMed]
- Giacoppo, S.; Rajan, T.S.; Nicola, G.R.D.; Iori, R.; Bramanti, P.; Mazzon, E. Moringin activates Wnt canonical pathway by inhibiting GSK3β in a mouse model of experimental autoimmune encephalomyelitis. Drug Des. Dev. Ther. 2016, 10, 3291–3304. [Google Scholar] [CrossRef]
- Jo, S.H.; Kim, M.E.; Cho, J.H.; Lee, Y.; Lee, J.; Park, Y.D.; Lee, J.S. Hesperetin inhibits neuroinflammation on microglia by suppressing inflammatory cytokines and MAPK pathways. Arch. Pharm. Res. 2019, 42, 695–703. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.H.; Chen, J.L.; Liu, P.S.; Tsai, M.M.; Wang, S.J.; Hsieh, H.L. Rottlerin, a natural polyphenol compound, inhibits upregulation of matrix metalloproteinase-9 and brain astrocytic migration by reducing PKC-δ-dependent ROS signal. J. Neuroinflamm. 2020, 17, 177. [Google Scholar] [CrossRef]
- Hu, X.J.; Xie, M.Y.; Kluxen, F.M.; Diel, P. Genistein modulates the anti-tumor activity of cisplatin in MCF-7 breast and HT-29 colon cancer cells. Arch. Toxicol. 2014, 88, 625–635. [Google Scholar] [CrossRef]
- Khoobchandani, M.; Katti, K.K.; Karikachery, A.R.; Thipe, V.C.; Srisrimal, D.; Mohandoss, D.D.K.; Darshakumar, R.D.; Joshi, C.M.; Katti, K.V. New approaches in breast cancer therapy through green nanotechnology and nano-ayurvedic medicine—Pre-clinical and pilot human clinical investigations. Int. J. Nanomed. 2020, 15, 181–197. [Google Scholar] [CrossRef]
- Clark, A.J.; Wiley, D.T.; Zuckerman, J.E.; Webster, P.; Chao, J.; Lin, J.; Yen, Y.; Davis, M.E. CRLX101 nanoparticles localize in human tumors and not in adjacent, nonneoplastic tissue after intravenous dosing. Proc. Natl. Acad. Sci. USA 2016, 113, 3850–3854. [Google Scholar] [CrossRef]
- Piha-Paul, S.A.; Thein, K.Z.; Souza, P.D.; Kefford, R.; Gangadhar, T.; Smith, C.; Schuster, S.; Zamboni, W.C.; Dees, C.E.; Markman, B. First-in-human, phase I/IIa study of CRLX301, a nanoparticle drug conjugate containing docetaxel, in patients with advanced or metastatic solid malignancies. Investig. New Drugs 2021, 39, 1047–1056. [Google Scholar] [CrossRef]
- Lu, J.; Gu, A.; Wang, W.; Huang, A.; Han, B.; Zhong, H. Polymeric micellar paclitaxel (Pm-Pac) prolonged overall survival for NSCLC patients without pleural metastasis. Int. J. Pharm. 2022, 623, 121961. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Qian, Z.; Yan, Z.; Zhao, C.; Wang, H.; Ying, G. A phase I pharmacokinetic study of ursolic acid nanoliposomes in healthy volunteers and patients with advanced solid tumors. Int. J. Nanomed. 2013, 8, 129–136. [Google Scholar] [CrossRef]
- Sarkar, S.; Horn, G.; Moulton, K.; Oza, A.; Byler, S.; Kokolus, S.; Longacre, M. Cancer development, progression, and therapy: An epigenetic overview. Int. J. Mol. Sci. 2013, 14, 21087–21113. [Google Scholar] [CrossRef]
- Thompson, H.J.; Lutsiv, T. Natural products in precision oncology: Plant-based small molecule inhibitors of protein kinases for cancer chemoprevention. Nutrients 2023, 15, 1192. [Google Scholar] [CrossRef] [PubMed]
- Gurunathan, S.; Kang, M.H.; Qasim, M.; Kim, J.H. Nanoparticle-mediated combination therapy: Two-in-one approach for cancer. Int. J. Mol. Sci. 2018, 19, 3264. [Google Scholar] [CrossRef]
- Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021, 20, 101–124. [Google Scholar] [CrossRef]
- Azie, O.; Greenberg, Z.F.; Batich, C.D.; Dobson, J.P. Carbodiimide conjugation of latent transforming growth factor β1 to superparamagnetic iron oxide nanoparticles for remote activation. Int. J. Mol. Sci. 2019, 20, 3190. [Google Scholar] [CrossRef]
- Qie, Y.; Yuan, H.; von Romeling, C.A.; Chen, Y.; Liu, X.; Shih, K.D.; Knight, J.A.; Tun, H.W.; Wharen, R.E.; Jiang, W.; et al. Surface modification of nanoparticles enables selective evasion of phagocytic clearance by distinct macrophage phenotypes. Sci. Rep. 2016, 6, 26269. [Google Scholar] [CrossRef]
- Shi, Y.; van der Meel, R.; Chen, X.; Lammers, T. The EPR effect and beyond: Strategies to improve tumor targeting and cancer nanomedicine treatment efficacy. Theranostics 2020, 10, 7921–7924. [Google Scholar] [CrossRef]
Nanomedicine Name | Drug in Nanomedicine | Delivery System | Target Cancer | Experimental Model | Effect of Nanomedicine on Cancer | Ref. |
---|---|---|---|---|---|---|
ECO/siRNA NPs | β3 Integrin siRNA | Lipid ECO-based NPs | TNBC | MDA-MB-231 cell line and NME cell line | Silenced the expression of Integrin β3; lessened TGF-β mediated epithelial-mesenchymal transition and metastasis | [50] |
Poly-N-(2-hydroxypropyl) methacrylamide-coated W-LPNs (S/C-pW-LPNs) | Silibinin and cryptotanshinone | Poly-N-(2-hydroxypropyl) methylacrylamide-coated wheat germ agglutinin-modified lipid-polymer hybrid NPs | Breast cancer | 4T1 breast cancer cells; 4T1 tumor-bearing nude mouse model | Increased 4T1 cell toxicity; inhibited cell invasion and migration; reduced tumor progression and metastasis to the lungs | [51] |
ZP6 | Zinc oxide | Zp6 Capped with aminopolysiloxane | Retinal degenerative diseases | Murine photoreceptor-derived 661W cell line | Formation of apoptotic bodies; disruption of cell cycle; disruption of intracellular calcium homeostasis and increase in oxidative stress; reduction in the expression of TGF-β and matrix metalloprotease 9 | [52] |
PLG(Ag) NPs | TGF-β and OVA peptide | PLGA NPs | Multiple sclerosis and autoimmune encephalomyelitis | Mouse model for multiple sclerosis and autoimmune encephalomyelitis | Reduced inflammation in bone marrow-derived dendritic cells; induced regulatory T cells; reduced disease severity | [53] |
MSNP-PEI-PEG | SiHSP47 | Polyethylenimine and polyethylene glycol coating on mesoporous silica NP | Fibrotic disease (scleroderma) | TGF-β stimulated fibroblasts; bleomycin-induced scleroderma mouse model | Reduced HSP47 protein expression; reduced NADPH oxidase 4 levels; reduced pro-fibrotic markers | [54] |
Nanomedicine Name | Drug in Nanomedicine | Delivery System | Target Cancer | Experimental Model | Effect of Nanomedicine on Cancer | Ref. |
---|---|---|---|---|---|---|
NanoTalazoparib | Talazoparib | Bilayer nano-liposome | BRCA-mutated metastatic breast cancer | BRCA-deficient mice | Induced DNA damage, cell cycle arrest, and inhibition of cell proliferation in tumors; modulated immune cell populations; decreased myeloid-derived suppressor cells in tumors and spleen | [78] |
NanoOlaparib | Olaparib | Lipid-based injectable nanoformulation | Advanced prostate cancer | PTEN/p53-deficient mouse with prostate cancer | Made tumors more radiation-sensitive; caused significant tumor growth inhibition | [79] |
Nanoemulsion encapsulated PARPi-FL | PARPi-FL (fluorescently labeled sensor for Olaparib) | Nanoemulsion | Small cell lung cancer | Subcutaneous xenografts of small cell lung cancer | Increased blood half-life; improved delineation of small cell lung cancer xenografts | [80] |
SMI#9-GNP | SMI#9 | gNPs | TNBC | Cell culture models of TNBC | Induced cytotoxicity in mesenchymal TNBC cells; enhanced cisplatin sensitivity when combined with cisplatin; selectively induced cell death through mitochondrial dysfunction and PARP1 stabilization/hyperactivation | [82] |
Liposomal NPs | Cisplatin and PARP inhibitors | Liposomal NPs with a terminal hyaluronic acid layer | Ovarian cancer | Luciferase and CD44-expressing orthotopic OVCAR8 xenograft nude mice | Moderated systemic toxicity; reduced tumor metastasis; extended survival | [83] |
Lipidoids | siRNA targeting PARP1 (siParp1) | Lipidoids for delivering siRNA | Ovarian cancer | Mouse models of ovarian cancer | Inhibited cell growth, induced apoptosis in BRCA1-deficient cells, extended survival in mice with ovarian cancer cells | [84] |
PLGA NPs co-encapsulating methylene blue | Veliparib | PLGA NPs | Melanoma | In vitro assays using B16F10-Nex2 cells | Decreased cell viability | [85] |
gNP-CALNN | Linalool | gNPs capped with glutathione and conjugated with a CALNN peptide | Ovarian cancer | In vitro assays using SKOV-3 ovarian cancer cells | Induced apoptosis of ovarian cancer cells via activating caspase-8 and apoptosis-associated proteins | [86] |
Institute (Approval Year) | Product | Company | Drug in Nanomedicine | Delivery System | Target Cancer |
---|---|---|---|---|---|
FDA (1994, 2006) | Oncaspar | Enzon-Sigma-tau | Pegaspargase/L-asparaginase | Polymer conjugate | Acute lymphoblastic leukemia |
FDA (1996) | DaunoXome | Gilead Sciences | Daunorubicin | Liposome | Kaposi’s sarcoma |
FDA (1999) | DepoCyt | Pacira Pharmaceuticals | Cytarabine | Liposome | Neoplastic meningitis |
FDA (2005) | Abraxane | Abraxis/Celgene | Paclitaxel | NP-bound albumin | Breast and pancreatic cancer, NSCLC |
FDA (2012) | Marqibo | Talon Therapeutics/Spectrum Pharmaceuticals | Vincristine | Liposome | Acute lymphoblastic leukemia |
FDA (2015) | Onivyde | Merrimack Pharma | Irinotecan | Liposome | Pancreatic cancer, colorectal cancer |
FDA (1995, 1999, 2007), EMA (1996, 2000), Taiwan (1998) | Doxil, Caelyx, Myocet, and Lipo-Dox | Johnson and Johnson, Schering-Plough, Teva UK, and TTY Biopharm | Doxorubicin | Liposome | Metastatic breast cancer, ovarian cancer, Kaposi’s sarcoma, multiple myeloma |
FDA (2017) EMA (2018) | Vyxeos | Celator/Jazz Pharma | Daunorubicin/Cytarabine | Liposome | Acute myeloid leukemia |
EMA (2009) | Mepact | Takeda Pharmaceuticals | Mifamurtide MTP-PE | Liposome | Osteosarcoma |
EMA (2010, 2013) | NanoTherm | MagForce Nanotechnologies AG | Thermal ablation using a magnetic field | Iron oxide nanoparticles | Glioblastoma, prostate, and pancreatic cancer |
EMA (2019) | Hensify (NBTXR3) | Nanobiotix | No drug with radiotherapy | Hafnium oxide nanoparticle | Locally advanced soft tissue sarcoma (STS) |
EMA (2019) | Pazenir | Ratiopharm GmbH | Paclitaxel | NP-bound albumin | Metastatic breast cancer, metastatic adenocarcinoma of the pancreas, NSCLC |
Republic of Korea (2007) | Genexol-PM | Samyang Biopharmaceuticals | Paclitaxel | PEG-PLA polymeric micelle | Breast, lung, and ovarian cancer |
Source of Phytochemical | Chemical Structure | Experimental Model | Action Mechanism of Phytochemical | Ref. |
---|---|---|---|---|
Erigeron breviscapus | Scutellarin | Lipopolysaccharide-induced BV-2 microglial cells |
| [119] |
Black cumin seed of Nigella sativa | Thymoquinone | Lipopolysaccharide-induced BV-2 microglial cells |
| [120] |
Artocarpus lakoocha | Oxyresveratrol | Human microglial cells |
| [121] |
Abies holophylla | Terpenoids | Lipopolysaccharide-activated BV2 murine microglial cells |
| [122] |
Curcuma longa | Curcumin | Head and neck squamous carcinoma cells, TLR4(−/−) or wild type of subarachnoid hemorrhage-induced mice model |
| [11,123,124] |
Moringa oleifera seed | Moringin | Autoimmune encephalomyelitis mice model |
| [125] |
Citrus fruits | Hesperetin | Lipopolysaccharide-stimulated BV-2 microglial cells |
| [126] |
Mallotus philippinensis | Rottlerin | Phorbol 12-myristate 13-acetate (PMA)-induced rat brain astrocytes |
| [127] |
Soy | Genistein | Hepatectomy model of nude mice bearing human hepatocellular carcinoma xenografts, colon HT-29, and breast MCF-7 cancer cells |
| [12,13,128] |
Nanomedicine Name | Phytochemical in Nanomedicine | Delivery System | Target Cancer | Target Population | Effect of Nanomedicine on Anticancer Therapy | Treatment Stage | Ref. |
---|---|---|---|---|---|---|---|
NSB | Mangiferrin | gNPs | Breast cancer | Female patients with stage IIIA or IIIB of breast carcinoma | Patients who received nanomedicine alongside the standard care had a 100% clinical benefit rate when compared to those who only received the standard care; only one patient showed severe adverse effects | Pilot preclinical trial | [129] |
CRLX101 | Camptothecin | Cyclodextrin-containing polymer NPs | Gastric, gastroesophageal or esophageal cancer | Patients with gastroesophageal, esophageal, or gastric cancer who are on at least one line of systemic therapy | Downregulation of tumor indicators such as topoisomerase I and carbonic anhydrase IX | Phase II clinical trial | [130] |
CRLX101 | Camptothecin | Cyclodextrin-containing polymer NPs | Rectal cancer | Adult patients with T3–4N0 or T1–4N+ of rectal cancer | Asymptomatic lymphopenia was recorded with a high dose of the drug; downstaging occurred in 69% of patients; pathologic complete response was achieved in 19% of patients overall and 33% of patients at the weekly maximum tolerated dose | Phase Ib/II clinical trial | [15] |
CRLX301 | Docetaxel | Cyclodextrin-containing polymers | Advanced or metastatic prostate and breast adenocarcinoma | Patients with prostate or breast adenocarcinoma | Found 19.4% of clinical benefit rate; presented some pharmacokinetic advantages over docetaxel | Phase I/IIa clinical trial | [131] |
Pm-Pac | Paclitaxel | Polymeric micellar NPs | NSCLC | Patients with advanced NSCLC without pleural metastasis | Increased progression-free survival and overall survival of patients | Phase III clinical trial | [132] |
UANL | Ursolic acid | Nanoliposomes | Advanced solid tumors including non-Hodgkin’s lymphoma, Hodgkin’s lymphoma, Hepatoma, and gastric cancer | Healthy volunteers and patients with advanced solid tumors | They tested only pharmacokinetic parameters and safety; no accumulation with repeated doses of UANL; no adverse event in patients who received 37 mg/m2 of UANL; no adverse effect after the provision of the larger doses | Phase I clinical trial | [133] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.H.; Dareowolabi, B.O.; Thiruvengadam, R.; Moon, E.-Y. Application of Nanotechnology and Phytochemicals in Anticancer Therapy. Pharmaceutics 2024, 16, 1169. https://doi.org/10.3390/pharmaceutics16091169
Kim JH, Dareowolabi BO, Thiruvengadam R, Moon E-Y. Application of Nanotechnology and Phytochemicals in Anticancer Therapy. Pharmaceutics. 2024; 16(9):1169. https://doi.org/10.3390/pharmaceutics16091169
Chicago/Turabian StyleKim, Jin Hee, Boluwatife Olamide Dareowolabi, Rekha Thiruvengadam, and Eun-Yi Moon. 2024. "Application of Nanotechnology and Phytochemicals in Anticancer Therapy" Pharmaceutics 16, no. 9: 1169. https://doi.org/10.3390/pharmaceutics16091169
APA StyleKim, J. H., Dareowolabi, B. O., Thiruvengadam, R., & Moon, E. -Y. (2024). Application of Nanotechnology and Phytochemicals in Anticancer Therapy. Pharmaceutics, 16(9), 1169. https://doi.org/10.3390/pharmaceutics16091169