Enhanced Antitumor Efficacy of Cytarabine and Idarubicin in Acute Myeloid Leukemia Using Liposomal Formulation: In Vitro and In Vivo Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Cell Cultures
2.3. Animals
2.4. In Vitro Anti-Tumor Effect of Drug Combinations
2.5. Preparation of Liposomes
2.6. Preparation of the Ion Gradient for Idarubicin Encapsulation
2.7. Characterization of Liposomes
2.7.1. Size Distribution and Zeta Potential
2.7.2. Determination of Encapsulation Efficiency (EE)
2.7.3. Cryo-Transmission Electron Microscopy (Cryo-TEM)
2.7.4. Evaluation of Stability of Liposomes In Vitro
2.8. Evaluation of Cell Uptake and Cytotoxicity of Liposomes In Vitro
2.9. Pharmacokinetic Analysis
2.10. In Vivo Antitumor Effect
2.11. Cell Cycle Analysis
2.12. RNA Isolation and Real-Time Quantitative RT-PCR
2.13. Statistical Analysis
3. Results and Discussion
3.1. Screening of Synergistic Molar Ratios of Cytarabine and Idarubicin in Cell Lines
3.2. Preparation and Characterization of Liposomes
3.3. In Vitro Stability
3.4. In Vitro Cell Uptake and Cytotoxicity of Liposomes
3.5. Pharmacokinetic
3.6. In Vivo Therapeutic Efficacy and Toxicity
3.7. Cell Cycle
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Ediriwickrema, A.; Gentles, A.J.; Majeti, R. Single-cell genomics in AML: Extending the frontiers of AML research. Blood 2023, 141, 345–355. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.Y.; Liu, X.L.; Zhao, Y.; Hu, Y.Y.; Guo, J.X.; Wang, H.Y. Global, national, and regional burden of acute myeloid leukemia among 60–89 years-old individuals: Insights from a study covering the period 1990 to 2019. Front. Public Health 2024, 11, 1329529. [Google Scholar] [CrossRef] [PubMed]
- Alves da Silva, P.H.; Xing, S.; Kotini, A.G.; Papapetrou, E.P.; Song, X.Y.; Wucherpfennig, K.W.; Mascarenhas, J.; Ferrari de Andrade, L. Mica/B antibody induces macrophage-mediated immunity against acute myeloid leukemia. Blood 2022, 139, 205–216. [Google Scholar] [CrossRef] [PubMed]
- Pulte, D.; Jansen, L.; Castro, F.A.; Krilaviciute, A.; Katalinic, A.; Barnes, B.; Ressing, M.; Holleczek, B.; Luttmann, S.; Brenner, H. Survival in patients with acute myeloblastic leukemia in Germany and the United States: Major differences in survival in young adults. Int. J. Cancer 2016, 139, 1289–1296. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.R.; Huang, Y.Z. Combination therapy based on nano codelivery for overcoming cancer drug resistance. Med. Drug Discov. 2020, 6, 100024. [Google Scholar] [CrossRef]
- Tradi, P.; Johntone, S.; Harasym, N.; Xie, S.W.; Harasym, T.; Zisman, N.; Harvie, P.; Bermudes, D.; Mayer, L. In vivo maintenance of synergistic cytarabine: Daunorubicin ratios greatly enhances therapeutic efficacy. Leuk. Res. 2009, 33, 129–139. [Google Scholar] [CrossRef]
- Duarte, D.; Vale, N. Evaluation of synergism in drug combinations and reference models for future orientations in oncology. Curr. Res. Pharmacol. Drug Discov. 2022, 3, 100110. [Google Scholar] [CrossRef]
- Bahri, M.; Fleurence, J.; Faraj, S.; Daho, M.B.M.; Fougeray, S.; Birklé, S. Potentiation of anticancer antibody efficacy by antineoplastic drugs: Detection of antibody-drug synergism using the combination index equation. J. Vis. Exp. 2019, 143, e58291. [Google Scholar]
- Mayer, L.D.; Tardi, P.; Louie, A.C. CPX-351: A nanoscale liposomal co-formulation of daunorubicin and cytarabine with unique biodistribution and tumor cell uptake properties. Int. J. NanoMed. 2019, 14, 3819–3830. [Google Scholar] [CrossRef]
- Lichtman, M.A. A historical perspective on the development of the cytarabine (7 days) and daunorubicin (3 days) treatment regimen for acute myelogenous leukemia: 2013 the 40th anniversary of 7+3. Blood Cells Mol. Dis. 2013, 50, 119–130. [Google Scholar] [CrossRef]
- Murphy, T.; Yee, K.W.L. Cytarabine and daunorubicin for the treatment of acute myeloid leukemia. Expert Opin. Pharmacother. 2017, 18, 1765–1780. [Google Scholar] [CrossRef] [PubMed]
- Dohner, H.; Weisdorf, D.J.; Bloomfield, C.D. Acute myeloid leukemia. N. Engl. J. Med. 2015, 373, 1136–1152. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.Y.; Zhang, J.Y.; Gou, J.X.; Zhang, Y.; He, H.B.; Yin, T.; Zheng, Z.H.; Tang, X. The effects of intermolecular interactions on the stability and in vitro drug release of daunorubicin/cytarabine co-loaded liposome. Colloids Surf. B Biointerfaces 2022, 217, 112673. [Google Scholar] [CrossRef] [PubMed]
- Alfayez, M.; Kantarjian, H.; Kadia, T.; Kashani, F.R.; Daver, N. CPX-351 (vyxeos) in AML. Leuk. Lymphoma 2020, 61, 288–297. [Google Scholar] [CrossRef]
- Cortes, J.E.; Lin, T.L.; Asubonteng, K.; Faderl, S.; Lancet, J.E.; Prebet, T. Efficacy and safety of CPX-351 versus 7+3 chemotherapy by European leukemiaNey 2017 risk subgroups in older adults with newly diagnosed, high-risk/secondary AML: Post hoc analysis of a randomized, phase 3 trial. J. Hematol. Oncol. 2022, 15, 155. [Google Scholar] [CrossRef]
- Lancet, J.E.; Uy, G.L.; Newell, L.F.; Lin, T.L.; Ritchie, E.K.; Stuart, R.K.; Strickland, S.A.; Hogge, D.; Solomon, S.R.; Bixby, D.; et al. Five-year final results of a phase III study of CPX-351 versus 7+3 in older adults with newly diagnosed high-risk/secondary AML. J. Clin. Oncol. 2020, 38, 7510. [Google Scholar] [CrossRef]
- Lancet, J.E.; Uy, G.L.; Newell, L.F.; Lin, T.L.; Ritchie, E.K.; Stuart, R.K.; Strickland, S.A.; Hogge, D.; Solomon, S.R.; Bixby, D.L.; et al. CPX-351 versus 7+3 cytarabine and daunorubicin chemotherapy in older adults with newly diagnosed high-risk or secondary acute myeloid leukaemia: 5-year results of a randomised, open-label, multicentre, phase 3 trial. Lancet Haematol. 2021, 8, e481–e491. [Google Scholar] [CrossRef]
- Wang, H.Y.; Xiao, X.T.; Xiao, Q.R.; Lu, Y.H.; Wu, Y. The efficacy and safety of daunorubicin versus idarubicin combined with cytarabine for induction therapy in acute myeloid leukemia. Medicine 2020, 99, e20094. [Google Scholar] [CrossRef]
- Santos, N.D.; Mayer, L.D.; Abraham, S.A.; Gallagher, R.C.; Cox, K.A.K.; Tardi, P.G.; Bally, M.B. Improved retention of idarubicin after intravenous injection obtained for cholesterol-free liposomes. Biochim. Biophys. Acta 2002, 1561, 188–201. [Google Scholar] [CrossRef]
- Ickenstein, L.M.; Arfvidsson, M.C.; Needham, D.; Mayer, L.D.; Edwards, K. Disc formation in cholesterol-free liposomes during phase transition. Biochim. Biophys. Acta 2003, 1614, 135–138. [Google Scholar] [CrossRef]
- Santos, N.D.; Waterhouse, D.; Masin, D.; Tardi, P.G.; Karlsson, G.; Edwards, K.; Bally, M.B. Substantial increases in idarubicin plasma concentration by liposome encapsulation mediates improved antitumor activity. J. Control. Release 2005, 105, 89–105. [Google Scholar] [CrossRef] [PubMed]
- New, R.R.C. Liposomes a Practical Approach; Oxford University Press: Oxford, UK, 1990; pp. 12–13. [Google Scholar]
- Gubernator, J.; Chwastek, G.; Korycinska, M.; Stasiuk, M.; Grynkiewicz, G.; Lewrick, F.; Süss, R.; Kozubek, A. The encapsulation of idarubicin within liposomes using the novel EDTA ion gradient method ensures improved drug retention in vitro and in vivo. J. Control. Release 2010, 146, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Lu, T.; Lokerse, W.J.M.; Seynhaeve, A.L.B.; Koning, G.A.; Hagen, T.L.M. Formulation and optimization of idarubicin thermosensitive liposomes provides untrafast triggered release at mild hyperthermia and improves tumor response. J. Control. Release 2015, 220, 425–437. [Google Scholar] [CrossRef] [PubMed]
- Briuglia, M.L.; Rotella, C.; McFarlane, A.; Lamprou, D.A. Influence of cholesterol on liposome stability and on in vitro drug release. Drug Deliv. Transl. Res. 2015, 5, 231–242. [Google Scholar] [CrossRef]
- Kirby, C.; Clarke, J.; Gregoriadis, G. Effect of the cholesterol content of small unilamellar liposomes on their stability in vivo and in vitro. Biochem. J. 1980, 186, 591–598. [Google Scholar] [CrossRef]
- Norling, K.; Sjöberg, M.; Bally, M.; Zhdanov, V.P.; Parveen, N.; Höök, F. Dissimilar deformation of fluid- and gel-phase liposomes upon multivalent interaction with cell membrane mimics revealed using dual-wavelength surface plasmon resonance. Langmuir 2022, 38, 2550–2560. [Google Scholar] [CrossRef]
- Dicko, A.; Kwak, S.; Frazier, A.A.; Mayer, L.D.; Liboiron, B.D. Biophysical characterization of a liposomal formulation of cytarabine and daunorubicin. Int. J. Pharm. 2010, 391, 248–259. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Chen, G.L.; Zhang, J.C. A review of liposomes as a drug delivery system: Current status of approved products, regulatory environments, and future perspective. Molecules 2022, 27, 1372. [Google Scholar] [CrossRef]
- Vyxeos Liposomal (Previously Known as Vyxeos). Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/vyxeos-liposomal (accessed on 20 June 2021).
- Mayer, L.D.; Hope, M.J.; Cullis, P.R. Vesicles of variable sizes produced by a rapid extrusion procedure. Biochim. Biophys. Acta 1986, 858, 161–168. [Google Scholar] [CrossRef]
- Zhang, H.W. Thin-film hydration followed by extrusion method for liposome preparation. Methods Mol. Biol. 2017, 1522, 17–22. [Google Scholar]
- Wang, Z.M.; Li, J.B.; Lin, G.M.; He, Z.G.; Wang, Y.J. Metal complex-based liposomes: Applications and prospects in cancer diagnostics and therapeutics. J. Control. Release 2022, 348, 1066–1088. [Google Scholar] [CrossRef] [PubMed]
- Bishnoi, M.; Jain, A.; Singla, Y.; Shrivastava, B. Sublingual delivery of chondroitin sulfate conjugated tapentadol loaded nanovesicles for the treatment of osteoarthritis. J. Liposome Res. 2021, 31, 30–44. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.Y.; Wu, T.; Xie, S.S.; Bai, Y.G.; Xing, H. Orientation-controlled membrane anchoring of bioorthogonal catalysts on live cells via liposome fusion–based transport. Sci. Adv. 2023, 9, eadg2583. [Google Scholar] [CrossRef] [PubMed]
- Mayer, L.D.; Janoff, A.S. Optimizing combination chemotherapy by controlling drug ratios. Mol. Interv. 2007, 7, 216–223. [Google Scholar] [CrossRef]
- Kamran, S.; Sinniah, A.; Chik, Z.; Alshawsh, M.A. Diosmetin Exerts Synergistic Effects in Combination with 5-Fluorouracil in Colorectal Cancer Cells. Biomedicines 2022, 10, 531. [Google Scholar] [CrossRef]
- Lin, M.; Pan, C.Y.; Xu, W.B.; Li, J.W.; Zhu, X.Q. Leonurine Promotes Cisplatin Sensitivity in Human Cervical Cancer Cells Through Increasing Apoptosis and Inhibiting Drug-Resistant Proteins. Drug Des. Dev. Ther. 2020, 14, 1885–1895. [Google Scholar] [CrossRef]
- Thabet, N.A.; Ei-Khouly, D.; Sayed-Ahmed, M.M.; Omran, M.M. Thymoquinone chemosensitizes human colorectal cancer cells to imatinib via uptake/efflux genes modulation. Clin. Exp. Pharmacol. Physiol. 2021, 48, 911–920. [Google Scholar] [CrossRef]
- Iglesias-Corral, D.; García-Valles, P.; Arroyo-Garrapucho, N.; Bueno-Martínez, E.; Ruiz-Robles, J.M.; Ovejero-Sánchez, M.; González-Sarmiento, R.; Herrero, A.B. Chloroquine-induced DNA damage synergizes with DNA repair inhibitors causing cancer cell death. Front. Oncol. 2024, 14, 1390518. [Google Scholar] [CrossRef] [PubMed]
- Lázaro, L.G.; Sabroso, C.M.; Blanco, J.A.; Suárez, A.I.T. Assessment of in vitro release testing methods for colloidal drug carriers: The lack of standardized protocols. Pharmaceutics 2024, 16, 103. [Google Scholar] [CrossRef]
- Gabizon, A.; Shmeeda, H.; Barenholz, Y. Pharmacokinetics of pegylated liposomal Doxorubicin: Review of animal and human studies. Clin. Pharmacokinet. 2003, 42, 419–436. [Google Scholar] [CrossRef]
- Zelepukin, I.V.; Shevchenko, K.G.; Deyev, S.M. Rediscovery of mononuclear phagocyte system blockade for nanoparticle drug delivery. Nat. Commun. 2024, 15, 4366. [Google Scholar] [CrossRef] [PubMed]
- Sha, X.Y.; Guo, J.; Chen, Y.Z.; Fang, X.L. Effect of phospholipid composition on pharmacokinetics and biodistribution of epirubicin liposomes. J. Liposome Res. 2012, 22, 80–88. [Google Scholar] [CrossRef] [PubMed]
Cell Lines | Cells per Well | Cell Culture Media |
---|---|---|
OCI-AML-3 | 15,000 | RPMI-1640 medium plus 20% fetal bovine serum |
KG-1 | 11,000 | IMDM medium plus 20% fetal bovine serum |
HL-60 | 10,000 | RPMI-1640 medium plus 10% fetal bovine serum |
Kasumi-1 | 10,000 | RPMI-1640 medium plus 20% fetal bovine serum |
MV-4-11 | 8000 | IMDM medium plus 10% fetal bovine serum |
CCRF-CEM | 8000 | RPMI-1640 medium plus 10% fetal bovine serum |
MOLM-13 | 8000 | RPMI-1640 medium plus 20% fetal bovine serum |
Molt-4 | 7500 | RPMI-1640 medium plus 10% fetal bovine serum |
WEHI-3B | 7500 | IMDM medium plus 10% fetal bovine serum, 0.05 nM 2-mercaptoethanol |
TOV-21G | 2000 | RPMI-1640 medium plus 15% fetal bovine serum |
KP-4 | 2000 | RPMI-1640 medium plus 10% fetal bovine serum |
HCT116 | 1500 | RPMI-1640 medium plus 10% fetal bovine serum |
ES-2 | 1000 | McCoy’s 5A medium plus 10% fetal bovine serum |
Testing Drugs | Dose of Cytarabine (mg/kg) | Dose of Idarubicin (mg/kg) |
---|---|---|
Lipo-4 | 5 | 0.55 |
Lipo-4 | 10 | 1.10 |
Lipo-4 | 12 | 1.32 |
Lipo-4 | 15 | 1.65 |
Free drugs | 200 | 0.6 |
Free drugs | 200 | 1.0 |
Free drugs | 200 | 1.5 |
Free drugs | 300 | 0.9 |
Free drugs | 300 | 1.5 |
Testing Drugs | Dose of Cytarabine (mg/kg) | Dose of Idarubicin (mg/kg) | Molar Ratio of Cytarabine and Idarubicin |
---|---|---|---|
Vehicle (10% sucrose) | 0 | 0 | NA |
Lipo-4 | 5 | 0.55 | 20:1 |
Lipo-4 | 7 | 0.77 | 20:1 |
Lipo-5 | 8 | 0.55 | 30:1 |
Lipo-5 | 11 | 0.77 | 30:1 |
Lipo-6 | 10 | 0.55 | 40:1 |
Lipo-6 | 14 | 0.77 | 40:1 |
Free drugs | 5 | 0.55 | 20:1 |
Free drugs | 300 | 0.9 | 730:1 |
Genes | Species | Primer Sequences (5′ to 3′) | |
---|---|---|---|
Forward | Reverse | ||
CCNA2 | Homo sapiens | GGATGGTAGTTTTGAGTCACCAC | CACGAGGATAGCTCTCATACTGT |
CCNB1 | Homo sapiens | AATAAGGCGAGATCAACATGGC | TTTGTTACCAATGTCCCCAAGAG |
CCND1 | Homo sapiens | GCTGCGAAGTGGAAACCATC | CCTCCTTCTGCACACATTTGAA |
CCND2 | Homo sapiens | ACCTTCCGCAGTGCTCCTA | CCCAGCCAAGAAACGGTCC |
CCND3 | Homo sapiens | TACCCGCCATCCATGATCG | AGGCAGTCCACTTCAGTGC |
CCNE1 | Homo sapiens | GCCAGCCTTGGGACAATAATG | CTTGCACGTTGAGTTTGGGT |
CDK1 | Homo sapiens | AAACTACAGGTCAAGTGGTAGCC | TCCTGCATAAGCACATCCTGA |
CDK2 | Homo sapiens | CCAGGAGTTACTTCTATGCCTGA | TTCATCCAGGGGAGGTACAAC |
CDK4 | Homo sapiens | ATGGCTACCTCTCGATATGAGC | CATTGGGGACTCTCACACTCT |
CDK6 | Homo sapiens | GCTGACCAGCAGTACGAATG | GCACACATCAAACAACCTGACC |
GAPDH | Homo sapiens | TGCACCACCAACTGCTTA | GGATGCAGGGATGATGTTC |
Cell Lines | Tumor Types | Molar Ratio (Cytarabine: Idarubicin) | |||||
---|---|---|---|---|---|---|---|
5:1 | 10:1 | 20:1 | 30:1 | 40:1 | 50:1 | ||
KG-1 | Human acute myeloid leukemia | 0.80 | 1.03 | 0.67 | 0.53 | 0.76 | 0.69 |
OCI-AML-3 | Human acute myeloid leukemia | 0.50 | 0.80 | 0.73 | 0.74 | 0.86 | 0.93 |
Kasumi-1 | Human acute myeloblastic leukemia | 2.58 | 1.32 | 1.06 | 0.83 | 0.61 | 0.55 |
HL-60 | Human acute promyelocytic leukemia | 0.83 | 0.69 | 0.71 | 0.69 | 1.00 | 0.83 |
MV-4-11 | Human myeloid leukemia | 1.30 | 0.96 | 0.92 | 0.78 | 1.02 | 1.07 |
WEHI-3B | Murine myeloid leukemia | 1.08 | 0.99 | 1.11 | 1.64 | 1.31 | 2.69 |
Molt-4 | Human acute lymphocytic leukemia | 1.12 | 0.84 | 0.70 | 0.84 | 0.75 | 0.54 |
CCRF-CEM | Human acute lymphocytic leukemia | 1.13 | 0.86 | 0.78 | 0.76 | 0.85 | 0.82 |
MOLM-13 | Human acute myeloid leukemia | 0.94 | 0.82 | 0.88 | 1.28 | 1.54 | 2.18 |
HCT116 | Human colorectal cancer | 0.53 | 0.40 | 0.33 | 0.39 | 0.55 | 0.68 |
KP-4 | Human pancreatic cancer | 1.00 | 0.81 | 0.86 | 0.80 | 0.71 | 0.73 |
TOV-21G | Human ovarian cancer | 0.95 | 0.76 | 0.53 | 0.55 | 0.70 | 0.76 |
ES-2 | Human ovarian cancer | 0.93 | 0.66 | 0.61 | 0.56 | 0.64 | 0.67 |
Preparation | Salt Gradient | Molar Ratio (1) | Particle Size (nm) (2) | PDI (2) | ZP (mV) (2) | EE% (Cyt) (3) | EE% (Ida) (4) |
---|---|---|---|---|---|---|---|
Lipo-1 | Glu-Cu2+ (pH 7.4) | 10:1 | 101.76 ± 1.57 | 0.063 ± 0.015 | −35.28 ± 0.51 | 98.98 ± 0.85 | 95.59 ± 0.91 |
Lipo-2 | Glu-Fe2+ (pH 7.4) | 10:1 | 105.31 ± 2.01 | 0.073 ± 0.014 | −35.19 ± 0.45 | 99.15 ± 0.71 | 95.25 ± 0.84 |
Lipo-3 | (NH4)2SO4 | 10:1 | 103.61 ± 1.83 | 0.055 ± 0.016 | −35.30 ± 0.57 | 99.63 ± 0.93 | 97.48 ± 0.81 |
Lipo-4 | Glu-Cu2+ (pH 7.4) | 20:1 | 102.19 ± 1.35 | 0.059 ± 0.012 | −33.16 ± 0.50 | 98.81 ± 0.78 | 96.04 ± 0.75 |
Lipo-5 | Glu-Cu2+ (pH 7.4) | 30:1 | 101.28 ± 1.17 | 0.067 ± 0.010 | −30.33 ± 0.40 | 98.92 ± 0.65 | 96.42 ± 0.88 |
Lipo-6 | Glu-Cu2+ (pH 7.4) | 40:1 | 104.35 ± 1.94 | 0.075 ± 0.013 | −30.11 ± 0.42 | 99.17 ± 0.75 | 97.65 ± 0.61 |
Day | Size (nm) | PDI | ZP (mV) | EE% (Cyt) | EE% (Ida) |
---|---|---|---|---|---|
0 | 101.28 ± 1.17 | 0.067 ± 0.010 | −30.33 ± 0.40 | 98.92 ± 0.65 | 96.42 ± 0.88 |
7 | 102.90 ± 1.46 | 0.071 ± 0.013 | −30.30 ± 0.42 | 98.53 ± 0.60 | 97.92 ± 0.75 |
14 | 103.08 ± 1.92 | 0.075 ± 0.018 | −30.31 ± 0.40 | 98.35 ± 0.55 | 97.56 ± 0.77 |
28 | 103.81 ± 1.85 | 0.071 ± 0.022 | −30.37 ± 0.41 | 98.89 ± 0.73 | 97.35 ± 0.80 |
Compound | Absolute IC50 (mM) | Absolute IC50 (Mean ± SD, mM) | ||
---|---|---|---|---|
Repeat 1 | Repeat 2 | Repeat 3 | ||
Lipo-5 (30:1) | 6686.69 | 4852.76 | 5941.06 | 5826.84 ± 922.29 |
Combined free drugs | 232.16 | 222.50 | 193.72 | 216.12 ± 20.00 |
Matrix | Parameters | Cytarabine | Idarubicin | ||||||
---|---|---|---|---|---|---|---|---|---|
Lipo 1 | Lipo 2 | Lipo 3 | Free Drugs | Lipo 1 | Lipo 2 | Lipo 3 | Free Drugs | ||
Plasma | Tmax (h) | 1.00 | 0.250 | 0.250 | 0.0830 | 1.00 | 1.00 | 0.250 | 0.0830 |
Cmax (ng/mL) | 368,000 | 251,000 | 301,000 | 891,000 | 52,500 | 40,500 | 56,200 | 182 | |
AUC0-t (h·ng/mL) | 3,700,000 | 3,690,000 | 2,980,000 | 382,000 | 452,000 | 238,000 | 310,000 | 325 | |
AUC0-∞ (h·ng/mL) | 3,700,000 | 3,700,000 | 2,990,000 | 382,000 | 452,000 | 238,000 | 312,000 | 400 | |
MRT (h) | 7.26 | 11.0 | 8.63 | 0.364 | 5.14 | 3.98 | 4.14 | 2.49 | |
t1/2 (h) | 4.24 | 6.92 | 6.19 | 5.82 | 2.19 | 3.41 | 3.40 | 3.61 | |
Vss (mL/kg) | 23.6 | 36.2 | 35.4 | 593 | 30.0 | 44.0 | 36.3 | 20,300 | |
CL (mL/h/kg) | 3.24 | 3.24 | 4.02 | 1570 | 5.82 | 11.0 | 8.42 | 4500 | |
Bone marrow | Tmax (h) | 4.00 | 1.00 | 4.00 | 0.0830 | 4.00 | 4.00 | 4.00 | 4.00 |
Cmax (ng/mL) | 17,900 | 18,800 | 16,500 | 517,000 | 8410 | 8810 | 9130 | 5450 | |
AUC0-t (h·ng/mL) | 323,000 | 468,000 | 287,000 | 336,000 | 120,000 | 140,000 | 167,000 | 35,700 | |
AUC0-∞ (h·ng/mL) | 328,000 | 604,000 | 292,000 | 337,000 | 134,000 | 149,000 | 168,000 | 81,700 | |
MRT (h) | 11.0 | 17.2 | 13.4 | 0.840 | 7.87 | 7.33 | 11.2 | 4.06 | |
t1/2 (h) | 8.09 | 22.8 | 8.82 | 1.05 | 7.19 | 6.08 | 5.92 | 8.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, C.; Liu, Y.; Ji, X.; Si, Y.; Tao, X.; Zhang, X.; Yin, L. Enhanced Antitumor Efficacy of Cytarabine and Idarubicin in Acute Myeloid Leukemia Using Liposomal Formulation: In Vitro and In Vivo Studies. Pharmaceutics 2024, 16, 1220. https://doi.org/10.3390/pharmaceutics16091220
Zhu C, Liu Y, Ji X, Si Y, Tao X, Zhang X, Yin L. Enhanced Antitumor Efficacy of Cytarabine and Idarubicin in Acute Myeloid Leukemia Using Liposomal Formulation: In Vitro and In Vivo Studies. Pharmaceutics. 2024; 16(9):1220. https://doi.org/10.3390/pharmaceutics16091220
Chicago/Turabian StyleZhu, Chunxia, Yang Liu, Xiaojun Ji, Yaxuan Si, Xianhao Tao, Xiaohua Zhang, and Lifang Yin. 2024. "Enhanced Antitumor Efficacy of Cytarabine and Idarubicin in Acute Myeloid Leukemia Using Liposomal Formulation: In Vitro and In Vivo Studies" Pharmaceutics 16, no. 9: 1220. https://doi.org/10.3390/pharmaceutics16091220
APA StyleZhu, C., Liu, Y., Ji, X., Si, Y., Tao, X., Zhang, X., & Yin, L. (2024). Enhanced Antitumor Efficacy of Cytarabine and Idarubicin in Acute Myeloid Leukemia Using Liposomal Formulation: In Vitro and In Vivo Studies. Pharmaceutics, 16(9), 1220. https://doi.org/10.3390/pharmaceutics16091220