Antimicrobial Hydroxyethyl-Cellulose-Based Composite Films with Zinc Oxide and Mesoporous Silica Loaded with Cinnamon Essential Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of MCM-41 and ZnO Particles
2.2. Obtaining of the Cellulose-Based Composite Films
2.3. Characterization Techniques
2.3.1. Microstructural Analysis
2.3.2. Fourier Transform Infrared Spectroscopy
2.3.3. Ultraviolet–Visible Spectra Measurements
2.3.4. Photoluminescence Spectra Measurements
2.3.5. Thermal Analysis
2.3.6. Water Vapor Permeability Measurements
2.3.7. Film Expansion Profile Measurements
2.3.8. In Vitro Release Study
2.4. Antibacterial Assay
2.5. Biocompatibility Assessment
3. Results and Discussion
3.1. Scanning Electron Microscopy (SEM) Characterisation
3.2. FTIR Spectroscopy and Microscopy
3.3. UV–Vis Spectroscopy
3.4. Photoluminescence Spectroscopy
3.5. Thermal Analysis TG-DSC
3.6. Water Vapor Permeability
3.7. Film Expansion Profile
3.8. Release Profile of Cinnamaldehyde
3.9. Antimicrobial Activity Assay
3.10. Biocompatibility Assessment of the Composite Materials
4. Conclusions
5. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Motelica, L.; Ficai, D.; Ficai, A.; Trusca, R.D.; Ilie, C.I.; Oprea, O.C.; Andronescu, E. Innovative Antimicrobial Chitosan/ZnO/Ag NPs/Citronella Essential Oil Nanocomposite—Potential Coating for Grapes. Foods 2020, 9, 1801. [Google Scholar] [CrossRef] [PubMed]
- Motelica, L.; Ficai, D.; Oprea, O.C.; Trusca, R.D.; Ficai, A.; Stelescu, M.D.; Sonmez, M.; Nituica, M.; Mustatea, G.; Holban, A.M. Antimicrobial Packaging for Plum Tomatoes Based on ZnO Modified Low-Density Polyethylene. Int. J. Mol. Sci. 2024, 25, 6073. [Google Scholar] [CrossRef] [PubMed]
- Saeed, S.; Barkat, K.; Ashraf, M.U.; Shabbir, M.; Anjum, I.; Badshah, S.F.; Aamir, M.; Malik, N.S.; Tariq, A.; Ullah, R. Flexible Topical Hydrogel Patch Loaded with Antimicrobial Drug for Accelerated Wound Healing. Gels 2023, 9, 567. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.H.; He, J.; Song, K.; Guo, J.; Zhou, X.W.; Liu, S.M. Functionalization and Antibacterial Applications of Cellulose-Based Composite Hydrogels. Polymers 2022, 14, 769. [Google Scholar] [CrossRef]
- El Fawal, G.F.; Abu-Serie, M.M.; Hassan, M.A.; Elnouby, M.S. Hydroxyethyl cellulose hydrogel for wound dressing: Fabrication, characterization and in vitro evaluation. Int. J. Biol. Macromol. 2018, 111, 649–659. [Google Scholar] [CrossRef]
- El Habbasha, E.; Abouzeid, R.; Ibrahim, F.M.; Youssef, A.M.; Mahdy, S.Z.A.; El-Liethy, M.A. Developing a novel, low-cost, antimicrobial, and biodegradable pectin/HEC/ZnO biofilm for edible food packaging applications. Biomass Convers. Biorefin. 2024. [Google Scholar] [CrossRef]
- Sultan, M.; Nagieb, Z.A.; El-Masry, H.M.; Taha, G.M. Physically-crosslinked hydroxyethyl cellulose-g-poly (acrylic acid-co-acrylamide)-Fe3+/silver nanoparticles for water disinfection and enhanced adsorption of basic methylene blue dye. Int. J. Biol. Macromol. 2022, 196, 180–193. [Google Scholar] [CrossRef]
- Luo, J.J.; Xia, G.F.; Liu, L.Z.; Ji, A.P.; Luo, Q. Fabrication of Chitosan/Hydroxyethyl Cellulose/TiO2 Incorporated Mulberry Anthocyanin 3D-Printed Bilayer Films for Quality of Litchis. Foods 2022, 11, 3286. [Google Scholar] [CrossRef]
- Dong, Q.; Liang, X.; Chen, F.X.; Ke, M.F.; Yang, X.D.; Ai, J.J.; Cheng, Q.Q.; Zhou, Y.; Chen, Y. Injectable shape memory hydroxyethyl cellulose/soy protein isolate based composite sponge with antibacterial property for rapid noncompressible hemorrhage and prevention of wound infection. Int. J. Biol. Macromol. 2022, 217, 367–380. [Google Scholar] [CrossRef]
- Cigil, A.B.; Sen, F.; Birtane, H.; Kahraman, M.V. Covalently bonded nanosilver-hydroxyethyl cellulose/polyacrylic acid/sorbitol hybrid matrix: Thermal, morphological and antibacterial properties. Polym. Bull. 2022, 79, 11353–11368. [Google Scholar] [CrossRef]
- El Fawal, G.; Hong, H.Y.; Song, X.R.; Wu, J.L.; Sun, M.Q.; He, C.L.; Mo, X.M.; Jiang, Y.X.; Wang, H.S. Fabrication of antimicrobial films based on hydroxyethylcellulose and ZnO for food packaging application. Food Packag. Shelf Life 2020, 23, 100462. [Google Scholar] [CrossRef]
- Luo, P.F.; Liu, L.L.; Xu, W.Y.; Fan, L.H.; Nie, M. Preparation and characterization of aminated hyaluronic acid/oxidized hydroxyethyl cellulose hydrogel. Carbohydr. Polym. 2018, 199, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.G.; Chen, B.J.; Liu, H.R.; Wang, X.; Zhang, Y.; Wang, C.F.; Liu, C.X.; Zhong, Y.G.; Qiao, Y.J. Effects of Hydroxyethyl Cellulose and Sulfated Rice Bran Polysaccharide Coating on Quality Maintenance of Cherry Tomatoes during Cold Storage. Foods 2023, 12, 3156. [Google Scholar] [CrossRef] [PubMed]
- Kukushkina, E.A.; Mateos, H.; Altun, N.; Sportelli, M.C.; Gonzalez, P.; Picca, R.A.; Cioffi, N. Highly Stable Core-Shell Nanocolloids: Synergy between Nano-Silver and Natural Polymers to Prevent Biofilm Formation. Antibiotics 2022, 11, 1396. [Google Scholar] [CrossRef] [PubMed]
- Negreanu-Pirjol, B.S.; Oprea, O.C.; Negreanu-Pirjol, T.; Roncea, F.N.; Prelipcean, A.M.; Craciunescu, O.; Iosageanu, A.; Artem, V.; Ranca, A.; Motelica, L.; et al. Health Benefits of Antioxidant Bioactive Compounds in the Fruits and Leaves of Lonicera caerulea L. and Aronia melanocarpa (Michx.) Elliot. Antioxidants 2023, 12, 951. [Google Scholar] [CrossRef] [PubMed]
- Farouk, A. Development and characterization of biodegradable hydroxyethyl cellulose/polyacrylic acid films loaded with pomegranate peel extract with antibacterial activity. Biomass Convers. Biorefin. 2023. [Google Scholar] [CrossRef]
- Motelica, L.; Vasile, B.-S.; Ficai, A.; Surdu, V.-A.; Ficai, D.; Oprea, O.C.; Andronescu, E.; Mustățea, G.; Ungureanu, E.L.; Dobre, A.A. Antibacterial activity of zinc oxide nanoparticles loaded with essential oils. Pharmaceutics 2023, 15, 2470. [Google Scholar] [CrossRef]
- He, S.K.; Wang, Y.F. Antimicrobial and Antioxidant Effects of Kappa-Carrageenan Coatings Enriched with Cinnamon Essential Oil in Pork Meat. Foods 2022, 11, 2885. [Google Scholar] [CrossRef]
- Zhang, W.L.; Ezati, P.; Khan, A.; Assadpour, E.; Rhim, J.W.; Jafari, S.M. Encapsulation and delivery systems of cinnamon essential oil for food preservation applications. Adv. Colloid Interface Sci. 2023, 318, 102965. [Google Scholar] [CrossRef]
- Guo, Y.L.; Guo, S.Y.; Li, M.G.; Zhang, R.F.; Liu, Z.L.; Wang, X.Y. The effects of LTP/CEO/SBA-15 potato starch film on the postharvest quality of Agaricus bisporus. Sci. Hortic. 2024, 324, 112576. [Google Scholar] [CrossRef]
- Mu, M.C.; Lin, Y.T.; DeFlorio, W.; Arcot, Y.; Liu, S.H.; Zhou, W.T.; Wang, X.H.; Min, Y.J.; Cisneros-Zevallos, L.; Akbulut, M. Multifunctional antifouling coatings involving mesoporous nanosilica and essential oil with superhydrophobic, antibacterial, and bacterial antiadhesion characteristics. Appl. Surf. Sci. 2023, 634, 157656. [Google Scholar] [CrossRef]
- Caden, M.B.; Preston, G.M.; Van der Hoorn, R.A.L.; Flanagan, N.A.; Townley, H.E.; Thompson, I.P. Enhancing cinnamon essential oil activity by nanoparticle encapsulation to control seed pathogens. Ind. Crops Prod. 2018, 124, 755–764. [Google Scholar] [CrossRef]
- Smaoui, S.; Chérif, I.; Ben Hlima, H.; Khan, M.U.; Rebezov, M.; Thiruvengadam, M.; Sarkar, T.; Shariati, M.A.; Lorenzo, J.M. Zinc oxide nanoparticles in meat packaging: A systematic review of recent literature. Food Packag. Shelf Life 2023, 36, 101045. [Google Scholar] [CrossRef]
- Bhalla, N.; Ingle, N.; Jayaprakash, A.; Patel, H.; Patri, S.V.; Haranath, D. Green approach to synthesize nano zinc oxide via Moringa oleifera leaves for enhanced anti-oxidant, anti-acne and anti-bacterial properties for health & wellness applications. Arab. J. Chem. 2023, 16, 104506. [Google Scholar] [CrossRef]
- Zhu, X.Y.; Wang, J.; Cai, L.; Wu, Y.; Ji, M.H.; Jiang, H.J.; Chen, J. Dissection of the antibacterial mechanism of zinc oxide nanoparticles with manipulable nanoscale morphologies. J. Hazard. Mater. 2022, 430, 128436. [Google Scholar] [CrossRef]
- Zhou, R.; Cui, D.J.; Zhao, Q.; Liu, K.K.; Zhao, W.B.; Liu, Q.; Ma, R.N.; Jiao, Z.; Dong, L.; Shan, C.X. Effective control of microbial spoilage in soybeans by water-soluble ZnO nanoparticles. Food Chem. 2022, 388, 132994. [Google Scholar] [CrossRef]
- Motelica, L.; Oprea, O.C.; Vasile, B.S.; Ficai, A.; Ficai, D.; Andronescu, E.; Holban, A.M. Antibacterial Activity of Solvothermal Obtained ZnO Nanoparticles with Different Morphology and Photocatalytic Activity against a Dye Mixture: Methylene Blue, Rhodamine B and Methyl Orange. Int. J. Mol. Sci. 2023, 24, 5677. [Google Scholar] [CrossRef]
- Motelica, L.; Vasile, B.S.; Ficai, A.; Surdu, A.V.; Ficai, D.; Oprea, O.C.; Andronescu, E.; Jinga, D.C.; Holban, A.M. Influence of the Alcohols on the ZnO Synthesis and Its Properties: The Photocatalytic and Antimicrobial Activities. Pharmaceutics 2022, 14, 2842. [Google Scholar] [CrossRef]
- Xie, Y.J.; Pan, Y.F.; Cai, P.X. Cellulose-based antimicrobial films incroporated with ZnO nanopillars on surface as biodegradable and antimicrobial packaging. Food Chem. 2022, 368, 130784. [Google Scholar] [CrossRef]
- Dumbrava, A.; Matei, C.; Diacon, A.; Moscalu, F.; Berger, D. Novel ZnO-biochar nanocomposites obtained by hydrothermal method in extracts of Ulva lactuca collected from Black Sea. Ceram. Int. 2023, 49, 10003–10013. [Google Scholar] [CrossRef]
- Preda, M.D.; Popa, M.L.; Neacsu, I.A.; Grumezescu, A.M.; Ginghina, O. Antimicrobial Clothing Based on Electrospun Fibers with ZnO Nanoparticles. Int. J. Mol. Sci. 2023, 24, 1629. [Google Scholar] [CrossRef]
- Lungu, I.I.; Holban, A.M.; Ficai, A.; Grumezescu, A.M. Zinc Oxide Nanostrucures: New Trends in Antimicrobial Therapy. In Nanostructures for Antimicrobial Therapy; Elsevier: Amsterdam, The Netherlands, 2017; pp. 503–514. [Google Scholar] [CrossRef]
- Motelica, L.; Ficai, D.; Oprea, O.; Ficai, A.; Trusca, R.D.; Andronescu, E.; Holban, A.M. Biodegradable Alginate Films with ZnO Nanoparticles and Citronella Essential Oil-A Novel Antimicrobial Structure. Pharmaceutics 2021, 13, 1020. [Google Scholar] [CrossRef] [PubMed]
- Biswas, A.; Ahmed, T.; Rana, M.R.; Hoque, M.M.; Ahmed, M.F.; Sharma, M.; Sridhar, K.; Ara, R.; Inbaraj, B.S. Fabrication and Characterization of ZnO Nanoparticles-Based Biocomposite Films Prepared Using Carboxymethyl Cellulose, Taro Mucilage, and Black Cumin Seed Oil for Evaluation of Antioxidant and Antimicrobial Activities. Agronomy 2023, 13, 147. [Google Scholar] [CrossRef]
- Arezoo, E.; Mohammadreza, E.; Maryam, M.; Abdorreza, M.N. The synergistic effects of cinnamon essential oil and nano TiO2 on antimicrobial and functional properties of sago starch films. Int. J. Biol. Macromol. 2020, 157, 743–751. [Google Scholar] [CrossRef] [PubMed]
- Abdollahzadeh, E.; Hosseini, H.M.; Fooladi, A.A.I. Antibacterial activity of agar-based films containing nisin, cinnamon EO, and ZnO nanoparticles. J. Food Saf. 2018, 38, e12440. [Google Scholar] [CrossRef]
- Zhang, Q.Q.; Ma, S.Y.; Li, X.B.; Yuan, F.Q. Petal-like ZnO-based ultra-sensitive ethylene glycol sensors synthesized by solvent regulation. Mod. Phys. Lett. B 2024, 38, 2450017. [Google Scholar] [CrossRef]
- Ranjbari, A.; Kim, J.; Yu, J.; Kim, J.; Park, M.; Kim, N.; Demeestere, K.; Heynderickx, P.M. Effect of oxygen vacancy modification of ZnO on photocatalytic degradation of methyl orange: A kinetic study. Catal. Today 2024, 427, 114413. [Google Scholar] [CrossRef]
- Rani, N.; Yadav, S.; Mushtaq, A.; Rani, S.; Saini, M.; Rawat, S.; Gupta, K.; Saini, K.; Maity, D. Azadirachta indica peel extract-mediated synthesis of ZnO nanoparticles for antimicrobial, supercapacitor and photocatalytic applications. Chem. Pap. 2024, 78, 3687–3704. [Google Scholar] [CrossRef]
- Jabbar, K.Q.; Barzinjy, A.A. Biosynthesis and antibacterial activity of ZnO nanoparticles using fruit extract and the eutectic-based ionic liquid. Nanotechnology 2024, 35, 265601. [Google Scholar] [CrossRef]
- Gatou, M.A.; Lagopati, N.; Vagena, I.A.; Gazouli, M.; Pavlatou, E.A. ZnO Nanoparticles from Different Precursors and Their Photocatalytic Potential for Biomedical Use. Nanomaterials 2023, 13, 122. [Google Scholar] [CrossRef]
- Liu, Y.X.; Wang, D.S.; Peng, Q.; Chu, D.R.; Liu, X.W.; Li, Y.D. Directly Assembling Ligand-Free ZnO Nanocrystals into Three-Dimensional Mesoporous Structures by Oriented Attachment. Inorg. Chem. 2011, 50, 5841–5847. [Google Scholar] [CrossRef] [PubMed]
- Petrisor, G.; Motelica, L.; Trusca, R.D.; Mirt, A.L.; Vasilievici, G.; Tomescu, J.A.; Manea, C.; Dumbrava, A.S.; Corbu, V.M.; Gheorghe-Barbu, I.; et al. The Antimicrobial Potency of Mesoporous Silica Nanoparticles Loaded with Melissa officinalis Extract. Pharmaceutics 2024, 16, 525. [Google Scholar] [CrossRef] [PubMed]
- Petrisor, G.; Motelica, L.; Ficai, D.; Ilie, C.I.; Trusca, R.D.; Surdu, V.A.; Oprea, O.C.; Mirt, A.L.; Vasilievici, G.; Semenescu, A.; et al. Increasing Bioavailability of Trans-Ferulic Acid by Encapsulation in Functionalized Mesoporous Silica. Pharmaceutics 2023, 15, 660. [Google Scholar] [CrossRef] [PubMed]
- Deaconu, M.; Prelipcean, A.M.; Brezoiu, A.M.; Mitran, R.A.; Isopencu, G.; Matei, C.; Berger, D. Novel Collagen-Polyphenols-Loaded Silica Composites for Topical Application. Pharmaceutics 2023, 15, 312. [Google Scholar] [CrossRef]
- Cheng, M.; Yan, X.R.; Wang, X.Y.; Wang, Y.R.; Zhao, P.X.; Wang, J. Fabrication, Characterization, and Antifungal Assessment of Oregano Essential Oil-Loaded Nano-silica against Curvularia lunata in Brown Rot of Agaricus bisporus Storage. Food Bioprocess Technol. 2023, 16, 2921–2934. [Google Scholar] [CrossRef]
- Bautista-Espinoza, P.I.; Di Pierro, P.; Amaya-Llano, S.L.; García-Almendarez, B.E.; Mares-Mares, E.; Escamilla-García, M.; Granados-Arvizu, J.A.; de la Cruz, G.V.; Regalado-González, C. Impact of edible coatings reinforced with mesoporous silica nanoparticles added with cinnamon and lemongrass essential oils applied on sourdough bread. Food Biosci. 2023, 55, 102992. [Google Scholar] [CrossRef]
- Attia, R.G.; Khalil, M.M.H.; Hussein, M.A.; Fattah, H.M.A.; Rizk, S.A.; Ma’moun, S.A.M. Cinnamon Oil Encapsulated with Silica Nanoparticles: Chemical Characterization and Evaluation of Insecticidal Activity Against the Rice Moth, Corcyra cephalonica. Neotrop. Entomol. 2023, 52, 500–511. [Google Scholar] [CrossRef]
- Khalbas, A.; Albayati, T.; Ali, N.; Salih, I. Drug loading methods and kinetic release models using of mesoporous silica nanoparticles as a drug delivery system: A review. S. Afr. J. Chem. Eng. 2024, 50, 261–280. [Google Scholar] [CrossRef]
- Constantinoiu, I.; Viespe, C.; Busuioc, C.; Jinga, S.I. ZnO Thin Films by Pulsed Laser Deposition with Applications in Sensors. Univ. Politeh. Buchar. 2024, 86, 119–134. [Google Scholar]
- Kong, J.; Park, S.S.; Ha, C.S. pH-Sensitive Polyacrylic Acid-Gated Mesoporous Silica Nanocarrier Incorporated with Calcium Ions for Controlled Drug Release. Materials 2022, 15, 5926. [Google Scholar] [CrossRef]
- Khaled, R.K.; Wahba, M.A.; Badry, M.D.; Zawrah, M.F.; Heikal, E.A. Highly ordered pure and indium-incorporated MCM-41 mesoporous adsorbents: Synthesis, characterization and evaluation for dye removal. J. Mater. Sci. 2022, 57, 4504–4527. [Google Scholar] [CrossRef]
- Yasmin, T.; Müller, K. Structural characterization of octadecyl modified MCM-41 silica by NMR and FTIR. J. Porous Mater. 2016, 23, 339–348. [Google Scholar] [CrossRef]
- Li, Y.Q.; Kong, D.X.; Wu, H. Analysis and evaluation of essential oil components of cinnamon barks using GC-MS and FTIR spectroscopy. Ind. Crops Prod. 2013, 41, 269–278. [Google Scholar] [CrossRef]
- Zhu, L.B.; Zhou, L.; Huang, N.; Cui, W.J.; Liu, Z.M.; Xiao, K.; Zhou, Z.M. Efficient Preparation of Enantiopure D-Phenylalanine through Asymmetric Resolution Using Immobilized Phenylalanine Ammonia-Lyase from JN-1 in a Recirculating Packed-Bed Reactor. PLoS ONE 2014, 9, e108586. [Google Scholar] [CrossRef]
- Li, F.X.; Wang, W.C.; Wang, X.L.; Yu, J.Y. Changes of structure and property of alkali soluble hydroxyethyl celluloses (HECs) and their regenerated films with the molar substitution. Carbohydr. Polym. 2014, 114, 206–212. [Google Scholar] [CrossRef]
- Zheng, S.W.; Rupa, E.J.; Chokkalingam, M.; Piao, X.M.; Han, Y.X.; Ahn, J.C.; Nahar, J.; Kong, B.M.; Kwak, G.Y.; Kim, J.H.; et al. Photocatalytic Activity of Orchid-Flower-Shaped ZnO Nanoparticles, toward Cationic and Anionic Dye Degradation under Visible Light, and Its Anti-Cancer Potential. Coatings 2022, 12, 946. [Google Scholar] [CrossRef]
- Niculescu, A.G.; Mihaiescu, B.; Birca, A.C.; Morosan, A.; Munteanu, O.M.; Vasile, B.S.; Hadibarata, T.; Istrati, D.; Mihaiescu, D.E.; Grumezescu, A.M. Fabrication and Advanced Imaging Characterization of Magnetic Aerogel-Based Thin Films for Water Decontamination. Gels 2024, 10, 394. [Google Scholar] [CrossRef]
- Stelescu, M.D.; Oprea, O.C.; Motelica, L.; Ficai, A.; Trusca, R.D.; Sonmez, M.; Nituica, M.; Georgescu, M. Obtaining and Characterizing New Types of Materials Based on Low-Density Polyethylene and Thermoplastic Starch. J. Compos. Sci. 2024, 8, 134. [Google Scholar] [CrossRef]
- Zhang, X.Q.; Guo, H.Q.; Luo, W.H.; Chen, G.J.; Xiao, N.Y.; Xiao, G.S.; Liu, C.F. Development of functional hydroxyethyl cellulose-based composite films for food packaging applications. Front. Bioeng. Biotechnol. 2022, 10, 989893. [Google Scholar] [CrossRef]
- Brik, M.G.; Srivastava, A.M.; Popov, A.I. A few common misconceptions in the interpretation of experimental spectroscopic data. Opt. Mater. 2022, 127, 112276. [Google Scholar] [CrossRef]
- Bala, N.; Saha, S.; Chakraborty, M.; Maiti, M.; Das, S.; Basu, R.; Nandy, P. Green synthesis of zinc oxide nanoparticles using leaf extract: Effect of temperature on synthesis, anti-bacterial activity and anti-diabetic activity. RSC Adv. 2015, 5, 4993–5003. [Google Scholar] [CrossRef]
- Sharmila, G.; Thirumarimurugan, M.; Muthukumaran, C. Green synthesis of ZnO nanoparticles using leaf extract: Characterization and evaluation of its antioxidant, bactericidal and anticancer activities. Microchem. J. 2019, 145, 578–587. [Google Scholar] [CrossRef]
- Cen, C.N.; Wang, F.F.; Wang, Y.F.; Li, H.; Fu, L.L.; Li, Y.; Chen, J.; Wang, Y.B. Design and characterization of an antibacterial film composited by hydroxyethyl cellulose (HEC), carboxymethyl chitosan (CMCS), and nano ZnO for food packaging. Int. J. Biol. Macromol. 2023, 231, 123203. [Google Scholar] [CrossRef]
- Motelica, L.; Popescu, A.; Razvan, A.G.; Oprea, O.; Trusca, R.D.; Vasile, B.S.; Dumitru, F.; Holban, A.M. Facile Use of ZnO Nanopowders to Protect Old Manual Paper Documents. Materials 2020, 13, 5452. [Google Scholar] [CrossRef] [PubMed]
- Ding, Q.J.; Han, W.J.; Li, X.; Jiang, Y.F.; Zhao, C.S. New insights into the autofluorescence properties of cellulose/nanocellulose. Sci. Rep. 2020, 10, 21387. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.Y.; Zhang, Z.C.; Wang, X.; An, H.R.; Liang, S.; Li, N. Preparation and characterization of cellulose fluorescent material: Experiment and simulation. Int. J. Biol. Macromol. 2024, 270, 132064. [Google Scholar] [CrossRef] [PubMed]
- Alruwaili, N.K.; Ahmad, N.; Alzarea, A.I.; Alomar, F.A.; Alquraini, A.; Akhtar, S.; Bin Shahari, M.S.; Zafar, A.; Elmowafy, M.; Elkomy, M.H.; et al. Arabinoxylan-Carboxymethylcellulose Composite Films for Antibiotic Delivery to Infected Wounds. Polymers 2022, 14, 1769. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, N.; Ahmad, M.M.; Alruwaili, N.K.; Alrowaili, Z.A.; Alomar, F.A.; Akhtar, S.; Alsaidan, O.A.; Alhakamy, N.A.; Zafar, A.; Elmowafy, M.; et al. Antibiotic-Loaded Psyllium Husk Hemicellulose and Gelatin-Based Polymeric Films for Wound Dressing Application. Pharmaceutics 2021, 13, 236. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, N.; Tayyeb, D.; Ali, I.; Alruwaili, N.K.; Ahmad, W.; Rehman, A.U.; Khan, A.H.; Iqbal, M.S. Development and Characterization of Hemicellulose-Based Films for Antibacterial Wound-Dressing Application. Polymers 2020, 12, 548. [Google Scholar] [CrossRef] [PubMed]
- Papadaki, A.; Lappa, I.K.; Manikas, A.C.; Carbone, M.G.P.; Natsia, A.; Kachrimanidou, V.; Kopsahelis, N. Grafting bacterial cellulose nanowhiskers into whey protein/essential oil film composites: Effect on structure, essential oil release and antibacterial properties of films. Food Hydrocoll. 2024, 147, 109374. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, J.Y.; Li, D.X.; Cheng, F. The Recent Progress of the Cellulose-Based Antibacterial Hydrogel. Gels 2024, 10, 109. [Google Scholar] [CrossRef] [PubMed]
- Joubert, F.; Sharples, G.J.; Musa, O.M.; Hodgson, D.R.W.; Cameron, N.R. Preparation, Properties, and Antibacterial Behavior of a Novel Cellulose Derivative Containing Lactam Groups. J. Polym. Sci. Pol. Chem. 2015, 53, 68–78. [Google Scholar] [CrossRef]
- Ågren, M.S.; Phothong, N.; Burian, E.A.; Mogensen, M.; Haedersdal, M.; Jorgensen, L.N. Topical Zinc Oxide Assessed in Two Human Wound-healing Models. Acta Derm.-Venereol. 2021, 101, adv00465. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.H.; Sermersheim, M.; Li, H.C.; Lee, P.H.U.; Steinberg, S.M.; Ma, J.J. Zinc in Wound Healing Modulation. Nutrients 2018, 10, 16. [Google Scholar] [CrossRef] [PubMed]
- Rajivgandhi, G.; Gnanamangai, B.M.; Prabha, T.H.; Poornima, S.; Maruthupandy, M.; Alharbi, N.S.; Kadaikunnan, S.; Li, W.J. Biosynthesized zinc oxide nanoparticles (ZnO NPs) using actinomycetes enhance the anti-bacterial efficacy against K. Pneumoniae. J. King Saud Univ. Sci. 2022, 34, 101731. [Google Scholar] [CrossRef]
- He, E.K.; Qiu, H.; Huang, X.Y.; Van Gestel, C.A.M.; Qiu, R.L. Different dynamic accumulation and toxicity of ZnO nanoparticles and ionic Zn in the soil sentinel organism. Environ. Pollut. 2019, 245, 510–518. [Google Scholar] [CrossRef]
- Nagar, V.; Singh, T.; Tiwari, Y.; Aseri, V.; Pandit, P.P.; Chopade, R.L.; Pandey, K.; Lodha, P.; Awasthi, G. ZnO Nanoparticles: Exposure, toxicity mechanism and assessment. Mater. Today Proc. 2022, 69, 56–63. [Google Scholar] [CrossRef]
Sample Code | Hydroxyethyl Cellulose (HEC) | MCM-41 | Cinnamon Essential Oil (CEO) | ZnO | Glycerol |
---|---|---|---|---|---|
C1 | 5 g | - | - | - | 2 mL |
C2 | 5 g | 0.25 g | 1.5 mL | 0.25 g | 2 mL |
C3 | 5 g | 0.25 g | 1.5 mL | 0.50 g | 2 mL |
C4 | 5 g | 0.25 g | 1.5 mL | 0.75 g | 2 mL |
C5 | 5 g | - | - | 0.50 g | 2 mL |
C6 | 5 g | 0.25 g | 1.5 mL | - | 2 mL |
Sample | T5% (°C) | T10% (°C) | T15% (°C) | Mass Loss (%) RT-150 °C | Endo Effect-Dehydration (°C) | Mass Loss (%) 150–300 °C | Mass Loss (%) 300–600 °C | Exo Effect (°C) | Residual Mass (%) |
---|---|---|---|---|---|---|---|---|---|
C1 | 81.6 | 115.4 | 173.1 | 12.62% | 88.3 | 45.54% | 30.07% | 774.0 | 1.38% |
C2 | 100.1 | 141.9 | 171.3 | 11.20% | 88.3 | 37.82% | 45.34% | 525.4 | 5.03% |
C3 | 101.4 | 150.7 | 178.1 | 9.91% | 83.6 | 36.55% | 43.35% | 515.1 | 9.91% |
C4 | 131.4 | 167.8 | 191.5 | 7.27% | 93.3 | 39.03% | 41.33% | 471.3 | 12.15% |
Film Code | WVP (10−10 g/Pa∙m∙s) |
---|---|
C1 | 0.768 ± 0.009 a |
C2 | 0.523 ± 0.015 b |
C3 | 0.446 ± 0.018 c |
C4 | 0.415 ± 0.014 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Motelica, L.; Ficai, D.; Petrisor, G.; Oprea, O.-C.; Trușcǎ, R.-D.; Ficai, A.; Andronescu, E.; Hudita, A.; Holban, A.M. Antimicrobial Hydroxyethyl-Cellulose-Based Composite Films with Zinc Oxide and Mesoporous Silica Loaded with Cinnamon Essential Oil. Pharmaceutics 2024, 16, 1225. https://doi.org/10.3390/pharmaceutics16091225
Motelica L, Ficai D, Petrisor G, Oprea O-C, Trușcǎ R-D, Ficai A, Andronescu E, Hudita A, Holban AM. Antimicrobial Hydroxyethyl-Cellulose-Based Composite Films with Zinc Oxide and Mesoporous Silica Loaded with Cinnamon Essential Oil. Pharmaceutics. 2024; 16(9):1225. https://doi.org/10.3390/pharmaceutics16091225
Chicago/Turabian StyleMotelica, Ludmila, Denisa Ficai, Gabriela Petrisor, Ovidiu-Cristian Oprea, Roxana-Doina Trușcǎ, Anton Ficai, Ecaterina Andronescu, Ariana Hudita, and Alina Maria Holban. 2024. "Antimicrobial Hydroxyethyl-Cellulose-Based Composite Films with Zinc Oxide and Mesoporous Silica Loaded with Cinnamon Essential Oil" Pharmaceutics 16, no. 9: 1225. https://doi.org/10.3390/pharmaceutics16091225
APA StyleMotelica, L., Ficai, D., Petrisor, G., Oprea, O. -C., Trușcǎ, R. -D., Ficai, A., Andronescu, E., Hudita, A., & Holban, A. M. (2024). Antimicrobial Hydroxyethyl-Cellulose-Based Composite Films with Zinc Oxide and Mesoporous Silica Loaded with Cinnamon Essential Oil. Pharmaceutics, 16(9), 1225. https://doi.org/10.3390/pharmaceutics16091225