Analysis of Lipophilicity and Pharmacokinetic Parameters of Dipyridothiazine Dimers with Anticancer Potency
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Chromatographic Procedure
2.3. Theoretical Lipophilicity, ADMET Parameters and Target Prediction
3. Results
4. Discussion
- Dimers 1a–4a RM0 = −89.395b − 0.4208 (r = 0.9952);
- Dimers 1b–4b RM0 = −106.55b − 1.1075 (r = 0.9957);
- Dimers 1c–4c RM0 = −93.8444b − 0.5607 (r = 0.9912);
- Dimers 1d–4d RM0 = −96.341b − 0.5183607 (r = 0.9933).
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ginex, T.; Vazquez, J.; Gilbert, E.; Herrero, E.; Luque, F.J. Lipophilicity in drug design: An overview of lipophilicity descriptors in 3D-QSAR studies. Future Med. Chem. 2019, 11, 1177–1193. [Google Scholar] [CrossRef] [PubMed]
- Johnson, T.W.; Gallego, R.A.; Edwards, M.P. Lipophilic efficiency as an important metric in drug design. J. Med. Chem. 2018, 61, 6401–6420. [Google Scholar] [CrossRef] [PubMed]
- Ditzinger, F.; Price, D.J.; Ilie, A.R.; Köhl, N.J.; Jankovic, S.; Tsakiridou, G.; Aleandri, S.; Kalantzi, L.; Holm, R.; Nair, A.; et al. Lipophilicity and hydrophobicity considerations in bioenabling oral formulations approaches—A PEARRL review. J. Pharm. Pharmacol. 2019, 71, 464–482. [Google Scholar] [CrossRef] [PubMed]
- Markovic, M.; Ben-Shabat, S.; Keinan, S.; Aponick, A.; Zimmermann, E.M.; Dahan, A. Lipidic prodrug approach for improved oral drug delivery and therapy. Med. Res. Rev. 2019, 39, 579–607. [Google Scholar] [CrossRef] [PubMed]
- Di, L.; Kerns, E.H. Profiling drug-like properties in discovery research. Curr. Opin. Chem. Biol. 2003, 7, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Manto Chagasa, C.; Mossa, S.; Alisaraie, L. Drug metabolites and their effects on the development of adverse reactions: Revisiting Lipinski’s Rule of Five. Int. J. Pharm. 2018, 549, 133–149. [Google Scholar] [CrossRef]
- Lobo, S. Is there enough focus on lipophilicity in drug discovery? Expert Opin. Drug Discov. 2020, 15, 261–263. [Google Scholar] [CrossRef]
- Alqahtani, M.S.; Kazi, M.; Alsenaidy, M.A.; Ahmad, M.Z. Advances in Oral Drug Delivery. Front. Pharmacol. 2021, 12, 618411. [Google Scholar] [CrossRef]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001, 46, 3–26. [Google Scholar] [CrossRef]
- Giaginis, G.; Tsopelas, F.; Tsantili-Kakoulidou, A. The Impact of Lipophilicity in Drug Discovery: Rapid Measurements by Means of Reversed-Phase HPLC. Methods Mol. Biol. 2018, 1824, 217–228. [Google Scholar] [CrossRef]
- Dulsat, J.; López-Nieto, B.; Estrada-Tejedor, R.; Borrell, J.I. Evaluation of free online ADMET tools for academic or small biotech environments. Molecules 2023, 28, 776. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Mei, L.; Quach, T.; Porter, C.; Trevaskis, N. Lipophilic Conjugates of Drugs: A Tool to Improve Drug Phar-macokinetic and Therapeutic Profiles. Pharm. Res. 2021, 38, 1497–1518. [Google Scholar] [CrossRef] [PubMed]
- Soares, J.X.; Santos, Á.; Fernandes, C.; Pinto, M.M.M. Liquid chromatography on the different methods for the determination of lipophilicity: An essential analytical tool in medicinal chemistry. Chemosensors 2022, 10, 340. [Google Scholar] [CrossRef]
- Roman, I.P.; Mastromichali, A.; Tyrovola, K.; Canals, A.; Psillakis, E. Rapid determination of octanol-water partition coefficient using vortex-assisted liquid-liquid microextraction. J. Chromatogr. Sci. 2014, 1330, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Toma, A.; Hapau, D.; Casoni, D.; Zaharia, V. Heterocycles 33: Lipophilicity of new class of thioethers estimated by reversed-phase thin-layer chromatography and different computational methods. J. Chromatogr. Sci. 2014, 52, 1302–1307. [Google Scholar] [CrossRef]
- Franke, U.; Munk, A.; Wiese, M. Ionization Constants and Distribution Coefficients of Phenothiazines as Calcium Channel Antagonists Determined by a pH-Metric Method and Correlation with Calculated Partition Coefficients. J. Pharm. Sci. 1999, 88, 89–95. [Google Scholar] [CrossRef]
- Hendrich, H.B.; Wesołowska, O.; Poła, A.; Motohashi, N.; Molnár, J.; Michalak, K. Neither lipophilicity nor membrane-perturbing potency of phenothiazinemaleates correlate with the ability to inhibit P-glycoprotein transport activity. Mol. Membr. Biol. 2003, 20, 53–60. [Google Scholar] [CrossRef]
- Morak-Młodawska, B.; Jeleń, M.; Pluta, K. Phenothiazines Modified with the Pyridine Ring as Promising Anticancer Agents. Life 2021, 11, 206. [Google Scholar] [CrossRef]
- Nycz-Empel, A.; Bober, K.; Wyszomirski, M.; Kisiel, E.; Zięba, A. The Application of CA and PCA to the evaluation of lipophilicity and physicochemical properties of tetracyclic diazaphenothiazine derivatives. J. Anal. Methods Chem. 2019, 2019, 8131235. [Google Scholar] [CrossRef]
- Morak-Młodawska, B.; Jeleń, M.; Martula, E.; Korlacki, R. Study of Lipophilicity and ADME Properties of 1,9-Diazaphenothiazines with Anticancer Action. Int. J. Mol. Sci. 2023, 24, 6970. [Google Scholar] [CrossRef]
- Martula, E.; Morak-Młodawska, B.; Jeleń, M.; Okechukwu, N.P.; Balachandran, A.; Tehirunavukarasu, P.; Anamalay, K.; Ulaganathan, V. Synthesis and structural characterization of novel dimers of dipyridothiazine as promising antiproliferative agents. Molecules 2023, 28, 7662. [Google Scholar] [CrossRef] [PubMed]
- Martula, E.; Morak-Młodawska, B.; Jeleń, M.; Strzyga-Łach, P.; Struga, M.; Żurawska, K.; Kasprzycka, A.; Bagrowska, W. Comparative Analysis of Structural Analogs of Dipyridothiazines with m-Xylene and a Lutidine Moiety—In Silico, In Vitro, and Docking Studies. Appl. Sci. 2024, 14, 7263. [Google Scholar] [CrossRef]
- Virtual Computational Chemistry Laboratory. Available online: https://vcclab.org/ (accessed on 11 July 2024).
- ChemDraw: ChemDraw Ultra, version 12. PerkinElmer Informatics. CambridgeSoft: Cambridge, MA, USA, 2007.
- SwissADME SwissDrugDesign. Available online: http://www.swissadme.ch/ (accessed on 11 July 2024).
- PreADMET. Home–Prediction of Metabolism|PreMetabo. Available online: https://premetabo.webservice.bmdrc.org/home-2/ (accessed on 11 July 2024).
- SwissTargetPrediction SwissDrugDesign. Available online: http://www.swisstargetprediction.ch/predict.php (accessed on 11 July 2024).
- Bodor, N.; Gabanyi, Z.; Wong, C.K. A new method for the estimation of partition coefficient. J. Am. Chem. Soc. 1989, 111, 3783–3786. [Google Scholar] [CrossRef]
- Mannhold, R.; Cruciani, G.; Dross, K.; Rekker, R. Multivariate analysis of experimental and computational descriptors of molecular lipophilicity. J. Comput.-Aided Mol. Des. 1998, 12, 573–581. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, A.; Han, Y.; Hopfinger, A.J. Predicting Caco-2 Cell Permeation Coecients of Organic Molecules Using Membrane-Interaction QSAR Analysis. J. Chem. Inf. Comput. Sci. 2002, 42, 331–342. [Google Scholar] [CrossRef]
- Irvine, J.D.; Takahashi, L.; Lockhart, K.; Cheong, J.; Tolan, J.W.; Selick, H.E.; Grove, J.R. MDCK (Madin-Darby Canine Kidney) Cells: A Tool for Membrane Permeability Screening. J. Pharm. Sci. 1999, 88, 28–33. [Google Scholar] [CrossRef]
- Feher, M.; Schmidt, J.M. Property Distributions: Differences Between Drugs, Natural Products, and Molecules from Combinatorial Chemistry. J. Chem. Inf. Comput. Sci. 2003, 34, 218–227. [Google Scholar] [CrossRef]
- Dołowy, M. Comparative Study of the Lipophilicity of Selected Tauro-Conjugates Bile Acids Determined with the Use of RPTLC and RPHPTLC Methods. J. Liq. Chromatogr. Relat. Technol. 2009, 32, 2281–2292. [Google Scholar] [CrossRef]
- Kowalska, A.; Pluta, K. RP TLC Assay of The Lipophilicity of New Azathioprine Analogs. J. Liq. Chromatogr. Relat. Technol. 2012, 35, 1686–1696. [Google Scholar] [CrossRef]
- Nowak, M.; Pluta, K. Study of the Lipophilicity of Novel Diquinothiazinesa. J. Planar Chromatogr. 2006, 19, 157–160. [Google Scholar] [CrossRef]
No. | LogPcalcd. | |||||||
---|---|---|---|---|---|---|---|---|
iLOGP | XLOGP3 | WLOGP | MLOGP | SILICOS-IT | LogP (ChemDraw) | LogP (Mol Inspiration) | LogP (VCCLAB Alogps) | |
1a | 3.42 | 5.62 | 5.81 | 4.07 | 4.67 | 6.22 | 5.76 | 4.98 |
1b | 3.30 | 5.62 | 5.81 | 4.07 | 4.67 | 6.22 | 5.79 | 5.01 |
1c | 3.76 | 5.62 | 5.81 | 4.07 | 4.67 | 6.22 | 5.81 | 5.03 |
1d | 3.22 | 4.62 | 5.20 | 3.07 | 4.10 | 5.73 | 4.71 | 4.47 |
2a | 3.62 | 4.95 | 5.81 | 4.07 | 4.67 | 4.73 | 5.37 | 4.74 |
2b | 3.34 | 4.95 | 5.81 | 4.07 | 4.67 | 4.73 | 5.39 | 4.76 |
2c | 3.85 | 4.95 | 5.81 | 4.07 | 4.67 | 4.73 | 5.42 | 4.80 |
2d | 3.67 | 3.95 | 5.20 | 3.07 | 4.10 | 4.24 | 4.32 | 4.24 |
3a | 3.33 | 4.29 | 5.81 | 3.26 | 4.67 | 3.24 | 4.98 | 4.20 |
3b | 3.70 | 4.29 | 5.81 | 3.26 | 4.67 | 3.24 | 5.00 | 4.25 |
3c | 3.29 | 4.29 | 5.81 | 3.26 | 4.67 | 3.24 | 5.03 | 4.26 |
3d | 3.30 | 3.29 | 5.20 | 2.26 | 4.10 | 2.75 | 3.93 | 3.84 |
4a | 3.31 | 4.95 | 5.81 | 3.26 | 4.67 | 4.73 | 5.37 | 4.77 |
4b | 3.28 | 4.95 | 5.81 | 3.26 | 4.67 | 4.73 | 5.39 | 4.81 |
4c | 3.26 | 4.95 | 5.81 | 3.26 | 4.67 | 4.73 | 5.42 | 4.84 |
4d | 3.22 | 3.95 | 5.20 | 2.26 | 4.10 | 4.24 | 4.32 | 4.24 |
No. | −b | RM0 | r |
---|---|---|---|
1a | 0.045 | 3.5760 | 0.9973 |
1b | 0.0426 | 3.3468 | 0.9806 |
1c | 0.0432 | 3.4546 | 0.9979 |
1d | 0.0300 | 2.4253 | 0.9978 |
2a | 0.0409 | 3.3041 | 0.9983 |
2b | 0.0385 | 3.1117 | 0.9850 |
2c | 0.0418 | 3.4411 | 0.9972 |
2d | 0.0327 | 2.6375 | 0.9941 |
3a | 0.0217 | 1.6016 | 0.9856 |
3b | 0.0274 | 1.7742 | 0.9674 |
3c | 0.0252 | 1.9040 | 0.9850 |
3d | 0.0139 | 0.8993 | 0.9562 |
4a | 0.0274 | 1.9033 | 0.9933 |
4b | 0.0243 | 1.4866 | 0.9621 |
4c | 0.0296 | 2.0767 | 0.9983 |
4d | 0.0209 | 1.3580 | 0.9765 |
Parameters | I | II | III | IV | V |
---|---|---|---|---|---|
LogPlit. | 0.64 [28] | 1.21 [29] | 1.58 [29] | 2.43 [29] | 4.45 [28] |
RM0 | 0.5858 | 0.9275 | 1.5099 | 2.1803 | 2.6378 |
−b | 0.0168 | 0.0181 | 0.0225 | 0.0288 | 0.0346 |
r | 0.9954 | 0.9936 | 0.9920 | 0.9960 | 0.9930 |
No. | 1a | 1b | 1c | 1d | 2a | 2b | 2c | 2d | 3a | 3b | 3c | 3d | 4a | 4b | 4c | 4d |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
logPTLC | 3.06 | 2.86 | 2.95 | 2.09 | 2.82 | 2.66 | 2.94 | 2.27 | 1.39 | 1.54 | 1.68 | 0.81 | 1.65 | 1.30 | 1.80 | 1.21 |
No. | Molecular Mass (g/mol) | H-Bond Acceptors | H-Bond Donors | Rotatable Bonds | Molar Refractivity | TPSA [Å2] | P-gp Substrate | Lipinski’s Rules | Ghose’s Rules | Veber’s Rules | Muegge’s Rules |
---|---|---|---|---|---|---|---|---|---|---|---|
1a | 504.63 | 4 | 0 | 4 | 149.60 | 108.64 | + | + | − | + | − |
1b | 504.63 | 4 | 0 | 4 | 149.60 | 108.64 | + | + | − | + | − |
1c | 504.63 | 4 | 0 | 4 | 149.60 | 108.64 | + | + | − | + | − |
1d | 505.62 | 5 | 0 | 4 | 147.40 | 121.53 | + | + | − | + | + |
2a | 504.63 | 4 | 0 | 4 | 149.60 | 108.64 | + | + | − | + | + |
2b | 504.63 | 4 | 0 | 4 | 149.60 | 108.64 | + | + | − | + | + |
2c | 504.63 | 4 | 0 | 4 | 149.60 | 108.64 | + | + | − | + | + |
2d | 505.62 | 5 | 0 | 4 | 147.40 | 121.53 | + | + | − | + | + |
3a | 504.63 | 4 | 0 | 4 | 149.60 | 108.64 | + | + | − | + | + |
3b | 504.63 | 4 | 0 | 4 | 149.60 | 108.64 | + | + | − | + | + |
3c | 504.63 | 4 | 0 | 4 | 149.60 | 108.64 | + | + | − | + | + |
3d | 505.62 | 5 | 0 | 4 | 147.40 | 121.53 | + | + | − | + | + |
4a | 504.63 | 4 | 0 | 4 | 149.60 | 108.64 | + | + | − | + | + |
4b | 504.63 | 4 | 0 | 4 | 149.60 | 108.64 | + | + | − | + | + |
4c | 504.63 | 4 | 0 | 4 | 149.60 | 108.64 | + | + | − | + | + |
4d | 505.62 | 5 | 0 | 4 | 147.40 | 121.53 | + | + | − | + | + |
No. | Caco-2 Permeability (nm/s) | Skin Permeability (SP, log Kp) | BBB Permeability (C.brain/C.blood) | HIA (%) | MDCK (nm/s) | Plasma Protein Binding (PPB,%) |
---|---|---|---|---|---|---|
1a | 35.7262 | −2.60631 | 1.783 | 97.816 | 0.275 | 100 |
1b | 30.5877 | −2.62873 | 0.208 | 97.816 | 0.073 | 100 |
1c | 32.9405 | −2.63079 | 0.202 | 97.816 | 3.944 | 100 |
1d | 28.8091 | −2.91305 | 0.415 | 98.019 | 0.205 | 98 |
2a | 29.7800 | −2.91532 | 0.905 | 97.816 | 0.1395 | 96 |
2b | 26.4756 | −2.94119 | 0.224 | 97.816 | 0.0607 | 97 |
2c | 27.9283 | −2.94361 | 0.311 | 97.816 | 1.399 | 95 |
2d | 25.5742 | −3.25587 | 0.205 | 98.019 | 0.114 | 91 |
3a | 29.3153 | −3.48028 | 0.391 | 97.816 | 0.151 | 91 |
3b | 25.9114 | −3.50753 | 0.400 | 97.816 | 0.064 | 90 |
3c | 27.4437 | −3.5101 | 0.201 | 97.816 | 1.636 | 90 |
3d | 25.1325 | −3.81394 | 0.183 | 98.019 | 0.121 | 87 |
4a | 32.0035 | −3.15846 | 0.258 | 97.816 | 4.062 | 97 |
4b | 29.4980 | −3.1559 | 0.938 | 97.816 | 0.072 | 99 |
4c | 32.0035 | −3.15846 | 0.258 | 97.816 | 4.062 | 97 |
4d | 28.0612 | −3.47613 | 0.403 | 98.019 | 0.203 | 91 |
Doxorubicin | 17.7263 | −4.73786 | 0.036 | 56.841 | 1.204 | 31 |
No. of Compounds | ADMET Activities | Equation | r |
---|---|---|---|
1a,b,c,d–4a,b,c,d | Caco-2 | Caco-2 = 4.0763 RM03 − 26.748 RM02 + 54.697 RM0 − 6.1633 | 0.7288 |
1a,b,c,d–4a,b,c,d | SP | SP = 0.5685 RM03 − 3.7459 RM02 + 7.621 RM0 − 7.7475 | 0.3022 |
1a,b,c,d–4a,b,c,d | BBB | BBB = 0.4934 RM03 − 3.0831 RM02 + 5.8357 RM0 − 2.9445 | 0.6158 |
1a,b,c,d–4a,b,c,d | HIA | HIA = −0.118 RM03 + 0.7997 RM02 − 1.7015 RM0 + 99.01 | 0.6705 |
1a,b,c,d–4a,b,c,d | MDCK | MDCK = 0.7955 RM03 − 5.8698 RM02 + 13.621 RM0 − 8.7393 | 0.3143 |
1a,b,c,d–4a,b,c,d | PPB | PPB = −2.0899 RM03 − 14.54 RM02 + 34.436 RM0 + 66.883 | 0.6918 |
No. of Compound | Target Prediction | ||
---|---|---|---|
1a | Kinase | Family C G protein-coupled receptor | Phosphodiesterase |
1b | Ligand-gated ion channel | Cytochrome P450 | Phosphodiesterase |
1c | Kinase | Protease | Enzyme |
1d | Kinase | Family C G protein-coupled receptor | Phosphodiesterase |
2a | Kinase | Enzyme | Phosphodiesterase |
2b | Kinase | Histone deacetylase 1 | Phosphodiesterase |
2c | Kinase | Family C G protein-coupled receptor | Protease |
2d | Kinase | Family C G protein-coupled receptor | Phosphodiesterase |
3a | Kinase | Cytochrome P450 | Protease |
3b | Cytochrome P450 | Protease | Phosphodiesterase |
3c | Kinase | Enzyme | Protease |
3d | Reader | Family C G protein-coupled receptor | Protease |
4a | Phosphodiesterase | Family C G protein-coupled receptor | Protease |
4b | Kinase | Family A G protein-coupled receptor | Cytochrome P450 |
4c | Kinase | Family C G protein-coupled receptor | Voltage-gated ion channel |
4d | Phosphodiesterase | Bromodomain-containing protein 4,3,2 | Cytochrome P450 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martula, E.; Morak-Młodawska, B.; Jeleń, M.; Okechukwu, P.N. Analysis of Lipophilicity and Pharmacokinetic Parameters of Dipyridothiazine Dimers with Anticancer Potency. Pharmaceutics 2024, 16, 1235. https://doi.org/10.3390/pharmaceutics16091235
Martula E, Morak-Młodawska B, Jeleń M, Okechukwu PN. Analysis of Lipophilicity and Pharmacokinetic Parameters of Dipyridothiazine Dimers with Anticancer Potency. Pharmaceutics. 2024; 16(9):1235. https://doi.org/10.3390/pharmaceutics16091235
Chicago/Turabian StyleMartula, Emilia, Beata Morak-Młodawska, Małgorzata Jeleń, and Patrick Nwabueze Okechukwu. 2024. "Analysis of Lipophilicity and Pharmacokinetic Parameters of Dipyridothiazine Dimers with Anticancer Potency" Pharmaceutics 16, no. 9: 1235. https://doi.org/10.3390/pharmaceutics16091235
APA StyleMartula, E., Morak-Młodawska, B., Jeleń, M., & Okechukwu, P. N. (2024). Analysis of Lipophilicity and Pharmacokinetic Parameters of Dipyridothiazine Dimers with Anticancer Potency. Pharmaceutics, 16(9), 1235. https://doi.org/10.3390/pharmaceutics16091235