Water-Soluble Vitamins: Hypo- and Hypervitaminosis in Pediatric Population
Abstract
:1. Introduction
2. Materials and Methods
3. Vitamin B1 (Thiamine)
3.1. Sources of Vitamin B1
3.2. RDIs and Physiological Functions
3.3. Hypovitaminosis B1
3.4. Hypervitaminosis B1
4. Vitamin B2 (Riboflavin)
4.1. Sources of Vitamin B2
4.2. RDIs and Physiological Functions
4.3. Hypovitaminosis B2
4.4. Hypervitaminosis B2
5. Vitamin B3 (Niacin)
5.1. Sources of Vitamin B3
5.2. RDIs and Physiological Functions
5.3. Hypovitaminosis B3
5.4. Hypervitaminosis B3
6. Vitamin B5 (Pantothenic Acid)
6.1. Sources of Vitamin B5
6.2. RDIs and Physiological Functions
6.3. Hypovitaminosis B5
6.4. Hypervitaminosis B5
7. Vitamin B6 (Pyridoxine)
7.1. Sources of Vitamin B6
7.2. RDIs and Physiological Functions
7.3. Hypovitaminosis B6
7.4. Hypervitaminosis B6
8. Vitamin B7 (Biotin)
8.1. Sources of Vitamin B7
8.2. RDIs and Physiological Functions
8.3. Hypovitaminosis B7
8.4. Hypervitaminosis B7
9. Vitamin B9 (Folate)
9.1. Sources of Vitamin B9
9.2. RDIs and Physiological Functions
9.3. Hypovitaminosis B9
9.4. Hypervitaminosis B9
10. Vitamin B12 (Cobalamin)
10.1. Sources of Vitamin B12
10.2. RDIs and Physiological Functions
10.3. Hypovitaminosis B12
10.4. Hypervitaminosis B12
11. Vitamin C (Ascorbic Acid)
11.1. Sources of Vitamin C
11.2. RDIs and Physiological Functions
11.3. Hypovitaminosis C
11.4. Hypervitaminosis C
12. Diagnostic and Therapeutic Considerations
12.1. Hypovitaminosis
12.2. Hypervitaminosis
12.3. At-Risk Pediatric Populations
13. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chawla, J.; Kvarnberg, D. Hydrosoluble Vitamins. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2014; Volume 120, pp. 891–914. ISBN 978-0-7020-4087-0. [Google Scholar]
- Micangeli, G.; Menghi, M.; Profeta, G.; Tarani, F.; Mariani, A.; Petrella, C.; Barbato, C.; Ferraguti, G.; Ceccanti, M.; Tarani, L.; et al. The Impact of Oxidative Stress on Pediatrics Syndromes. Antioxidants 2022, 11, 1983. [Google Scholar] [CrossRef]
- Ferraguti, G.; Terracina, S.; Micangeli, G.; Lucarelli, M.; Tarani, L.; Ceccanti, M.; Spaziani, M.; D’Orazi, V.; Petrella, C.; Fiore, M. NGF and BDNF in Pediatrics Syndromes. Neurosci. Biobehav. Rev. 2023, 145, 105015. [Google Scholar] [CrossRef] [PubMed]
- Litwack, G. Vitamins and Nutrition. In Human Biochemistry; Elsevier: Amsterdam, The Netherlands, 2022; pp. 703–747. ISBN 978-0-323-85718-5. [Google Scholar]
- Yaman, M.; Çatak, J.; Uğur, H.; Gürbüz, M.; Belli, İ.; Tanyıldız, S.N.; Yıldırım, H.; Cengiz, S.; Yavuz, B.B.; Kişmiroğlu, C.; et al. The Bioaccessibility of Water-Soluble Vitamins: A Review. Trends Food Sci. Technol. 2021, 109, 552–563. [Google Scholar] [CrossRef]
- Prades, N.; Varela, E.; Flamarique, I.; Deulofeu, R.; Baeza, I. Water-Soluble Vitamin Insufficiency, Deficiency and Supplementation in Children and Adolescents with a Psychiatric Disorder: A Systematic Review and Meta-Analysis. Nutr. Neurosci. 2023, 26, 85–107. [Google Scholar] [CrossRef]
- Nicolov, M.; Cocora, M.; Buda, V.; Danciu, C.; Duse, A.O.; Watz, C.; Borcan, F. Hydrosoluble and Liposoluble Vitamins: New Perspectives through ADMET Analysis. Med. Kaunas Lith. 2021, 57, 1204. [Google Scholar] [CrossRef]
- Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes and its Panel on Folate, Other B Vitamins, and Choline. Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline; The National Academies Collection: Reports funded by National Institutes of Health; National Academies Press (US): Washington, DC, USA, 1998; ISBN 978-0-309-06411-8. [Google Scholar]
- Institute of Medicine, Food and Nutrition Board. Dietary Reference Intakes: Vitamin C, Vitamin E, Selenium, and Carotenoids; National Academy Press: Washington, DC, USA, 2000. [Google Scholar]
- EFSA. Panel on Dietetic Products, Nutrition and Allergies (NDA) Scientific Opinion on Nutrient Requirements and Dietary Intakes of Infants and Young Children in the European Union. EFSA J. 2013, 11, 3408. [Google Scholar] [CrossRef]
- WHO; FAO. Vitamin and Mineral Requirements in Human Nutrition, 2nd ed.; World Health Organization and Food and Agriculture Organization of the United Nations: Geneva, Switzerland, 2004; ISBN 978-92-4-154612-6. [Google Scholar]
- Southeast Asia Public Health Nutrition Network; Tee, E.S.; Nutrition Society of Malaysia; Florentino, R.F.; Southeast Asia Public Health Nutrition Network; Nutrition Foundation of the Philippines, Inc.; Chongviriyaphan, N.; Southeast Asia Public Health Nutrition Network; Nutrition Association of Thailand; Ridwan, H.; et al. Review of Recommended Energy and Nutrient Intake Values in Southeast Asian Countries. Malays. J. Nutr. 2023, 29, 163–241. [Google Scholar] [CrossRef]
- Meisser Redeuil, K.; Longet, K.; Bénet, S.; Munari, C.; Campos-Giménez, E. Simultaneous Quantification of 21 Water Soluble Vitamin Circulating Forms in Human Plasma by Liquid Chromatography-Mass Spectrometry. J. Chromatogr. A 2015, 1422, 89–98. [Google Scholar] [CrossRef]
- Liu, K.; Zheng, J.; Wang, X.; Chen, F. Effects of Household Cooking Processes on Mineral, Vitamin B, and Phytic Acid Contents and Mineral Bioaccessibility in Rice. Food Chem. 2019, 280, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Mrowicka, M.; Mrowicki, J.; Dragan, G.; Majsterek, I. The Importance of Thiamine (Vitamin B1) in Humans. Biosci. Rep. 2023, 43, BSR20230374. [Google Scholar] [CrossRef]
- Chisolm-Straker, M.; Cherkas, D. Altered and Unstable: Wet Beriberi, a Clinical Review. J. Emerg. Med. 2013, 45, 341–344. [Google Scholar] [CrossRef]
- Martel, J.L.; Kerndt, C.C.; Doshi, H.; Sina, R.E.; Franklin, D.S. Vitamin B1 (Thiamine). In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Scientific Committee on Food of European Commission. Opinion of the Scientific Committee on Food on the Tolerable Upper Intake Level of Vitamin B1; European Commission: Bruxelles, Belgium, 2001. [Google Scholar]
- Peechakara, B.V.; Sina, R.E.; Gupta, M. Vitamin B2 (Riboflavin). In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Pinto, J.T.; Zempleni, J. Riboflavin. Adv. Nutr. 2016, 7, 973–975. [Google Scholar] [CrossRef]
- Jarrett, H.; McNulty, H.; Hughes, C.F.; Pentieva, K.; Strain, J.J.; McCann, A.; McAnena, L.; Cunningham, C.; Molloy, A.M.; Flynn, A.; et al. Vitamin B-6 and Riboflavin, Their Metabolic Interaction, and Relationship with MTHFR Genotype in Adults Aged 18-102 Years. Am. J. Clin. Nutr. 2022, 116, 1767–1778. [Google Scholar] [CrossRef]
- Aragão, M.Â.; Pires, L.; Santos-Buelga, C.; Barros, L.; Calhelha, R.C. Revitalising Riboflavin: Unveiling Its Timeless Significance in Human Physiology and Health. Foods 2024, 13, 2255. [Google Scholar] [CrossRef] [PubMed]
- McNulty, H.; Pentieva, K.; Ward, M. Causes and Clinical Sequelae of Riboflavin Deficiency. Annu. Rev. Nutr. 2023, 43, 101–122. [Google Scholar] [CrossRef] [PubMed]
- Sheraz, M.A.; Kazi, S.H.; Ahmed, S.; Anwar, Z.; Ahmad, I. Photo, Thermal and Chemical Degradation of Riboflavin. Beilstein J. Org. Chem. 2014, 10, 1999–2012. [Google Scholar] [CrossRef] [PubMed]
- Suwannasom, N.; Kao, I.; Pruß, A.; Georgieva, R.; Bäumler, H. Riboflavin: The Health Benefits of a Forgotten Natural Vitamin. Int. J. Mol. Sci. 2020, 21, 950. [Google Scholar] [CrossRef]
- Comai, S.; Bertazzo, A.; Brughera, M.; Crotti, S. Tryptophan in Health and Disease. Adv. Clin. Chem. 2020, 95, 165–218. [Google Scholar] [CrossRef]
- Williams, A.C.; Hill, L.J.; Ramsden, D.B. Nicotinamide, NAD(P)(H), and Methyl-Group Homeostasis Evolved and Became a Determinant of Ageing Diseases: Hypotheses and Lessons from Pellagra. Curr. Gerontol. Geriatr. Res. 2012, 2012, 302875. [Google Scholar] [CrossRef]
- Meyer-Ficca, M.; Kirkland, J.B. Niacin. Adv. Nutr. 2016, 7, 556–558. [Google Scholar] [CrossRef]
- Brown, T.M. Pellagra: An Old Enemy of Timeless Importance. Psychosomatics 2010, 51, 93–97. [Google Scholar] [CrossRef]
- Hegyi, J.; Schwartz, R.A.; Hegyi, V. Pellagra: Dermatitis, Dementia, and Diarrhea. Int. J. Dermatol. 2004, 43, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Hirano, M. Neuropathies, Nutritional. In Encyclopedia of the Neurological Sciences; Elsevier: Amsterdam, The Netherlands, 2014; pp. 492–495. ISBN 978-0-12-385158-1. [Google Scholar]
- Dunbar, R.L.; Gelfand, J.M. Seeing Red: Flushing out Instigators of Niacin-Associated Skin Toxicity. J. Clin. Investig. 2010, 120, 2651–2655. [Google Scholar] [CrossRef]
- Galescu, O.A.; Crocker, M.K.; Altschul, A.M.; Marwitz, S.E.; Brady, S.M.; Yanovski, J.A. A Pilot Study of the Effects of Niacin Administration on Free Fatty Acid and Growth Hormone Concentrations in Children with Obesity. Pediatr. Obes. 2018, 13, 30–37. [Google Scholar] [CrossRef]
- Sanvictores, T.; Chauhan, S. Vitamin B5 (Pantothenic Acid). In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Daugherty, M.; Polanuyer, B.; Farrell, M.; Scholle, M.; Lykidis, A.; de Crécy-Lagard, V.; Osterman, A. Complete Reconstitution of the Human Coenzyme A Biosynthetic Pathway via Comparative Genomics. J. Biol. Chem. 2002, 277, 21431–21439. [Google Scholar] [CrossRef] [PubMed]
- Davaapil, H.; Tsuchiya, Y.; Gout, I. Signalling Functions of Coenzyme A and Its Derivatives in Mammalian Cells. Biochem. Soc. Trans. 2014, 42, 1056–1062. [Google Scholar] [CrossRef]
- Freese, R.; Aarsland, T.E.; Bjørkevoll, M. Pantothenic Acid—A Scoping Review for Nordic Nutrition Recommendations 2023. Food Nutr. Res. 2023, 67. [Google Scholar] [CrossRef]
- Parra, M.; Stahl, S.; Hellmann, H. Vitamin B6; and Its Role in Cell Metabolism and Physiology. Cells 2018, 7, 84. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.J.; Ameer, M.A.; Daley, S.F.; Beier, K. Vitamin B6 Deficiency. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Ellison, D.; Love, S.; Chimelli, L.; Harding, B.N.; Lowe, J.S.; Vinters, H.V.; Brandner, S.; Yong, W.H. Vitamin Deficiencies. In Neuropathology; Elsevier: Amsterdam, The Netherlands, 2013; pp. 453–461. ISBN 978-0-7234-3515-0. [Google Scholar]
- Mastrangelo, M.; Gasparri, V.; Bernardi, K.; Foglietta, S.; Ramantani, G.; Pisani, F. Epilepsy Phenotypes of Vitamin B6-Dependent Diseases: An Updated Systematic Review. Children 2023, 10, 553. [Google Scholar] [CrossRef]
- Casaletto, J.J. Is Salt, Vitamin, or Endocrinopathy Causing This Encephalopathy? A Review of Endocrine and Metabolic Causes of Altered Level of Consciousness. Emerg. Med. Clin. N. Am. 2010, 28, 633–662. [Google Scholar] [CrossRef]
- Jankowska, M.; Marszałł, M.; Dębska-Ślizień, A.; Carrero, J.J.; Lindholm, B.; Czarnowski, W.; Rutkowski, B.; Trzonkowski, P. Vitamin B6 and the Immunity in Kidney Transplant Recipients. J. Ren. Nutr. Off. J. Counc. Ren. Nutr. Natl. Kidney Found. 2013, 23, 57–64. [Google Scholar] [CrossRef]
- Snider, D.E. Pyridoxine Supplementation during Isoniazid Therapy. Tubercle 1980, 61, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Said, H.M. Cell and Molecular Aspects of Human Intestinal Biotin Absorption. J. Nutr. 2009, 139, 158–162. [Google Scholar] [CrossRef]
- Zempleni, J.; Wijeratne, S.S.K.; Hassan, Y.I. Biotin. BioFactors Oxf. Engl. 2009, 35, 36–46. [Google Scholar] [CrossRef]
- Zempleni, J. Uptake, Localization, and Noncarboxylase Roles of Biotin. Annu. Rev. Nutr. 2005, 25, 175–196. [Google Scholar] [CrossRef]
- Elston, D.M. Letter from the Editor: First Do No Harm-Biotin for Hair and Nails. J. Am. Acad. Dermatol. 2024; in press. [Google Scholar] [CrossRef]
- Dasgupta, A. Biotin. In Biotin and Other Interferences in Immunoassays; Elsevier: Amsterdam, The Netherlands, 2019; pp. 17–35. ISBN 978-0-12-816429-7. [Google Scholar]
- Hsu, R.-H.; Chien, Y.-H.; Hwu, W.-L.; Chang, I.-F.; Ho, H.-C.; Chou, S.-P.; Huang, T.-M.; Lee, N.-C. Genotypic and Phenotypic Correlations of Biotinidase Deficiency in the Chinese Population. Orphanet J. Rare Dis. 2019, 14, 6. [Google Scholar] [CrossRef]
- Hayashi, A.; Mikami, Y.; Miyamoto, K.; Kamada, N.; Sato, T.; Mizuno, S.; Naganuma, M.; Teratani, T.; Aoki, R.; Fukuda, S.; et al. Intestinal Dysbiosis and Biotin Deprivation Induce Alopecia through Overgrowth of Lactobacillus Murinus in Mice. Cell Rep. 2017, 20, 1513–1524. [Google Scholar] [CrossRef]
- Schulpis, K.H.; Karikas, G.A.; Tjamouranis, J.; Regoutas, S.; Tsakiris, S. Low Serum Biotinidase Activity in Children with Valproic Acid Monotherapy. Epilepsia 2001, 42, 1359–1362. [Google Scholar] [CrossRef]
- Schulpis, K.H.; Georgala, S.; Papakonstantinou, E.D.; Michas, T.; Karikas, G.A. The Effect of Isotretinoin on Biotinidase Activity. Skin Pharmacol. Appl. Skin Physiol. 1999, 12, 28–33. [Google Scholar] [CrossRef] [PubMed]
- Adie, M.A.; Martes Gomez, M.; Yom, J.; Durand, M.; Wertheimer, F.; McGowan, R.; Yano, S.; Ramanathan, R. Twin Premature Infants With Riboflavin and Biotin Deficiency Presenting with Refractory Lactic Acidosis, Rash, and Multiorgan Failure During Prolonged Parenteral Nutrition. J. Investig. Med. High Impact Case Rep. 2023, 11, 23247096231168111. [Google Scholar] [CrossRef]
- Cammalleri, L.; Bentivegna, P.; Malaguarnera, M. Egg White Injury. Intern. Emerg. Med. 2009, 4, 79–81. [Google Scholar] [CrossRef]
- Báez-Saldaña, A.; Camacho-Arroyo, I.; Espinosa-Aguirre, J.J.; Neri-Gómez, T.; Rojas-Ochoa, A.; Guerra-Araiza, C.; Larrieta, E.; Vital, P.; Díaz, G.; Chavira, R.; et al. Biotin Deficiency and Biotin Excess: Effects on the Female Reproductive System. Steroids 2009, 74, 863–869. [Google Scholar] [CrossRef] [PubMed]
- Piketty, M.-L.; Polak, M.; Flechtner, I.; Gonzales-Briceño, L.; Souberbielle, J.-C. False Biochemical Diagnosis of Hyperthyroidism in Streptavidin-Biotin-Based Immunoassays: The Problem of Biotin Intake and Related Interferences. Clin. Chem. Lab. Med. 2017, 55, 780–788. [Google Scholar] [CrossRef] [PubMed]
- Samarasinghe, S.; Meah, F.; Singh, V.; Basit, A.; Emanuele, N.; Emanuele, M.A.; Mazhari, A.; Holmes, E.W. Biotin Interference with Routine Clinical Immunoassays: Understand the Causes and Mitigate the Risks. Endocr. Pract. Off. J. Am. Coll. Endocrinol. Am. Assoc. Clin. Endocrinol. 2017, 23, 989–998. [Google Scholar] [CrossRef]
- McNulty, H.; Pentieva, K. Folate Bioavailability. Proc. Nutr. Soc. 2004, 63, 529–536. [Google Scholar] [CrossRef]
- Djukic, A. Folate-Responsive Neurologic Diseases. Pediatr. Neurol. 2007, 37, 387–397. [Google Scholar] [CrossRef]
- Shulpekova, Y.; Nechaev, V.; Kardasheva, S.; Sedova, A.; Kurbatova, A.; Bueverova, E.; Kopylov, A.; Malsagova, K.; Dlamini, J.C.; Ivashkin, V. The Concept of Folic Acid in Health and Disease. Molecules 2021, 26, 3731. [Google Scholar] [CrossRef] [PubMed]
- Wickramasinghe, S.N. Diagnosis of Megaloblastic Anaemias. Blood Rev. 2006, 20, 299–318. [Google Scholar] [CrossRef]
- Sobczyńska-Malefora, A. Methods for Assessment of Folate (Vitamin B9). In Laboratory Assessment of Vitamin Status; Elsevier: Amsterdam, The Netherlands, 2019; pp. 219–264. ISBN 978-0-12-813050-6. [Google Scholar]
- Czeizel, A.; Dudás, I.; Vereczkey, A.; Bánhidy, F. Folate Deficiency and Folic Acid Supplementation: The Prevention of Neural-Tube Defects and Congenital Heart Defects. Nutrients 2013, 5, 4760–4775. [Google Scholar] [CrossRef]
- Patel, K.R.; Sobczyńska-Malefora, A. The Adverse Effects of an Excessive Folic Acid Intake. Eur. J. Clin. Nutr. 2017, 71, 159–163. [Google Scholar] [CrossRef]
- Krishnaveni, G.V.; Veena, S.R.; Karat, S.C.; Yajnik, C.S.; Fall, C.H.D. Association between Maternal Folate Concentrations during Pregnancy and Insulin Resistance in Indian Children. Diabetologia 2014, 57, 110–121. [Google Scholar] [CrossRef]
- Choi, S.-W.; Mason, J.B. Folate Status: Effects on Pathways of Colorectal Carcinogenesis. J. Nutr. 2002, 132, 2413S–2418S. [Google Scholar] [CrossRef]
- Troen, A.M.; Mitchell, B.; Sorensen, B.; Wener, M.H.; Johnston, A.; Wood, B.; Selhub, J.; McTiernan, A.; Yasui, Y.; Oral, E.; et al. Unmetabolized Folic Acid in Plasma Is Associated with Reduced Natural Killer Cell Cytotoxicity among Postmenopausal Women. J. Nutr. 2006, 136, 189–194. [Google Scholar] [CrossRef]
- Jensen, C.F. Vitamin B12 Levels in Children and Adolescents on Plant-Based Diets: A Systematic Review and Meta-Analysis. Nutr. Rev. 2023, 81, 951–966. [Google Scholar] [CrossRef]
- Sobczyńska-Malefora, A.; Delvin, E.; McCaddon, A.; Ahmadi, K.R.; Harrington, D.J. Vitamin B12 Status in Health and Disease: A Critical Review. Diagnosis of Deficiency and Insufficiency—Clinical and Laboratory Pitfalls. Crit. Rev. Clin. Lab. Sci. 2021, 58, 399–429. [Google Scholar] [CrossRef]
- Pelley, J.W. Nutrition. In Elsevier’s Integrated Review Biochemistry; Elsevier: Amsterdam, The Netherlands, 2012; pp. 171–179. ISBN 978-0-323-07446-9. [Google Scholar]
- Guéant, J.-L.; Guéant-Rodriguez, R.-M.; Alpers, D.H. Vitamin B12 Absorption and Malabsorption. Vitam. Horm. 2022, 119, 241–274. [Google Scholar] [CrossRef] [PubMed]
- Toh, B.-H.; Alderuccio, F. Pernicious Anaemia. Autoimmunity 2004, 37, 357–361. [Google Scholar] [CrossRef]
- Kiely, M.E. Risks and Benefits of Vegan and Vegetarian Diets in Children. Proc. Nutr. Soc. 2021, 80, 159–164. [Google Scholar] [CrossRef]
- Ljungblad, U.W.; Lindberg, M.; Eklund, E.A.; Saeves, I.; Bjørke-Monsen, A.; Tangeraas, T. Nitrous Oxide in Labour Predicted Newborn Screening Total Homocysteine and Is a Potential Risk Factor for Infant Vitamin B12 Deficiency. Acta Paediatr. 2022, 111, 2315–2321. [Google Scholar] [CrossRef]
- Kinyi, H.W.; Tirwomwe, M.; Ninsiima, H.I.; Miruka, C.O. Effect of Cooking Method on Vitamin C Loses and Antioxidant Activity of Indigenous Green Leafy Vegetables Consumed in Western Uganda. Int. J. Food Sci. 2022, 2022, 2088034. [Google Scholar] [CrossRef] [PubMed]
- Peterkofsky, B. Ascorbate Requirement for Hydroxylation and Secretion of Procollagen: Relationship to Inhibition of Collagen Synthesis in Scurvy. Am. J. Clin. Nutr. 1991, 54, 1135S–1140S. [Google Scholar] [CrossRef]
- Abdullah, M.; Jamil, R.T.; Attia, F.N. Vitamin C (Ascorbic Acid). In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Khalife, R.; Grieco, A.; Khamisa, K.; Tinmouh, A.; McCudden, C.; Saidenberg, E. Scurvy, an Old Story in a New Time: The Hematologist’s Experience. Blood Cells Mol. Dis. 2019, 76, 40–44. [Google Scholar] [CrossRef]
- Bouaziz, W.; Rebai, M.A.; Rekik, M.A.; Krid, N.; Ellouz, Z.; Keskes, H. Scurvy: When It Is a Forgotten Illness the Surgery Makes the Diagnosis. Open Orthop. J. 2017, 11, 1314–1320. [Google Scholar] [CrossRef]
- Maxfield, L.; Daley, S.F.; Crane, J.S. Vitamin C Deficiency. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Doseděl, M.; Jirkovský, E.; Macáková, K.; Krčmová, L.K.; Javorská, L.; Pourová, J.; Mercolini, L.; Remião, F.; Nováková, L.; Mladěnka, P.; et al. Vitamin C-Sources, Physiological Role, Kinetics, Deficiency, Use, Toxicity, and Determination. Nutrients 2021, 13, 615. [Google Scholar] [CrossRef]
- Jiang, K.; Tang, K.; Liu, H.; Xu, H.; Ye, Z.; Chen, Z. Ascorbic Acid Supplements and Kidney Stones Incidence Among Men and Women: A Systematic Review and Meta-Analysis. Urol. J. 2019, 16, 115–120. [Google Scholar] [CrossRef]
- Urivetzky, M.; Kessaris, D.; Smith, A.D. Ascorbic Acid Overdosing: A Risk Factor for Calcium Oxalate Nephrolithiasis. J. Urol. 1992, 147, 1215–1218. [Google Scholar] [CrossRef]
- Schmidt, K.H.; Hagmaier, V.; Hornig, D.H.; Vuilleumier, J.P.; Rutishauser, G. Urinary Oxalate Excretion after Large Intakes of Ascorbic Acid in Man. Am. J. Clin. Nutr. 1981, 34, 305–311. [Google Scholar] [CrossRef]
- McLeish, S.A.; Burt, K.; Papasouliotis, K. Analytical Quality Assessment and Method Comparison of Immunoassays for the Measurement of Serum Cobalamin and Folate in Dogs and Cats. J. Vet. Diagn. Investig. 2019, 31, 164–174. [Google Scholar] [CrossRef]
- Green, R.; Allen, L.H.; Bjørke-Monsen, A.-L.; Brito, A.; Guéant, J.-L.; Miller, J.W.; Molloy, A.M.; Nexo, E.; Stabler, S.; Toh, B.-H.; et al. Vitamin B12 Deficiency. Nat. Rev. Dis. Primer 2017, 3, 17040. [Google Scholar] [CrossRef] [PubMed]
- Braga, C.B.M.; Vannucchi, H.; Freire, C.M.M.; Marchini, J.S.; Jordão, A.A.; da Cunha, S.F. de C. Serum Vitamins in Adult Patients with Short Bowel Syndrome Receiving Intermittent Parenteral Nutrition. JPEN J. Parenter. Enteral Nutr. 2011, 35, 493–498. [Google Scholar] [CrossRef] [PubMed]
- Terracina, S.; Tarani, L.; Ceccanti, M.; Vitali, M.; Francati, S.; Lucarelli, M.; Venditti, S.; Verdone, L.; Ferraguti, G.; Fiore, M. The Impact of Oxidative Stress on the Epigenetics of Fetal Alcohol Spectrum Disorders. Antioxidants 2024, 13, 410. [Google Scholar] [CrossRef]
- Roop, J.K. Hypervitaminosis—An Emerging Pathological Condition. Int. J. Health Sci. Res. 2018, 8, 280–288. [Google Scholar]
- Lykstad, J.; Sharma, S. Biochemistry, Water Soluble Vitamins. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Schwotzer, N.; Kanemitsu, M.; Kissling, S.; Darioli, R.; Benghezal, M.; Rezzi, S.; Burnier, M.; Pruijm, M. Water-Soluble Vitamin Levels and Supplementation in Chronic Online Hemodiafiltration Patients. Kidney Int. Rep. 2020, 5, 2160–2167. [Google Scholar] [CrossRef]
- Wooltorton, E. Too Much of a Good Thing? Toxic Effects of Vitamin and Mineral Supplements. CMAJ Can. Med. Assoc. J. J. Assoc. Medicale Can. 2003, 169, 47–48. [Google Scholar]
- Zuvarox, T.; Belletieri, C. Malabsorption Syndromes. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Sankararaman, S.; Hendrix, S.J.; Schindler, T. Update on the Management of Vitamins and Minerals in Cystic Fibrosis. Nutr. Clin. Pract. 2022, 37, 1074–1087. [Google Scholar] [CrossRef]
- Wang, A.Y.-M.; Elsurer Afsar, R.; Sussman-Dabach, E.J.; White, J.A.; MacLaughlin, H.; Ikizler, T.A. Vitamin Supplement Use in Patients With CKD: Worth the Pill Burden? Am. J. Kidney Dis. 2024, 83, 370–385. [Google Scholar] [CrossRef]
- Kiani, A.K.; Dhuli, K.; Donato, K.; Aquilanti, B.; Velluti, V.; Matera, G.; Iaconelli, A.; Connelly, S.T.; Bellinato, F.; Gisondi, P.; et al. Main Nutritional Deficiencies. J. Prev. Med. Hyg. 2022, 63, E93–E101. [Google Scholar] [CrossRef]
- Hawkes, C.; Ruel, M.T.; Salm, L.; Sinclair, B.; Branca, F. Double-Duty Actions: Seizing Programme and Policy Opportunities to Address Malnutrition in All Its Forms. Lancet 2020, 395, 142–155. [Google Scholar] [CrossRef]
Vitamin | Main Sources |
---|---|
B1 (Thiamine) | Whole grains, legumes, pork, nuts, seeds, and fortified cereals |
B2 (Riboflavin) | Dairy products (milk, yogurt), eggs, lean meats, green leafy vegetables, and fortified cereals |
B3 (Niacin) | Meat, fish, poultry, fortified grains, nuts, seeds, and legumes |
B5 (Pantothenic acid) | Meat (chicken, beef), whole grains, potatoes, avocados, eggs, and mushrooms |
B6 (Pyridoxine) | Poultry, fish, potatoes, chickpeas, bananas, and fortified cereals |
B7 (Biotin) | Eggs (yolk), nuts (almonds, peanuts), seeds, legumes, whole grains, and sweet potatoes |
B9 (Folate) | Leafy green vegetables (spinach, kale), legumes (beans, lentils), citrus fruits, fortified cereals, and asparagus |
B12 (Cobalamin) | Animal products (meat, fish, dairy, eggs), fortified cereals and plant-based milk for vegans |
C (Ascorbic acid) | Citrus fruits (oranges, lemons), strawberries, bell peppers, broccoli, kiwi, tomatoes, and green leafy vegetables |
Age Group | B1 (mg/day) | B2 (mg/day) | B3 (mg/day) | B5 (mg/day) | B6 (mg/day) | B7 (μg/day) | B9 (μg/day) | B12 (μg/day) | C (mg/day) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RDA | UL | RDA | UL | RDA | UL | RDA (AI) | UL | RDA | UL | RDA (AI) | UL | RDA | UL | RDA | UL | RDA | UL | |
0–6 months | 0.2 (AI) | ND | 0.3 (AI) | ND | 2 (AI) | ND | 1.7 | ND | 0.1 (AI) | ND | 5 | ND | 65 (AI) | ND | 0.4 (AI) | ND | 40 (AI) | ND |
7–12 months | 0.3 (AI) | ND | 0.4 (AI) | ND | 4 (AI) | ND | 1.8 | ND | 0.3 (AI) | ND | 6 | ND | 80 (AI) | ND | 0.5 (AI) | ND | 50 (AI) | ND |
1–3 years | 0.5 | ND | 0.5 | ND | 6 | 10 | 2 | ND | 0.5 | 30 | 8 | ND | 150 | 300 | 0.9 | ND | 15 | 400 |
4–8 years | 0.6 | ND | 0.6 | ND | 8 | 15 | 3 | ND | 0.6 | 40 | 12 | ND | 200 | 400 | 1.2 | ND | 25 | 650 |
9–13 years | 0.9 | ND | 0.9 | ND | 12 | 20 | 4 | ND | 1.0 | 60 | 20 | ND | 300 | 600 | 1.8 | ND | 45 | 1200 |
14–18 years | 1.2 (male), 1.0 (female) | ND | 1.3 (male), 1.0 (female) | ND | 16 (male), 14 (female) | 30 | 5 | ND | 1.3 (male), 1.2 (female) | 80 | 25 | ND | 400 | 800 | 2.4 | ND | 75 (male), 65 (female) | 1800 |
Vitamin | Reference Range | Plasma Levels | Primary Method of Measurement | Alternative Methods | Considerations |
---|---|---|---|---|---|
B1 (Thiamine) | 70–180 nmol/L (3.0–7.7 μg/dL) | Variable, may be reduced in inflammation | Blood thiamine concentration (direct) | Erythrocyte transketolase activity, urinary thiamine excretion | Maybe falsely reduced in systemic inflammation; hypoalbuminemia affects the interpretation |
B2 (Riboflavin) | Activity coefficient > 1.4 indicates insufficiency | Reflects recent intake | Erythrocyte glutathione reductase assay | Urinary riboflavin excretion | Urinary levels reflect dietary intake but not individual deficiency |
B3 (Niacin) | Not standardized | N/A | Urinary N-methyl nicotinamide | Erythrocyte NAD: NADP ratio | Tests not widely available; high urinary N-methyl nicotinamide indicates adequate status |
B5 (Pantothenic acid) | Urinary excretion > 1 mg/day indicates sufficiency | N/A | Urinary excretion | Blood/plasma/erythrocyte levels (unreliable) | Urinary excretion correlates with dietary intake; deficiency is rare |
B6 (Pyridoxine) | PLP > 30 nmol/L (>7.4 ng/mL) sufficient | Marginal: 20–30 nmol/L | Plasma pyridoxal-5-phosphate (PLP) | Erythrocyte transaminase activity, urinary 4-pyridoxic acid, xanthurenic acid excretion | Elevated xanthurenic acid post-tryptophan load suggests deficiency |
B7 (Biotin) | Urinary excretion: 75–195 μmol/day | N/A | Urinary biotin excretion | Serum biotin (less sensitive) | Urinary excretion is preferred; serum levels may not reflect intake or sufficiency |
B9 (Folate) | 1.8–9 ng/mL (4.1–20.4 nmol/L) | N/A | Serum folate | Red blood cell folate | Serum levels fluctuate with diet; red blood cell folate provides a longer-term indicator |
B12 (Cobalamin) | 200–800 pg/mL (147.5–589.8 pmol/L) | Suboptimal: <400 pg/mL, Deficient: <200 pg/mL | Serum cobalamin | Holotranscobalamin, methylmalonic acid, homocysteine | Gastric bypass patients at higher risk of deficiency; neuropsychiatric symptoms possible even with normal hematologic findings |
C (Ascorbic acid) | Plasma: 23–114 µmol/L (0.4–2.0 mg/dL) | Correlation with intake | Plasma and leukocyte vitamin C levels | High-performance liquid chromatography | No reliable functional tests; reference ranges vary by laboratory |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paparella, R.; Panvino, F.; Leonardi, L.; Pucarelli, I.; Menghi, M.; Micangeli, G.; Tarani, F.; Niceta, M.; Rasio, D.; Pancheva, R.; et al. Water-Soluble Vitamins: Hypo- and Hypervitaminosis in Pediatric Population. Pharmaceutics 2025, 17, 118. https://doi.org/10.3390/pharmaceutics17010118
Paparella R, Panvino F, Leonardi L, Pucarelli I, Menghi M, Micangeli G, Tarani F, Niceta M, Rasio D, Pancheva R, et al. Water-Soluble Vitamins: Hypo- and Hypervitaminosis in Pediatric Population. Pharmaceutics. 2025; 17(1):118. https://doi.org/10.3390/pharmaceutics17010118
Chicago/Turabian StylePaparella, Roberto, Fabiola Panvino, Lucia Leonardi, Ida Pucarelli, Michela Menghi, Ginevra Micangeli, Francesca Tarani, Marcello Niceta, Debora Rasio, Rouzha Pancheva, and et al. 2025. "Water-Soluble Vitamins: Hypo- and Hypervitaminosis in Pediatric Population" Pharmaceutics 17, no. 1: 118. https://doi.org/10.3390/pharmaceutics17010118
APA StylePaparella, R., Panvino, F., Leonardi, L., Pucarelli, I., Menghi, M., Micangeli, G., Tarani, F., Niceta, M., Rasio, D., Pancheva, R., Fiore, M., & Tarani, L. (2025). Water-Soluble Vitamins: Hypo- and Hypervitaminosis in Pediatric Population. Pharmaceutics, 17(1), 118. https://doi.org/10.3390/pharmaceutics17010118