Three-Dimensional-Printed Osteochondral Scaffold with Biomimetic Surface Curvature for Osteochondral Regeneration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Biomimetic Subchondral Bones by FDM
2.3. Preparation of Biomimetic Cartilages by DLP
2.4. Preparation of Osteochondral Scaffolds
2.5. Evaluation of Distance Deviation and Curvature Distributions
2.6. Printing Fidelity and Porosity of Porous Scaffolds
2.7. Evaluation of Mechanical Properties
2.8. Simulation and Validation of Biomechanical Behavior
2.9. In Vitro Cell Adhesion and Proliferation Assays
2.10. In Vivo Evaluation
2.11. Statistical Analysis
3. Results and Discussion
3.1. Morphologies and Internal Structure of Biomimetic Subchondral Bones
3.2. Morphologies of Biomimetic Cartilages
3.3. Bonding Strength and Curvature Distribution of Osteochondral Scaffolds
3.4. Biomechanical Behavior Simulation and Validation
3.5. Cytocompatibility of the Osteochondral Scaffold
3.6. Surface Curvature of the Osteochondral Scaffold
3.7. Tissue Repair and Osteochondral Regeneration of Osteochondral Scaffold
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
3D | three dimensional | Fc | compression load |
FDM | fused deposition modeling | hc | compression displacement |
DLP | digital light processing | σc | compression stress |
FEA | finite element analysis | εc | compression strain |
PLA | polylactic acid | S | initial cross-section area |
PEGDA | poly (ethylene glycol) diacrylate | L0 | initial height |
DPPO | diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide | E | compressive modulus |
GelMA | gelatin methacryloyl | v | Poisson’s ratio |
LAP | lithium phenyl (2,4,6-trimethylbenzoyl) phosphinate | W0 | initial width |
L929 | mouse fibroblast | T0 | initial thickness |
BMSCs | bone marrow mesenchymal stem cells | Ft | ultimate tensile load |
RPMI | Roswell Park Memorial Institute | σt | tensile stress at break |
α-MEM | α-minimum essential medium | Ra | cell adhesion rate |
FBS | fetal bovine serum | OD | optical density |
DAPI | 4′,6-diamido-2-phenylindole dihydrochloride | PVA | polyvinyl alcohol |
CCK-8 | cell counting kit-8 | H&E | hematoxylin–eosin |
UV | ultraviolet | Saf-O/FG | safranin-O and fast green |
RF±0.15 | relative frequency when the deviation ranges from −0.15 mm to 0.15 mm | ICRS | International Cartilage Repair Society |
RFc | relative frequency of curvature distribution | SA | sodium alginate |
ρs | density of the porous scaffold | SF | silk fibroin |
ρ0 | density of the dense scaffold |
References
- Niu, X.; Li, N.; Du, Z.; Li, X. Integrated gradient tissue-engineered osteochondral scaffolds: Challenges, current efforts and future perspectives. Bioact. Mater. 2023, 20, 574–597. [Google Scholar] [CrossRef] [PubMed]
- Heinegård, D.; Saxne, T. The role of the cartilage matrix in osteoarthritis. Nat. Rev. Rheumatol. 2010, 7, 50–56. [Google Scholar] [CrossRef]
- Yu, L.; Cavelier, S.; Hannon, B.; Wei, M. Recent development in multizonal scaffolds for osteochondral regeneration. Bioact. Mater. 2023, 25, 122–159. [Google Scholar] [CrossRef]
- Liu, X.; Wei, Y.; Xuan, C.; Liu, L.; Lai, C.; Chai, M.; Zhang, Z.; Wang, L.; Shi, X. A Biomimetic Biphasic Osteochondral Scaffold with Layer-Specific Release of Stem Cell Differentiation Inducers for the Reconstruction of Osteochondral Defects. Adv. Healthc. Mater. 2020, 9, 2000076. [Google Scholar] [CrossRef] [PubMed]
- Pirosa, A.; Gottardi, R.; Alexander, P.G.; Puppi, D.; Chiellini, F.; Tuan, R.S. An in vitro chondro-osteo-vascular triphasic model of the osteochondral complex. Biomaterials 2021, 272, 120773. [Google Scholar] [CrossRef] [PubMed]
- Parisi, C.; Salvatore, L.; Veschini, L.; Serra, M.P.; Hobbs, C.; Madaghiele, M.; Sannino, A.; Di Silvio, L. Biomimetic gradient scaffold of collagen–hydroxyapatite for osteochondral regeneration. J. Tissue Eng. 2020, 11, 204173141989606. [Google Scholar] [CrossRef]
- Fu, L.; Yang, Z.; Gao, C.; Li, H.; Yuan, Z.; Wang, F.; Sui, X.; Liu, S.; Guo, Q. Advances and prospects in biomimetic multilayered scaffolds for articular cartilage regeneration. Regen. Biomater. 2020, 7, 527–542. [Google Scholar] [CrossRef]
- Ngo, T.D.; Kashani, A.; Imbalzano, G.; Nguyen, K.T.Q.; Hui, D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos. Part B-Eng. 2018, 143, 172–196. [Google Scholar] [CrossRef]
- Gong, L.; Li, J.; Zhang, J.; Pan, Z.; Liu, Y.; Zhou, F.; Hong, Y.; Hu, Y.; Gu, Y.; Ouyang, H.; et al. An interleukin-4-loaded bi-layer 3D printed scaffold promotes osteochondral regeneration. Acta Biomater. 2020, 117, 246–260. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Zha, Y.; Li, Y.; Chen, J.; Liu, S.; Du, Y.; Zhang, S.; Wang, J. Integrated polycaprolactone microsphere-based scaffolds with biomimetic hierarchy and tunable vascularization for osteochondral repair. Acta Biomater. 2022, 141, 190–197. [Google Scholar] [CrossRef]
- Goyanes, A.; Det-Amornrat, U.; Wang, J.; Basit, A.W.; Gaisford, S. 3D scanning and 3D printing as innovative technologies for fabricating personalized topical drug delivery systems. J. Control. Release 2016, 234, 41–48. [Google Scholar] [CrossRef]
- FDA. Technical Considerations for Additive Manufactured Medical Devices. 2017. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/technical-considerations-additive-manufactured-medical-devices (accessed on 7 July 2024).
- Piedra-Cascón, W.; Krishnamurthy, V.R.; Att, W.; Revilla-León, M. 3D printing parameters; supporting structures; slicing, and post-processing procedures of vat-polymerization additive manufacturing technologies: A narrative review. J. Dent. 2021, 109, 103630. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Li, P.; Spintzyk, S.; Liu, C.; Xu, S. Influence of additive manufacturing method and build angle on the accuracy of 3D-printed palatal plates. J. Dent. 2023, 132, 104449. [Google Scholar] [CrossRef] [PubMed]
- Revilla-León, M.; Piedra-Cascón, W.; Methani, M.M.; Barmak, B.A.; Att, W. Influence of the base design on the accuracy of additive manufactured casts measured using a coordinate measuring machine. J. Prosthodont. Res. 2022, 66, 68–74. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, L.; Zhou, G.; Li, Q.; Liu, W.; Yu, Z.; Luo, X.; Jiang, T.; Zhang, W.; Cao, Y. In vitro engineering of human ear-shaped cartilage assisted with CAD/CAM technology. Biomaterials 2010, 31, 2176–2183. [Google Scholar] [CrossRef] [PubMed]
- Xia, H.; Zhao, D.; Zhu, H.; Hua, Y.; Xiao, K.; Xu, Y.; Liu, Y.; Chen, W.; Liu, Y.; Zhang, W.; et al. Lyophilized Scaffolds Fabricated from 3D-Printed Photocurable Natural Hydrogel for Cartilage Regeneration. ACS Appl. Mater. Interfaces 2018, 10, 31704–31715. [Google Scholar] [CrossRef] [PubMed]
- Benos, L.; Stanev, D.; Spyrou, L.; Moustakas, K.; Tsaopoulos, D.E. A Review on Finite Element Modeling and Simulation of the Anterior Cruciate Ligament Reconstruction. Front. Bioeng. Biotechnol. 2020, 8, 967. [Google Scholar] [CrossRef]
- Orozco, G.A.; Bolcos, P.; Mohammadi, A.; Tanaka, M.S.; Yang, M.; Link, T.M.; Ma, B.; Li, X.; Tanska, P.; Korhonen, R.K. Prediction of local fixed charge density loss in cartilage following ACL injury and reconstruction: A computational proof-of-concept study with MRI follow-up. J. Orthop. Res. 2020, 39, 1064–1081. [Google Scholar] [CrossRef]
- Halonen, K.S.; Mononen, M.E.; Töyräs, J.; Kröger, H.; Joukainen, A.; Korhonen, R.K. Optimal graft stiffness and pre-strain restore normal joint motion and cartilage responses in ACL reconstructed knee. J. Biomech. 2016, 49, 2566–2576. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Wang, H.; Shen, L.; Yang, Q.; Yang, Y. Application and evaluation of fused deposition modeling technique in customized medical products. Int. J. Pharm. 2023, 640, 122999. [Google Scholar] [CrossRef] [PubMed]
- Stylianou, A.; Orozco, G.A.; Karjalainen, K.; Moo, E.K.; Stenroth, L.; Tanska, P.; Rios, J.L.; Tuomainen, T.V.; Nissi, M.J.; Isaksson, H.; et al. A musculoskeletal finite element model of rat knee joint for evaluating cartilage biomechanics during gait. PLoS Comput. Biol. 2022, 18, e1009398. [Google Scholar] [CrossRef]
- Papaspyridakos, P.; Chen, Y.-W.; Alshawaf, B.; Kang, K.; Finkelman, M.; Chronopoulos, V.; Weber, H.-P. Digital workflow: In vitro accuracy of 3D printed casts generated from complete-arch digital implant scans. J. Prosthet. Dent. 2020, 124, 589–593. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Shi, Z.A.; Liu, L.; Zhou, X.; Zhu, L.; Hao, Y. The design of Ti6Al4V Primitive surface structure with symmetrical gradient of pore size in biomimetic bone scaffold. Mater. Design 2020, 193, 108830. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, X.; Zhao, G.; Chen, R.; Liu, Y.; Ren, H.; Qu, X.; Liu, Y. β-Tricalcium phosphate/ε-polycaprolactone composite scaffolds with a controllable gradient: Fabrication and characterization. Ceram. Int. 2019, 45, 16188–16194. [Google Scholar] [CrossRef]
- Yang, Y.; Fang, J.; Shen, L.; Shan, W. Simulation and evaluation of rupturable coated capsules by finite element method. Int. J. Pharm. 2017, 519, 220–229. [Google Scholar] [CrossRef] [PubMed]
- Caprioli, M.; Roppolo, I.; Chiappone, A.; Larush, L.; Pirri, C.F.; Magdassi, S. 3D-printed self-healing hydrogels via Digital Light Processing. Nat. Commun. 2021, 12, 2462. [Google Scholar] [CrossRef]
- Cosma, C.; Apostu, D.; Vilau, C.; Popan, A.; Oltean-Dan, D.; Balc, N.; Tomoaie, G.; Benea, H. Finite Element Analysis of Different Osseocartilaginous Reconstruction Techniques in Animal Model Knees. Materials 2023, 16, 2546. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Xu, W.; Shafiq, M.; Tang, J.; Hao, J.; Xie, X.; Yuan, Z.; Xiao, X.; Liu, Y.; Mo, X. Three-dimensional porous gas-foamed electrospun nanofiber scaffold for cartilage regeneration. J. Colloid Interf. Sci. 2021, 603, 94–109. [Google Scholar] [CrossRef]
- Liu, Y.; Dzidotor, G.; Le, T.T.; Vinikoor, T.; Morgan, K.; Curry, E.J.; Das, R.; McClinton, A.; Eisenberg, E.; Apuzzo, L.N.; et al. Exercise-induced piezoelectric stimulation for cartilage regeneration in rabbits. Sci. Transl. Med. 2022, 14, eabi7282. [Google Scholar] [CrossRef] [PubMed]
- Abas, M.; Habib, T.; Noor, S.; Salah, B.; Zimon, D. Parametric Investigation and Optimization to Study the Effect of Process Parameters on the Dimensional Deviation of Fused Deposition Modeling of 3D Printed Parts. Polymers 2022, 14, 3667. [Google Scholar] [CrossRef] [PubMed]
- Golebiowska, A.A.; Nukavarapu, S.P. Bio-inspired zonal-structured matrices for bone-cartilage interface engineering. Biofabrication 2022, 14, 025016. [Google Scholar] [CrossRef] [PubMed]
- Bittner, S.M.; Smith, B.T.; Diaz-Gomez, L.; Hudgins, C.D.; Melchiorri, A.J.; Scott, D.W.; Fisher, J.P.; Mikos, A.G. Fabrication and mechanical characterization of 3D printed vertical uniform and gradient scaffolds for bone and osteochondral tissue engineering. Acta Biomater. 2019, 90, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Lu, G.; You, Z. Large deformation and energy absorption of additively manufactured auxetic materials and structures: A review. Compos. Part B-Eng. 2020, 201, 108340. [Google Scholar] [CrossRef]
- Favero, C.S.; English, J.D.; Cozad, B.E.; Wirthlin, J.O.; Short, M.M.; Kasper, F.K. Effect of print layer height and printer type on the accuracy of 3-dimensional printed orthodontic models. Am. J. Orthod. Dentofac. 2017, 152, 557–565. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.; Chen, H.; Liu, Y.; Wu, N.; Chen, B.; Zhao, X.; Han, Q.; Wang, J. Customized reconstructive prosthesis design based on topological optimization to treat severe proximal tibia defect. Bio-Des. Manuf. 2020, 4, 87–99. [Google Scholar] [CrossRef]
- Li, G.; Zhao, M.; Xu, F.; Yang, B.; Li, X.; Meng, X.; Teng, L.; Sun, F.; Li, Y. Synthesis and Biological Application of Polylactic Acid. Molecules 2020, 25, 5023. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Cao, Y.; Li, M.; Yan, Y.; Cheng, R.; Zhao, Y.; Shao, Q.; Wang, J.; Sang, S. Construction of tissue-engineered skin with rete ridges using co-network hydrogels of gelatin methacrylated and poly(ethylene glycol) diacrylate. Mat. Sci. Eng. C 2021, 129, 112360. [Google Scholar] [CrossRef]
- Liu, G.; He, Y.; Liu, P.; Chen, Z.; Chen, X.; Wan, L.; Li, Y.; Lu, J. Development of Bioimplants with 2D, 3D, and 4D Additive Manufacturing Materials. Engineering 2020, 6, 1232–1243. [Google Scholar] [CrossRef]
- He, B.; Wang, J.; Xie, M.; Xu, M.; Zhang, Y.; Hao, H.; Xing, X.; Lu, W.; Han, Q.; Liu, W. 3D printed biomimetic epithelium/stroma bilayer hydrogel implant for corneal regeneration. Bioact. Mater. 2022, 17, 234–247. [Google Scholar] [CrossRef]
- Zhang, X.; Yan, Z.; Guan, G.; Lu, Z.; Yan, S.; Du, A.; Wang, L.; Li, Q. Polyethylene glycol diacrylate scaffold filled with cell-laden methacrylamide gelatin/alginate hydrogels used for cartilage repair. J. Biomater. Appl. 2022, 36, 1019–1032. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Lin, Q.; Hou, Z.; Yang, G.; Shen, L. Three-Dimensional-Printed Osteochondral Scaffold with Biomimetic Surface Curvature for Osteochondral Regeneration. Pharmaceutics 2025, 17, 153. https://doi.org/10.3390/pharmaceutics17020153
Yang Y, Lin Q, Hou Z, Yang G, Shen L. Three-Dimensional-Printed Osteochondral Scaffold with Biomimetic Surface Curvature for Osteochondral Regeneration. Pharmaceutics. 2025; 17(2):153. https://doi.org/10.3390/pharmaceutics17020153
Chicago/Turabian StyleYang, Yan, Qu Lin, Zhenhai Hou, Gensheng Yang, and Lian Shen. 2025. "Three-Dimensional-Printed Osteochondral Scaffold with Biomimetic Surface Curvature for Osteochondral Regeneration" Pharmaceutics 17, no. 2: 153. https://doi.org/10.3390/pharmaceutics17020153
APA StyleYang, Y., Lin, Q., Hou, Z., Yang, G., & Shen, L. (2025). Three-Dimensional-Printed Osteochondral Scaffold with Biomimetic Surface Curvature for Osteochondral Regeneration. Pharmaceutics, 17(2), 153. https://doi.org/10.3390/pharmaceutics17020153