Development, Characterization, and Antimicrobial Evaluation of Hybrid Nanoparticles (HNPs) Based on Phospholipids, Cholesterol, Colistin, and Chitosan Against Multidrug-Resistant Gram-Negative Bacteria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Materials
2.2. Development and Physicochemical Characterization of Hybrid Nanoparticles (HNPs)
2.2.1. Characterization of the Intrinsic Aggregation of HNPs Materials
2.2.2. Development and Optimization of Uncoated Hybrid Nanoparticles (U-HNPs)
2.2.3. Coating of U-HNPs with Chitosan Polymer
2.2.4. Characterization of Particle Size, PDI, and Zeta Potential of HNPs
2.2.5. Characterization of HNPs by DSC and FTIR
2.2.6. HNP Morphological Characterization by TEM
2.2.7. Association and Release Efficiency of Colistin
2.2.8. Stability Assay of HNPs
2.3. Biological Evaluation
2.3.1. Isolation of Resistant K. pneumoniae and Phenotypic Characterization
2.3.2. Antimicrobial Activity
2.4. Statistical Analysis
3. Results and Discussion
3.1. Development and Physicochemical Characterization of Hybrid Nanoparticles (HNPs)
3.1.1. Characterization of the Intrinsic Aggregation of HNPs Materials
3.1.2. Development and Optimization of HNPs
3.1.3. Characterization of Particle Size, PDI and Zeta Potential of HNPs
3.1.4. Characterization of HNPs by DSC and FTIR
3.1.5. Colistin Association and Release Efficiency and Morphology of HNPs
3.1.6. Stability Assay of HNPs
3.2. Biological Evaluation
3.2.1. Isolation of Resistant K. pneumoniae and Phenotypic Characterization
3.2.2. Antimicrobial Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef] [PubMed]
- Brooks, B.D.; Brooks, A.E. Therapeutic Strategies to Combat Antibiotic Resistance. Adv. Drug Deliv. Rev. 2014, 78, 14–27. [Google Scholar] [CrossRef] [PubMed]
- Davies, J. Origins and Evolution of Antibiotic Resistance. Microbiologia 1996, 12, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Biswas, S.; Brunel, J.M.; Dubus, J.C.; Reynaud-Gaubert, M.; Rolain, J.M. Colistin: An Update on the Antibiotic of the 21st Century. Expert Rev. Anti-Infect. Ther. 2012, 10, 917–934. [Google Scholar] [CrossRef]
- Lim, L.M.; Ly, N.; Anderson, D.; Yang, J.C.; Macander, L.; Jarkowski, A.; Forrest, A.; Bulitta, J.B.; Tsuji, B.T. Resurgence of Colistin: A Review of Resistance, Toxicity, Pharmacodynamics, and Dosing. Pharmacotherapy 2010, 30, 1279–1291. [Google Scholar] [CrossRef]
- Dixon, R.A.; Chopra, I. Leakage of Periplasmic Proteins from Escherichia Coli Mediated by Polymyxin B Nonapeptide. Antimicrob. Agents Chemother. 1986, 29, 781. [Google Scholar] [CrossRef]
- Viaggi, B.; Sbrana, F.; Malacarne, P.; Tascini, C. Ventilator-Associated Pneumonia Caused by Colistin-Resistant KPC-Producing Klebsiella Pneumoniae: A Case Report and Literature Review. Respir. Investig. 2015, 53, 124–128. [Google Scholar] [CrossRef]
- Rolain, J.M.; Roch, A.; Castanier, M.; Papazian, L.; Raoult, D. Acinetobacter Baumannii Resistant to Colistin with Impaired Virulence: A Case Report from France. J. Infect. Dis. 2011, 204, 1146–1147. [Google Scholar] [CrossRef]
- López-Rojas, R.; Jiménez-Mejías, M.E.; Lepe, J.A.; Pachón, J. Acinetobacter Baumannii Resistant to Colistin Alters Its Antibiotic Resistance Profile: A Case Report from Spain. J. Infect. Dis. 2011, 204, 1147–1148. [Google Scholar] [CrossRef]
- Bakour, S.; Olaitan, A.O.; Ammari, H.; Touati, A.; Saoudi, S.; Saoudi, K.; Rolain, J.M. Emergence of Colistin- and Carbapenem-Resistant Acinetobacter Baumannii ST2 Clinical Isolate in Algeria: First Case Report. Microb. Drug Resist. 2015, 21, 279–285. [Google Scholar] [CrossRef]
- Gales, A.C.; Castanheira, M.; Jones, R.N.; Sader, H.S. Antimicrobial Resistance among Gram-Negative Bacilli Isolated from Latin America: Results from SENTRY Antimicrobial Surveillance Program (Latin America, 2008–2010). Diagn. Microbiol. Infect. Dis. 2012, 73, 354–360. [Google Scholar] [CrossRef] [PubMed]
- Pitt, T.L.; Sparrow, M.; Warner, M.; Stefanidou, M. Survey of Resistance of Pseudomonas Aeruginosa from UK Patients with Cystic Fibrosis to Six Commonly Prescribed Antimicrobial Agents. Thorax 2003, 58, 794. [Google Scholar] [CrossRef] [PubMed]
- Ocampo, A.M.; Chen, L.; Cienfuegos, A.V.; Roncancio, G.; Chavda, K.D.; Kreiswirth, B.N.; Jiménez, J.N. A Two-Year Surveillance in Five Colombian Tertiary Care Hospitals Reveals High Frequency of Non-CG258 Clones of Carbapenem-Resistant Klebsiella Pneumoniae with Distinct Clinical Characteristics. Antimicrob. Agents Chemother. 2016, 60, 332–342. [Google Scholar] [CrossRef] [PubMed]
- Asokan, G.; Ramadhan, T.; Ahmed, E.; Sanad, H. WHO Global Priority Pathogens List: A Bibliometric Analysis of Medline-PubMed for Knowledge Mobilization to Infection Prevention and Control Practices in Bahrain. Oman Med. J. 2019, 34, 184–193. [Google Scholar] [CrossRef]
- Vila, J.; Marco, F. Interpretive Reading of the Non-Fermenting Gram-Negative Bacilli Antibiogram. Enfermedades Infecc. Microbiol. Clínica 2010, 28, 726–736. [Google Scholar] [CrossRef]
- Ferreira, R.L.; da Silva, B.C.M.; Rezende, G.S.; Nakamura-Silva, R.; Pitondo-Silva, A.; Campanini, E.B.; Brito, M.C.A.; da Silva, E.M.L.; de Melo Freire, C.C.; da Cunha, A.F.; et al. High Prevalence of Multidrug-Resistant Klebsiella Pneumoniae Harboring Several Virulence and β-Lactamase Encoding Genes in a Brazilian Intensive Care Unit. Front. Microbiol. 2019, 9, 3198. [Google Scholar] [CrossRef]
- Olaitan, A.O.; Morand, S.; Rolain, J.-M. Mechanisms of Polymyxin Resistance: Acquired and Intrinsic Resistance in Bacteria. Front. Microbiol. 2014, 5, 643. [Google Scholar] [CrossRef]
- Kalhapure, R.S.; Suleman, N.; Mocktar, C.; Seedat, N.; Govender, T. Nanoengineered Drug Delivery Systems for Enhancing Antibiotic Therapy. J. Pharm. Sci. 2015, 104, 872–905. [Google Scholar] [CrossRef]
- Bozzuto, G.; Molinari, A. Liposomes as Nanomedical Devices. Int. J. Nanomed. 2015, 10, 975. [Google Scholar] [CrossRef]
- Huang, Y.; Yu, S.; Ahmed, M.U.; Zhou, Q. Liposomal Formulation Reduces Transport and Cell Uptake of Colistin in Human Lung Epithelial Calu-3 Cell and 3D Human Lung Primary Tissue Models. AAPS PharmSciTech 2024, 25, 40. [Google Scholar] [CrossRef]
- Li, Y.; Tang, C.; Zhang, E.; Yang, L. Electrostatically Entrapped Colistin Liposomes for the Treatment of Pseudomonas aeruginosa Infection. Pharm. Dev. Technol. 2017, 22, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Tang, C.; Zhang, E.; Yang, L. Colistin-Entrapped Liposomes Driven by the Electrostatic Interaction: Mechanism of Drug Loading and in Vivo Characterization. Int. J. Pharm. 2016, 515, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Marcu, C. Synthesis and Characterization of Colistin Loaded Nanoparticles Used to Combat Multi Drug Resistant Microorganisms. Pneumologie 2024, 78, S29. [Google Scholar]
- Nag, O.; Awasthi, V. Surface Engineering of Liposomes for Stealth Behavior. Pharmaceutics 2013, 5, 542–569. [Google Scholar] [CrossRef] [PubMed]
- Jøraholmen, M.W.; Vanić, Ž.; Tho, I.; Škalko-Basnet, N. Chitosan-Coated Liposomes for Topical Vaginal Therapy: Assuring Localized Drug Effect. Int. J. Pharm. 2014, 472, 94–101. [Google Scholar] [CrossRef]
- Bangale, G.S.; Rajesh, K.S.; Shinde, G.V. Stealth Liposomes:A Novel Approach of Targeted Drug Delivery In Cancer Therapy. Int. J. Pharma Sci. Res. 2014, 5, 750–759. [Google Scholar]
- Manca, M.L.; Manconi, M.; Valenti, D.; Lai, F.; Loy, G.; Matricardi, P.; Fadda, A.M. Liposomes Coated with Chitosan–Xanthan Gum (Chitosomes) as Potential Carriers for Pulmonary Delivery of Rifampicin. J. Pharm. Sci. 2012, 101, 566–575. [Google Scholar] [CrossRef]
- Hemmingsen, L.M.; Giordani, B.; Pettersen, A.K.; Vitali, B.; Basnet, P.; Škalko-Basnet, N. Liposomes-in-Chitosan Hydrogel Boosts Potential of Chlorhexidine in Biofilm Eradication in Vitro. Carbohydr. Polym. 2021, 262, 117939. [Google Scholar] [CrossRef]
- Wang, X.; Cheng, F.; Wang, X.; Feng, T.; Xia, S.; Zhang, X. Chitosan Decoration Improves the Rapid and Long-Term Antibacterial Activities of Cinnamaldehyde-Loaded Liposomes. Int. J. Biol. Macromol. 2021, 168, 59–66. [Google Scholar] [CrossRef]
- Elkomy, M.H.; Ali, A.A.; Eid, H.M. Chitosan on the Surface of Nanoparticles for Enhanced Drug Delivery: A Comprehensive Review. J. Control. Release 2022, 351, 923–940. [Google Scholar] [CrossRef]
- Pu, C.; Tang, W. A Chitosan-Coated Liposome Encapsulating Antibacterial Peptide, Apep10: Characterisation, Triggered-Release Effects and Antilisterial Activity in Thaw Water of Frozen Chicken. Food Funct. 2016, 7, 4310–4322. [Google Scholar] [CrossRef] [PubMed]
- Qin, C.; Tang, N.; Gan, Y.; Zhao, H.; Li, Y.; Tian, G.; Yang, Y.Y.; Yuan, P.; Ding, X. Liposomes Co-Delivering Curcumin and Colistin to Overcome Colistin Resistance in Bacterial Infections. Adv. Heal. Mater. 2023, 12, 2202903. [Google Scholar] [CrossRef] [PubMed]
- da Silva, I.M.; Boelter, J.F.; da Silveira, N.P.; Brandelli, A. Phosphatidylcholine Nanovesicles Coated with Chitosan or Chondroitin Sulfate as Novel Devices for Bacteriocin Delivery. J. Nanoparticle Res. 2014, 16, 2479. [Google Scholar] [CrossRef]
- Salim, A.; Sathishkumar, P. Therapeutic Efficacy of Chitosan-Based Hybrid Nanomaterials to Treat Microbial Biofilms and Their Infections—A Review. Int. J. Biol. Macromol. 2024, 283, 137850. [Google Scholar] [CrossRef]
- Reda, A.T.; Park, J.Y.; Park, Y.T. Zinc Oxide-Based Nanomaterials for Microbiostatic Activities: A Review. J. Funct. Biomater. 2024, 15, 103. [Google Scholar] [CrossRef]
- Iudin, D.; Vasilieva, M.; Knyazeva, E.; Korzhikov-Vlakh, V.; Demyanova, E.; Lavrentieva, A.; Skorik, Y.; Korzhikova-Vlakh, E. Hybrid Nanoparticles and Composite Hydrogel Systems for Delivery of Peptide Antibiotics. Int. J. Mol. Sci. 2022, 23, 2771. [Google Scholar] [CrossRef]
- Abdul Hak, A.; Zedan, H.H.; El-Mahallawy, H.A.; El-Sayyad, G.S.; Zafer, M.M. In Vivo and in Vitro Activity of Colistin-Conjugated Bimetallic Silver-Copper Oxide Nanoparticles against Pandrug-Resistant Pseudomonas Aeruginosa. BMC Microbiol. 2024, 24, 213. [Google Scholar] [CrossRef]
- Yarce, C.J.; Alhajj, M.J.; Sanchez, J.D.; Oñate-Garzón, J.; Salamanca, C.H. Development of Antioxidant-Loaded Nanoliposomes Employing Lecithins with Different Purity Grades. Molecules 2020, 25, 5344. [Google Scholar] [CrossRef]
- Arévalo, L.M.; Yarce, C.J.; Oñate-Garzón, J.; Salamanca, C.H. Decrease of Antimicrobial Resistance through Polyelectrolyte-Coated Nanoliposomes Loaded with β-Lactam Drug. Pharmaceuticals 2019, 12, 1. [Google Scholar] [CrossRef]
- Babick, F. Dynamic Light Scattering (DLS). In Characterization of Nanoparticles: Measurement Processes for Nanoparticles; Elsevier: Amsterdam, The Netherlands, 2020; pp. 137–172. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. M100 Performance Standards for Antimicrobial Susceptibility Testing, 32nd ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2022. [Google Scholar]
- Gogry, F.A.; Siddiqui, M.T.; Sultan, I.; Haq, Q.M.R. Current Update on Intrinsic and Acquired Colistin Resistance Mechanisms in Bacteria. Front. Med. 2021, 8, 677720. [Google Scholar] [CrossRef]
- Lipoid Soybean Phospholipids & Formulations. Available online: https://lipoid.com/en/products/raw-material-sources/soybean-phospholipids-formulations/ (accessed on 13 December 2024).
- Edo, G.I.; Mafe, A.N.; Ali, A.B.M.; Akpoghelie, P.O.; Yousif, E.; Apameio, J.I.; Isoje, E.F.; Igbuku, U.A.; Garba, Y.; Essaghah, A.E.A.; et al. Chitosan and Its Derivatives: A Novel Approach to Gut Microbiota Modulation and Immune System Enhancement. Int. J. Biol. Macromol. 2024, 289, 138633. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Huang, L.; Tang, C.; Zhang, E.; Ding, L.; Yang, L. Preparation and Characterisation of the Colistin-Entrapped Liposome Driven by Electrostatic Interaction for Intravenous Administration. J. Microencapsul. 2016, 33, 427–437. [Google Scholar] [CrossRef] [PubMed]
- Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: Classification, Preparation, and Applications. Nanoscale Res. Lett. 2013, 8, 102. [Google Scholar] [CrossRef]
- Chen, R.H.; Lin, W.C.; Lin, J.H. Effects of PH, Ionic Strength, and Type of Anion on the Rheological Properties of Chitosan Solutions. Acta Polym. 1994, 45, 41–46. [Google Scholar] [CrossRef]
- Šturm, L.; Ulrih, N.P. Basic Methods for Preparation of Liposomes and Studying Their Interactions with Different Compounds, with the Emphasis on Polyphenols. Int. J. Mol. Sci. 2021, 22, 6547. [Google Scholar] [CrossRef]
- Chiu, M.; Prenner, E. Differential Scanning Calorimetry: An Invaluable Tool for a Detailed Thermodynamic Characterization of Macromolecules and Their Interactions. J. Pharm. Bioallied Sci. 2011, 3, 39–59. [Google Scholar] [CrossRef]
- Koynova, R.; Caffrey, M. Phases and Phase Transitions of the Phosphatidylcholines. Biochim. Biophys. Acta (BBA)-Rev. Biomembr. 1998, 1376, 91–145. [Google Scholar] [CrossRef]
- Miatmoko, A.; Nurjannah, I.; Nehru, N.F.; Rosita, N.; Hendradi, E.; Sari, R.; Ekowati, J. Interactions of Primaquine and Chloroquine with PEGylated Phosphatidylcholine Liposomes. Sci. Rep. 2021, 11, 12420. [Google Scholar] [CrossRef]
- Wallace, S. Formulation Approaches to Pulmonary Delivery of Colistin Combination Antibiotic Therapy; Monash University: Melbourne, Australia, 2011. [Google Scholar]
- Pacheco, F.; Barrera, A.; Ciro, Y.; Polo-Cerón, D.; Salamanca, C.H.; Oñate-Garzón, J. Synthesis, Characterization, and Biological Evaluation of Chitosan Nanoparticles Cross-Linked with Phytic Acid and Loaded with Colistin against Extensively Drug-Resistant Bacteria. Pharmaceutics 2024, 16, 1115. [Google Scholar] [CrossRef]
- Queiroz, M.F.; Melo, K.R.T.; Sabry, D.A.; Sassaki, G.L.; Rocha, H.A.O. Does the Use of Chitosan Contribute to Oxalate Kidney Stone Formation? Mar. Drugs 2015, 13, 141–158. [Google Scholar] [CrossRef]
- Ferrero, F.; Periolatto, M. Antimicrobial Finish of Textiles by Chitosan UV-Curing. J. Nanosci. Nanotechnol. 2012, 12, 4803–4810. [Google Scholar] [CrossRef] [PubMed]
- Tai, K.; Rappolt, M.; Mao, L.; Gao, Y.; Li, X.; Yuan, F. The Stabilization and Release Performances of Curcumin-Loaded Liposomes Coated by High and Low Molecular Weight Chitosan. Food Hydrocoll. 2020, 99, 105355. [Google Scholar] [CrossRef]
- Laye, C.; McClements, D.J.; Weiss, J. Formation of Biopolymer-Coated Liposomes by Electrostatic Deposition of Chitosan. J. Food Sci. 2008, 73, N7–N15. [Google Scholar] [CrossRef] [PubMed]
- Yadav, A.V.; Murthy, M.S.; Shete, A.S.; Sakhare, S. Stability Aspects of Liposomes. Indian J. Pharm. Educ. Res. 2011, 45, 402–413. [Google Scholar]
- Morelli, M.K.; Kloosterboer, A.; Fulton, S.A.; Furin, J.; Newman, N.; Omar, A.F.; Rojas, L.J.; Marshall, S.H.; Yasmin, M.; Bonomo, R.A. Investigating and Treating a Corneal Ulcer Due to Extensively Drug-Resistant Pseudomonas Aeruginosa. Antimicrob. Agents Chemother. 2023, 67, e00277-23. [Google Scholar] [CrossRef]
- Zhang, F.; Cheng, W. The Mechanism of Bacterial Resistance and Potential Bacteriostatic Strategies. Antibiotics 2022, 11, 1215. [Google Scholar] [CrossRef]
- Tamer, T.M.; Zhou, H.; Hassan, M.A.; Abu-Serie, M.M.; Shityakov, S.; Elbayomi, S.M.; Mohy-Eldin, M.S.; Zhang, Y.; Cheang, T. Synthesis and Physicochemical Properties of an Aromatic Chitosan Derivative: In Vitro Antibacterial, Antioxidant, and Anticancer Evaluations, and in Silico Studies. Int. J. Biol. Macromol. 2023, 240, 124339. [Google Scholar] [CrossRef]
- EUCAST Breakpoint Tables for Interpretation of MICs and Zone Diameters, Version 9.0; EUCAST: Växjö, Sweden, 2019.
- Petrosillo, N.; Taglietti, F.; Granata, G. Treatment Options for Colistin Resistant Klebsiella Pneumoniae: Present and Future. J. Clin. Med. 2019, 8, 934. [Google Scholar] [CrossRef]
- Elias, R.; Duarte, A.; Perdigão, J. A Molecular Perspective on Colistin and Klebsiella Pneumoniae: Mode of Action, Resistance Genetics, and Phenotypic Susceptibility. Diagnostics 2021, 11, 1165. [Google Scholar] [CrossRef]
- Poirel, L.; Jayol, A.; Bontron, S.; Villegas, M.V.; Ozdamar, M.; Türkoglu, S.; Nordmann, P. The MgrB Gene as a Key Target for Acquired Resistance to Colistin in Klebsiella Pneumoniae. J. Antimicrob. Chemother. 2015, 70, 75–80. [Google Scholar] [CrossRef]
- Jaidane, N.; Bonnin, R.A.; Mansour, W.; Girlich, D.; Creton, E.; Cotellon, G.; Chaouch, C.; Boujaafar, N.; Bouallegue, O.; Naas, T. Genomic Insights into Colistin-Resistant Klebsiella Pneumoniae from a Tunisian Teaching Hospital. Antimicrob. Agents Chemother. 2018, 62, 10-1128. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.Y.; van der Mei, H.C.; Ren, Y.; Busscher, H.J.; Shi, L. Lipid-Based Antimicrobial Delivery-Systems for the Treatment of Bacterial Infections. Front. Chem. 2020, 7, 504069. [Google Scholar] [CrossRef] [PubMed]
- Chung, Y.C.; Chen, C.Y. Antibacterial Characteristics and Activity of Acid-Soluble Chitosan. Bioresour. Technol. 2008, 99, 2806–2814. [Google Scholar] [CrossRef] [PubMed]
- Vishu Kumar, B.A.; Varadaraj, M.C.; Tharanathan, R.N. Low Molecular Weight Chitosan—Preparation with the Aid of Pepsin, Characterization, and Its Bactericidal Activity. Biomacromolecules 2007, 8, 566–572. [Google Scholar] [CrossRef]
- Campana, R.; Casettari, L.; Ciandrini, E.; Illum, L.; Baffone, W. Chitosans Inhibit the Growth and the Adhesion of Klebsiella Pneumoniae and Escherichia Coli Clinical Isolates on Urinary Catheters. Int. J. Antimicrob. Agents 2017, 50, 135–141. [Google Scholar] [CrossRef]
Run | Colistin (mg/mL) | Phospholipon® 90G (mg/mL) | Cholesterol (mg/mL) | Particle Size (nm) | PDI | AE (%) |
---|---|---|---|---|---|---|
1 | 5 | 3 | 0.45 | 244.3 | 0.045 | 33.9 |
2 | 10 | 3 | 0.90 | 208.6 | 0.025 | 70.8 |
3 | 5 | 3 | 0.90 | 232.2 | 0.063 | 54.0 |
4 | 10 | 1.5 | 0.23 | 220.2 | 0.262 | 78.7 |
5 | 10 | 3 | 0.45 | 236.3 | 0.052 | 68.4 |
6 | 5 | 1.5 | 0.23 | 484.7 | 0.678 | 22.7 |
7 | 5 | 1.5 | 0.45 | 306.5 | 0.188 | 34.1 |
System | Association Efficiency (AE) (%) | Release Efficiency (RE) (%) |
---|---|---|
U-HNPs | 66.45 ± 4.94 | 10.13 ± 1.72 |
Ch-HNPs | 64.08 ± 6.18 | 4.83 ± 2.54 |
Strain | MIC (ug/mL) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
TZP | CAZ | FEP | DOR | IPM | MEM | AMK | GEN | CIP | CST | |
Kp-01 | ≥128/R | ≥64/R | ≥64/R | ≥8/R | ≥16/R | ≥16/R | ≥16/S | ≥8/I | ≥4/R | ≥8/R |
Kp-02 | ≥128/R | ≥64/R | ≥64/R | ≥8/R | ≥16/R | ≥16/R | ≥8/S | ≥1/S | ≥0.2/R | ≥64/R |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perdomo, I.; Mora, C.; Pinillos, J.; Oñate-Garzón, J.; Salamanca, C.H. Development, Characterization, and Antimicrobial Evaluation of Hybrid Nanoparticles (HNPs) Based on Phospholipids, Cholesterol, Colistin, and Chitosan Against Multidrug-Resistant Gram-Negative Bacteria. Pharmaceutics 2025, 17, 182. https://doi.org/10.3390/pharmaceutics17020182
Perdomo I, Mora C, Pinillos J, Oñate-Garzón J, Salamanca CH. Development, Characterization, and Antimicrobial Evaluation of Hybrid Nanoparticles (HNPs) Based on Phospholipids, Cholesterol, Colistin, and Chitosan Against Multidrug-Resistant Gram-Negative Bacteria. Pharmaceutics. 2025; 17(2):182. https://doi.org/10.3390/pharmaceutics17020182
Chicago/Turabian StylePerdomo, Isabella, Carolina Mora, Juan Pinillos, José Oñate-Garzón, and Constain H. Salamanca. 2025. "Development, Characterization, and Antimicrobial Evaluation of Hybrid Nanoparticles (HNPs) Based on Phospholipids, Cholesterol, Colistin, and Chitosan Against Multidrug-Resistant Gram-Negative Bacteria" Pharmaceutics 17, no. 2: 182. https://doi.org/10.3390/pharmaceutics17020182
APA StylePerdomo, I., Mora, C., Pinillos, J., Oñate-Garzón, J., & Salamanca, C. H. (2025). Development, Characterization, and Antimicrobial Evaluation of Hybrid Nanoparticles (HNPs) Based on Phospholipids, Cholesterol, Colistin, and Chitosan Against Multidrug-Resistant Gram-Negative Bacteria. Pharmaceutics, 17(2), 182. https://doi.org/10.3390/pharmaceutics17020182