Mobility, Citizens, Innovation and Technology in Digital and Smart Cities
Abstract
:1. Introduction
- (i)
- technological solutions that will be used in the digital cities transportation environment, both for the public and private interest;
- (ii)
- blockchain based technologies for promoting distributed trust on transportation systems;
- (iii)
- consider social aspects, highlighting how citizens are now interacting with the transportation services offered within the cities, such as carpooling, smart parking, and alternative transports.
- (iv)
- discussions about the possibilities that CI inspired tools have been offering for the future of our cities, pondering a trade-off between technology and quality of life.
- (i)
- understanding some of the current transportation systems that are reality in some parts of the globe, as well as envisioning possibilities and technologies that might come to;
- (ii)
- creating awareness among citizens, researchers, teachers and students about the importance of the transformations that are occurring in urban environments, aligned with the SC paradigms;
- (iii)
- introducing state-of-the-art concepts about decentralized solutions, such as those using blockchain;
- (iv)
- highlighting the importance of considering multi-objective optimization problems and multi-criteria analysis;
- (v)
- motivating the academy and the industry to develop and work towards “fully” distributed and “transparent” approaches, in order to balance the goals of different autonomous agents;
- (vi)
- understanding the potential that DLT technologies have in removing the trust barriers in Peer-to-Peer (P2P) Transportation systems.
2. The Search for an Optimized Urban Transportation Ecosystem
2.1. Graph Modeling
2.2. Smart Routing Problems: Multi-Objective Optimization
2.3. The Role of Metaheuristic and High-Performance Optimization
3. Cities Transportation Trends
3.1. Mobility and Citizens
3.2. Smart Parking
- (i)
- Where is the parking located that makes it easier access to activities [87]? What size should they have? What are the transportation systems that this parking will cover?
- (ii)
- How should these new operators (parking assistants) organize their routes to satisfy all demands at minimum costs?
- (iii)
- How can the price be evaluated to charge customers for this service?
- (iv)
- Is it better to have a flexible organization in which pickup and delivery of the cars may be done at any point, or a more rigid one where the pickup and delivery points are fixed stations similar to taxi ones (with the difference that, in this new station, cars will be picked instead of people)? Where can those parking assistant stations be located?
- (v)
- What is the system centered on? Citizens (target age, common local activities) or cost (greening techs and time savings)?
3.3. Electric Based Transportation Systems
3.3.1. Unmanned Aerial Vehicle and Emerging Technologies
3.3.2. Superconducting Based Technologies
3.4. Decentralization via Multi Agent Systems
3.5. Blockchain for Managing Cities’ Transportation Data and Contracts
3.5.1. The Core of the Blockchain and Smart Contracts
3.5.2. Removing the Trust Barrier
3.5.3. The Potential of 5G and V2X
3.5.4. Applications for Carpooling and Ride-Sharing
4. Final Remarks
4.1. Final Considerations
4.2. Future Research Directions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CI | Computational Intelligence |
BFT | Byzantine Fault Tolerance |
DApps | Decentralized Applications |
DER | Distributed Energy Resources |
DLT | Distributed Ledger Technologies |
DSRC | Dedicated Short Range Communications |
EV | Electric Vehicle |
ICT | Information and Communication Technologies |
IoT | Internet of Things |
IoV | Internet of Value |
MAS | Multi Agent Systems |
MCCP | Minimum Coloring Cut Problem |
P2P | Peer-to-peer |
SC | Smart Cities |
SMES | Superconductive Magnetic Energy Storage |
SQUID | Superconducting Quantum Interference Device |
UAV | Unmanned Aerial Vehicle |
V2G | Vehicle-to-Grid |
V2X | Vehicle-to-Everything |
VRP | Vehicle Routing Problems |
References
- Shetty, V. A tale of smart cities. Commun. Int. 1997, 24, 16. [Google Scholar]
- Sarvapali, D.; Ramchurn, D.H.; Jennings, N.R. Trust in multi-agent systems. Knowl. Eng. Rev. 2004, 19, 1–25. [Google Scholar]
- Benenson, I. Multi-agent simulations of residential dynamics in the city. Comput. Environ. Urban Syst. 1998, 22, 25–42. [Google Scholar] [CrossRef]
- Schaffers, H.; Komninos, N.; Pallot, M.; Trousse, B.; Nilsson, M.; Oliveira, A. Smart cities and the future internet: Towards cooperation frameworks for open innovation. In The Future Internet Assembly; Springer: Berlin, Germany, 2011; pp. 431–446. [Google Scholar]
- Sun, Y.; Song, H.; Jara, A.J.; Bie, R. Internet of things and big data analytics for smart and connected communities. IEEE Access 2016, 4, 766–773. [Google Scholar] [CrossRef]
- Lawler, E.L.; Lenstra, J.K.; Kan, A.R.; Shmoys, D.B. The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization; Wiley: Hoboken, NJ, USA, 1985. [Google Scholar]
- Colorni, A.; Dorigo, M.; Maffioli, F.; Maniezzo, V.; Righini, G.; Trubian, M. Heuristics from nature for hard combinatorial problems. Int. Trans. Oper. Res. 1996, 3, 1–21. [Google Scholar] [CrossRef]
- Triantaphyllou, E. Multi-criteria decision-making methods. In Multi-Criteria Decision-Making Methods: A Comparative Study; Springer: Berlin, Germany, 2000; pp. 5–21. [Google Scholar]
- Samaniego, H.; Moses, M.E. Cities as organisms: Allometric scaling of urban road networks. J. Trans. Land Use 2008, 1, 21–39. [Google Scholar] [CrossRef] [Green Version]
- Fowke, R.; Prasad, D.K. Sustainable development, cities and local government: Dilemmas and definitions. Aust. Plan. 1996, 33, 61–66. [Google Scholar] [CrossRef]
- Roseland, M. Toward Sustainable Communities: Solutions for Citizens and Their Governments, 4th ed.; New Society Publishers: Gabriola Island, BC, Canada, 2012. [Google Scholar]
- Campbell, S. Green cities, growing cities, just cities?: Urban planning and the contradictions of sustainable development. J. Am. Plan. Assoc. 1996, 62, 296–312. [Google Scholar] [CrossRef]
- Sun, J.; Yan, J.; Zhang, K.Z. Blockchain-based sharing services: What blockchain technology can contribute to smart cities. Financ. Innov. 2016, 2, 26. [Google Scholar] [CrossRef] [Green Version]
- Soriano, F.R.; Samper-Zapater, J.J.; Martinez-Dura, J.J.; Cirilo-Gimeno, R.V.; Plume, J.M. Smart Mobility Trends: Open Data and Other Tools. IEEE Intell. Transp. Syst. Mag. 2018, 10, 6–16. [Google Scholar] [CrossRef]
- Yin, C.; Xiong, Z.; Chen, H.; Wang, J.; Cooper, D.; David, B. A literature survey on smart cities. Sci. China Inf. Sci. 2015, 58, 1–18. [Google Scholar] [CrossRef]
- Zhuhadar, L.; Thrasher, E.; Marklin, S.; de Pablos, P.O. The next wave of innovation-Review of smart cities intelligent operation systems. Comput. Hum. Behav. 2017, 66, 273–281. [Google Scholar] [CrossRef] [Green Version]
- Zanella, A.; Bui, N.; Castellani, A.; Vangelista, L.; Zorzi, M. Internet of Things for Smart Cities. IEEE Internet Things J. 2014, 1, 22–32. [Google Scholar] [CrossRef]
- Antonopoulos, A. The Internet of Money. Available online: https://www.bortzmeyer.org/internet-of-money.pdf (accessed on 25 January 2020).
- Lynch, D.C.; Lundquist, L. Digital Money: The New Era of Internet Commerce; Wiley: Hoboken, NJ, USA, 1996. [Google Scholar]
- Buterin, V. On public and private blockchains. Ether. Blog, 6 August 2015. [Google Scholar]
- Derrible, S.; Kennedy, C. Applications of Graph Theory and Network Science to Transit Network Design. Transp. Rev. 2011, 31, 495–519. [Google Scholar] [CrossRef]
- Pollio, V. Vitruvius: The Ten Books on Architecture; Harvard University Press: Cambridge, MA, USA, 1914. [Google Scholar]
- Quercia, D.; Schifanella, R.; Aiello, L.M.; McLean, K. Smelly maps: The digital life of urban smellscapes. arXiv 2015, arXiv:1505.06851. [Google Scholar]
- Parkin, J.; Smithies, N. Accounting for the needs of blind and visually impaired people in public realm design. J. Urban Des. 2012, 17, 135–149. [Google Scholar] [CrossRef]
- Martins, I.C.; Pinheiro, R.G.; Protti, F.; Ochi, L.S. A hybrid iterated local search and variable neighborhood descent heuristic applied to the cell formation problem. Expert Syst. Appl. 2015, 42, 8947–8955. [Google Scholar] [CrossRef]
- Bastos, L.; Ochi, L.S.; Protti, F.; Subramanian, A.; Martins, I.C.; Pinheiro, R.G.S. Efficient algorithms for cluster editing. J. Comb. Optim. 2016, 31, 347–371. [Google Scholar] [CrossRef]
- Chebbi, O.; Nouri, N. Reducing Energy Consumption in Smart Cities: A Scatter Search Based Approach. In Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion, Denver, CO, USA, 20–24 July 2016; pp. 1459–1460. [Google Scholar] [CrossRef]
- Lillo, F.; Schmidt, F. Optimal Paths in Real Multimodal Transportation Networks: An Appraisal Using GIS Data from New Zealand and Europe. Available online: https://www.researchgate.net/profile/Felipe_Lillo4/publication/268400265_Optimal_Paths_in_Real_Multimodal_Transportation_Networks_An_Appraisal_Using_GIS_Data_from_New_Zealand_and_Europe/links/5696489c08ae1c4279038b1d.pdf (accessed on 26 January 2020).
- Silva, J.; Rampazzo, P.B.; Yamakami, A. Urban Mobility in Multi-Modal Networks Using Multi-Objective Algorithms. In Smart and Digital Cities; Springer: Berlin, Germany, 2019; pp. 9–22. [Google Scholar]
- Völkel, T.; Weber, G. RouteCheckr: Personalized multicriteria routing for mobility impaired pedestrians. In Proceedings of the 10th International ACM SIGACCESS Conference on Computers and Accessibility, Halifax, NS, Canada, 13–15 October 2008; pp. 185–192. [Google Scholar]
- Golden, B.L.; Assad, A.A.; Levy, L.; Gheysens, F. The fleet size and mix vehicle routing problem. Comput. Oper. Res. 1984, 11, 49–66. [Google Scholar] [CrossRef]
- Or, I. Traveling Salesman-Type Combinational Problems and Their Relation to the Logistics of Blood Banking. Ph.D. Thesis, Northwestern University, Evanston, IL, USA, 1976. [Google Scholar]
- Koochaksaraei, H.R.; Enayatifar, R.; Guimarães, F.G. A New Visualization Tool in Many-Objective Optimization Problems. In Hybrid Artificial Intelligent Systems; Springer: Berlin, Germany, 2016; pp. 213–224. [Google Scholar]
- Koochaksaraei, R.H.; Meneghini, I.R.; Coelho, V.N.; Guimaraes, F.G. A new visualization method in many-objective optimization with chord diagram and angular mapping. Knowl.-Based Syst. 2017, 138, 134–154. [Google Scholar] [CrossRef]
- Dotoli, M.; Zgaya, H.; Russo, C.; Hammadi, S. A Multi-Agent Advanced Traveler Information System for Optimal Trip Planning in a Co-Modal Framework. IEEE Trans. Intell. Transp. Syst. 2017, PP, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Dotoli, M.; Epicoco, N.; Falagario, M. A technique for efficient multimodal transport planning with conflicting objectives under uncertainty. In Proceedings of the 2016 European Control Conference (ECC), Aalborg, Denmark, 29 June–1 July 2016; pp. 2441–2446. [Google Scholar] [CrossRef]
- Peprah, C.; Amponsah, O.; Oduro, C. A system view of smart mobility and its implications for Ghanaian cities. Sustain. Cities Soc. 2019, 44, 739–747. [Google Scholar] [CrossRef]
- Ziliaskopoulos, A.; Wardell, W. An intermodal optimum path algorithm for multimodal networks with dynamic arc travel times and switching delays. Eur. J. Oper. Res. 2000, 125, 486–502. [Google Scholar] [CrossRef]
- Sbihi, A.; Eglese, R.W. Combinatorial optimization and Green Logistics. 4OR 2007, 5, 99–116. [Google Scholar] [CrossRef]
- Dekker, R.; Bloemhof, J.; Mallidis, I. Operations Research for green logistics—An overview of aspects, issues, contributions and challenges. Eur. J. Oper. Res. 2012, 219, 671–679. [Google Scholar] [CrossRef] [Green Version]
- Duan, F.; He, X. Multiple Depots Incomplete Open Vehicle Routing Problem Based on Carbon Tax. In Bio-Inspired Computing—Theories and Applications; Springer: Berlin, Germany, 2014; pp. 98–107. [Google Scholar] [CrossRef]
- Wang, S.; Tao, F.; Shi, Y.; Wen, H. Optimization of Vehicle Routing Problem with Time Windows for Cold Chain Logistics Based on Carbon Tax. Sustainability 2017, 9, 694. [Google Scholar] [CrossRef] [Green Version]
- Sawik, B.; Faulin, J.; Pérez-Bernabeu, E. A multicriteria analysis for the green VRP: A case discussion for the distribution problem of a Spanish retailer. Transp. Res. Procedia 2017, 22, 305–313. [Google Scholar] [CrossRef]
- Ubeda, S.; Arcelus, F.; Faulin, J. Green logistics at Eroski: A case study. Int. J. Prod. Econ. 2011, 131, 44–51. [Google Scholar] [CrossRef]
- Gang, H.; Zhijing, G.; Peng, Y.; Junqing, S. Vehicle routing problem with simultaneous pickups and deliveries and time windows considering fuel consumption and carbon emissions. In Proceedings of the 2016 Chinese Control and Decision Conference (CCDC), Yinchuan, China, 28–30 May 2016; pp. 3000–3005. [Google Scholar] [CrossRef]
- Messaoud, E.; Idrissi, A.E.B.E.; Alaoui, A.E. The green dynamic vehicle routing problem in sustainable transport. In Proceedings of the 2018 4th International Conference on Logistics Operations Management (GOL), Le Havre, France, 10–12 April 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Hardman, S.; Shiu, E.; Steinberger-Wilckens, R. Changing the fate of Fuel Cell Vehicles: Can lessons be learnt from Tesla Motors? Int. J. Hydrog. Energy 2015, 40, 1625–1638. [Google Scholar] [CrossRef] [Green Version]
- Rahimi, M.; Baboli, A.; Rekik, Y. Multi-objective inventory routing problem: A stochastic model to consider profit, service level and green criteria. Transp. Res. Part E: Logist. Transp. Rev. 2017, 101, 59–83. [Google Scholar] [CrossRef]
- da Silva, A.R.V.; Ochi, L.S. An efficient hybrid algorithm for the Traveling Car Renter Problem. Expert Syst. Appl. 2016, 64, 132–140. [Google Scholar] [CrossRef]
- Doppstadt, C.; Koberstein, A.; Vigo, D. The Hybrid Electric Vehicle—Traveling Salesman Problem. Eur. J. Oper. Res. 2016, 253, 825–842. [Google Scholar] [CrossRef]
- Dunham, B.; Fridshal, D.; Fridshal, R.; North, J.H. Design by natural selection. Synthese 1963, 15, 254–259. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, J. Exploration-exploitation trade-offs in metaheuristics: Survey and analysis. In Proceedings of the 33rd Chinese Control Conference, Nanjing, China, 28–30 July 2014; pp. 8633–8638. [Google Scholar]
- Woeginger, G.J. Exact algorithms for NP-hard problems: A survey. In Combinatorial Optimization—Eureka, You Shrink! Springer: Berlin, Germany, 2003; pp. 185–207. [Google Scholar]
- Kitchin, R. The real-time city? Big data and smart urbanism. GeoJournal 2014, 79, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Nemhauser, G.L.; Wolsey, L.A. Integer programming and combinatorial optimization. In Proceedings of the IPCO: International Conference on Integer Programming and Combinatorial Optimization, Houston, TX, USA, 22–24 June 1998. [Google Scholar]
- Coelho, V.N.; Coelho, I.M.; Souza, M.J.F.; Oliveira, T.A.; Cota, L.P.; Haddad, M.N.; Mladenovic, N.; Silva, R.C.P.; Guimaraes, F.G. Hybrid Self-Adaptive Evolution Strategies Guided by Neighborhood Structures for Combinatorial Optimization Problems. Evol. Comput. 2016, 24, 637–666. [Google Scholar] [CrossRef]
- Johnson, D.S.; Papadimitriou, C.H.; Yannakakis, M. How easy is local search? J. Comput. Syst. Sci. 1988, 37, 79–100. [Google Scholar] [CrossRef] [Green Version]
- Schulz, C. Efficient local search on the GPU—Investigations on the vehicle routing problem. J. Parallel Distrib. Comput. 2013, 73, 14–31. [Google Scholar] [CrossRef] [Green Version]
- Szymon, J.; Dominik, Ż. Solving multi-criteria vehicle routing problem by parallel tabu search on GPU. Procedia Comput. Sci. 2013, 18, 2529–2532. [Google Scholar] [CrossRef] [Green Version]
- Sguglio, A.; Arcuri, N.; Bruno, R. Integration of Social Science in Engineering Research for Smart Cities. The Italian Case of the RES NOVAE Project. In Proceedings of the 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I CPS Europe), Palermo, Italy, 12–15 June 2018. [Google Scholar] [CrossRef]
- Want, R. Remembering Mark Weiser: Chief Technologist, Xerox Parc. IEEE Pers. Commun. 2000, 7, 8–10. [Google Scholar] [CrossRef]
- Russell, S.J.; Norvig, P. Artificial Intelligence: A Modern Approach; Pearson: London, UK, 2016. [Google Scholar]
- Nigon, J.; Glize, E.; Dupas, D.; Crasnier, F.; Boes, J. Use cases of pervasive artificial intelligence for smart cities challenges. In Proceedings of the 2016 Intl IEEE Conferences on Ubiquitous Intelligence & Computing, Advanced and Trusted Computing, Scalable Computing and Communications, Cloud and Big Data Computing, Internet of People, and Smart World Congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld), Toulouse, France, 18–21 July 2016. [Google Scholar]
- Oliveira, T.A.; Barbosa, A.C.; Ramalhinho, H.; Oliver, M. Citizens and Information and Communication Technologies. In Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, Brazil, 8–13 July 2018. [Google Scholar] [CrossRef]
- Oliveira, T.A.; Coelho, V.N.; Tavares, W.; Ramalhinho, H.; Oliver, M. Desafios operacionais e digitais para conectar cidadãos em cidades inteligentes. Available online: http://www.sbpo2017.iltc.br/pdf/170636.pdf (accessed on 26 January 2020).
- Oliveira, T.A.; Coelho, V.N.; Ramalhinho, H.; Oliver, M. Digital Cities and Emerging Technologies. In Smart and Digital Cities; Springer: Berlin, Germany, 2019; pp. 197–207. [Google Scholar]
- Dobrovnik, M.; Herold, D.; Fürst, E.; Kummer, S. Blockchain for and in Logistics: What to Adopt and Where to Start. Logistics 2018, 2, 18. [Google Scholar] [CrossRef] [Green Version]
- Kshetri, N. Can blockchain strengthen the internet of things? IT Prof. 2017, 19, 68–72. [Google Scholar] [CrossRef] [Green Version]
- Kahrobaee, S.; Rajabzadeh, R.A.; Soh, L.K.; Asgarpoor, S. Multiagent study of smart grid customers with neighborhood electricity trading. Electr. Power Syst. Res. 2014, 123–132. [Google Scholar] [CrossRef]
- Merabet, G.; Essaaidi, M.; Talei, H.; Abid, M.; Khalil, N.; Madkour, M.; Benhaddou, D. Applications of Multi-Agent Systems in Smart Grids: A survey. In Proceedings of the Multimedia Computing and Systems (ICMCS), Marrakech, Morocco, 14–16 April 2014; pp. 1088–1094. [Google Scholar] [CrossRef]
- Olivares, D.; Mehrizi-Sani, A.; Etemadi, A.; Canizares, C.; Iravani, R.; Kazerani, M.; Hajimiragha, A.; Gomis-Bellmunt, O.; Saeedifard, M.; Palma-Behnke, R.; et al. Trends in Microgrid Control. IEEE Trans. Smart Grid 2014, 5, 1905–1919. [Google Scholar] [CrossRef]
- Mengelkamp, E.; Gärttner, J.; Rock, K.; Kessler, S.; Orsini, L.; Weinhardt, C. Designing microgrid energy markets: A case study: The Brooklyn Microgrid. Appl. Energy 2018, 210, 870–880. [Google Scholar] [CrossRef]
- Park, S.; Lee, J.; Bae, S.; Hwang, G.; Choi, J.K. Contribution-based energy-trading mechanism in microgrids for future smart grid: A game theoretic approach. IEEE Trans. Ind. Electron. 2016, 63, 4255–4265. [Google Scholar] [CrossRef]
- Zhu, T.; Huang, Z.; Sharma, A.; Su, J.; Irwin, D.; Mishra, A.; Menasche, D.; Shenoy, P. Sharing renewable energy in smart microgrids. In Proceedings of the C2013 ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS), Philadelphia, PA, USA, 8–11 April 2013; pp. 219–228. [Google Scholar]
- Liu, J.; Li, Q.; Qu, M.; Chen, W.; Yang, J.; Xiong, H.; Zhong, H.; Fu, Y. Station Site Optimization in Bike Sharing Systems. In Proceedings of the 2015 IEEE International Conference on Data Mining, Atlantic City, NJ, USA, 14–17 November 2015; pp. 883–888. [Google Scholar] [CrossRef]
- Frade, I.; Ribeiro, A. Bike-sharing stations: A maximal covering location approach. Transp. Res. Part A: Policy Pract. 2015, 82, 216–227. [Google Scholar] [CrossRef]
- Maggioni, F.; Cagnolari, M.; Bertazzi, L.; Wallace, S.W. Stochastic optimization models for a bike-sharing problem with transshipment. Eur. J. Oper. Res. 2019, 276, 272–283. [Google Scholar] [CrossRef]
- Ji, S.; Cherry, C.R.; Han, L.D.; Jordan, D.A. Electric bike sharing: Simulation of user demand and system availability. J. Clean. Prod. 2014, 85, 250–257. [Google Scholar] [CrossRef]
- Rose, G.; Delbosc, A. Powered-two-wheelers for city commuting: Insight from Australia’s three largest capital cities. J. Trans. Geogr. 2016, 54, 325–335. [Google Scholar] [CrossRef]
- Hardt, C.; Bogenberger, K. Usage of e-scooters in urban environments. Transp. Res. Procedia 2019, 37, 155–162. [Google Scholar] [CrossRef]
- Wild, K.; Woodward, A. Why are cyclists the happiest commuters? Health, pleasure and the e-bike. J. Transp. Health 2019, 14, 100569. [Google Scholar] [CrossRef]
- Thoreau, R. The impact of mobility scooters on their users. Does their usage help or hinder?: A state of the art review. J. Transp. Health 2015, 2, 269–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- May, E.; Garrett, R.; Ballantyne, A. Being mobile: Electric mobility-scooters and their use by older people. Ageing Soc. 2010, 30, 1219–1237. [Google Scholar] [CrossRef]
- Nocerino, R.; Colorni, A.; Lia, F.; Luè, A. E-bikes and E-scooters for smart logistics: Environmental and economic sustainability in pro-E-bike Italian pilots. Transp. Res. Procedia 2016, 14, 2362–2371. [Google Scholar] [CrossRef] [Green Version]
- Tasseron, G.; Martens, K. Urban parking space reservation through bottom-up information provision: An agent-based analysis. Comput. Environ. Urban Syst. 2017, 64, 30–41. [Google Scholar] [CrossRef]
- Ji, Z.; Ganchev, I.; O’Droma, M.; Zhao, L.; Zhang, X. A cloud-based car parking middleware for IoT-based smart cities: Design and implementation. Sensors 2014, 14, 22372–22393. [Google Scholar] [CrossRef]
- Ganchev, I.; O’Droma, M.; Meere, D. Intelligent car parking locator service. Int. J. 2008, 2, 166–173. [Google Scholar]
- Grodi, R.; Rawat, D.B.; Rios-Gutierrez, F. Smart parking: Parking occupancy monitoring and visualization system for smart cities. In Proceedings of the SoutheastCon 2016, Norfolk, VA, USA, 30 March–3 April 2016; pp. 1–5. [Google Scholar] [CrossRef]
- Coelho, V.N.; Coelho, I.M.; Coelho, B.N.; Cohen, M.W.; Reis, A.J.; Silva, S.M.; Souza, M.J.; Fleming, P.J.; Guimaraes, F.G. Multi-objective energy storage power dispatching using plug-in vehicles in a smart-microgrid. Renew. Energy 2016, 89, 730–742. [Google Scholar] [CrossRef] [Green Version]
- Wolfram, P.; Lutsey, N. Electric vehicles: Literature review of technology costs and carbon emissions. In Proceedings of the International Council on Clean Transportation, Washington, DC, USA, 15 July 2016. [Google Scholar]
- Nordelöf, A.; Messagie, M.; Tillman, A.M.; Söderman, M.L.; Van Mierlo, J. Environmental impacts of hybrid, plug-in hybrid, and battery electric vehicles—What can we learn from life cycle assessment? Int. J. Life Cycle Assess. 2014, 19, 1866–1890. [Google Scholar] [CrossRef] [Green Version]
- Agha, A.; Ranjan, R.; Gan, W.S. Noisy vehicle surveillance camera: A system to deter noisy vehicle in smart city. Appl. Acoust. 2017, 117, 236–245. [Google Scholar] [CrossRef]
- Coelho, V.N.; Cohen, M.W.; Coelho, I.M.; Liu, N.; Guimarães, F.G. Multi-agent systems applied for energy systems integration: State-of-the-art applications and trends in microgrids. Appl. Energy 2017, 187, 820–832. [Google Scholar] [CrossRef]
- Di Napoli, C.; Di Nocera, D.; Rossi, S. Using Negotiation for Parking Selection in Smart Cities. In Proceedings of the International Conference on Practical Applications of Agents and Multi-Agent Systems, Salamanca, Spain, 4–6 June 2014; Springer: Berlin, Germany, 2014; pp. 331–334. [Google Scholar] [CrossRef]
- Longo, M.; Roscia, M.; Lazaroiu, G.C. Innovating Multi-agent Systems Applied to Smart City. Res. J. Appl. Sci. Eng. Technol. 2014, 7, 4296–4302. [Google Scholar] [CrossRef]
- Battistelli, C.; Baringo, L.; Conejo, A. Optimal energy management of small electric energy systems including {V2G} facilities and renewable energy sources. Electr. Power Syst. Res. 2012, 92, 50–59. [Google Scholar] [CrossRef]
- Kempton, W.; Tomić, J. Vehicle-to-grid power fundamentals: Calculating capacity and net revenue. J. Power Sources 2005, 144, 268–279. [Google Scholar] [CrossRef]
- Coelho, V.N.; Coelho, I.M.; Coelho, B.N.; de Oliveira, G.C.; Barbosa, A.C.; Pereira, L.; de Freitas, A.; Santos, H.G.; Ochi, L.S.; Guimarães, F.G. A communitarian microgrid storage planning system inside the scope of a smart city. Appl. Energy 2017, 201, 371–381. [Google Scholar] [CrossRef]
- Saber, A.Y.; Venayagamoorthy, G.K. Intelligent unit commitment with vehicle-to-grid—A cost-emission optimization. J. Power Sources 2010, 195, 898–911. [Google Scholar] [CrossRef]
- García-Magariño, I.; Palacios-Navarro, G.; Lacuesta, R.; Lloret, J. ABSCEV: An agent-based simulation framework about smart transportation for reducing waiting times in charging electric vehicles. Comput. Netw. 2018, 138, 119–135. [Google Scholar] [CrossRef]
- Hu, J.; Saleem, A.; You, S.; Nordström, L.; Lind, M.; Østergaard, J. A multi-agent system for distribution grid congestion management with electric vehicles. Eng. Appl. Artif. Intell. 2015, 38, 45–58. [Google Scholar] [CrossRef]
- Lin, C.; Choy, K.; Ho, G.; Chung, S.; Lam, H. Survey of Green Vehicle Routing Problem: Past and future trends. Expert Syst. Appl. 2014, 41, 1118–1138. [Google Scholar] [CrossRef]
- Erdoğan, S.; Miller-Hooks, E. A Green Vehicle Routing Problem. Transp. Res. Part E: Logist. Transp. Rev. 2012, 48, 100–114. [Google Scholar] [CrossRef]
- Gnann, T.; Plotz, P.; Funke, S.; Wietschel, M. What is the market potential of plug-in electric vehicles as commercial passenger cars? A case study from Germany. Transp. Res. Part D: Transp. Environ. 2015, 37, 171–187. [Google Scholar] [CrossRef]
- Khaligh, A.; Li, Z. Battery, Ultracapacitor, Fuel Cell, and Hybrid Energy Storage Systems for Electric, Hybrid Electric, Fuel Cell, and Plug-In Hybrid Electric Vehicles: State of the Art. IEEE Trans. Veh. Technol. 2010, 59, 2806–2814. [Google Scholar] [CrossRef]
- Peters, A. This Bike Path Paved With Solar Panels Shows That All Streets Could Double As Power Sources. Available online: https://www.fastcompany.com/3053585/this-bike-path-paved-with-solar-panels-shows-that-all-streets-could-double-as-power-sources (accessed on 25 January 2020).
- Gupta, S.G.; Ghonge, M.M.; Jawandhiya, P. Review of unmanned aircraft system (UAS). Int. J. Adv. Res. Comput. Eng. Technol. 2013, 2, 1646–1658. [Google Scholar] [CrossRef]
- Coelho, B.N.; Coelho, V.N.; Coelho, I.M.; Ochi, L.S.; Haghnazar, R.; Zuidema, D.; Lima, M.S.; da Costa, A.R. A multi-objective green UAV routing problem. Comput. Oper. Res. 2017, 88, 306–315. [Google Scholar] [CrossRef]
- Sun, L.; Huang, Y.; Liu, S.; Chen, Y.; Yao, L.; Kashyap, A. A completive survey study on the feasibility and adaptation of {EVs} in Beijing, China. Appl. Energy 2017, 187, 128–139. [Google Scholar] [CrossRef]
- Celik, K.; Eren, H. UAV fuel preferences for future cities. In Proceedings of the 2018 6th International Istanbul Smart Grids and Cities Congress and Fair (ICSG), Istanbul, Turkey, 25–26 April 2018. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Nishiyama, S.; Izumi, M.; Zheng, L.; Miao, X.; Sakai, Y.; Goto, H.; Hirao, N.; Ohishi, Y.; Kagayama, T.; et al. Fabrication of new superconducting materials, CaxK1-xCy (0 < x< 1). Carbon 2016, 100, 641–646. [Google Scholar]
- Savitskii, E. Superconducting Materials; Springer Science & Business Media: Berlin, Germany, 2012. [Google Scholar]
- Kolmogorov, A. Theory-Guided Discovery of New Superconducting Materials. Available online: https://ui.adsabs.harvard.edu/abs/2015APS..MARA16001K/abstract (accessed on 26 January 2020).
- Toida, H.; Matsuzaki, Y.; Kakuyanagi, K.; Zhu, X.; Munro, W.J.; Nemoto, K.; Yamaguchi, H.; Saito, S. Electron paramagnetic resonance spectroscopy using a direct current-SQUID magnetometer directly coupled to an electron spin ensemble. Appl. Phys. Lett. 2016, 108, 052601. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.D.; Jin, J.X.; Wen, L. A Multifunction Measurement Instrument for Applied Superconductor Properties and Applications. IEEE Trans. Appl. Supercond. 2016, 26, 1–4. [Google Scholar] [CrossRef]
- Benz, S.P. Quantum-based voltage metrology with superconducting Josephson devices at NIST. In Proceedings of the Precision Electromagnetic Measurements (CPEM 2016), Ottawa, ON, Canada, 10–15 July 2016. [Google Scholar]
- Scurti, F.; Schwartz, J. Optical fiber distributed sensing for high temperature superconductor magnets. In Proceedings of the 2017 25th Optical Fiber Sensors Conference (OFS), Jeju, South Korea, 24–28 April 2017. [Google Scholar]
- Chu, C.; Canfield, P.; Dynes, R.; Fisk, Z.; Batlogg, B.; Deutscher, G.; Geballe, T.; Zhao, Z.; Greene, R.; Hosono, H.; et al. Epilogue: Superconducting materials past, present and future. Phys. C: Supercond. Appl. 2015, 514, 437–443. [Google Scholar] [CrossRef] [Green Version]
- Barrentine, E.M.; Noroozian, O.; Brown, A.D.; Cataldo, G.; Ehsan, N.; Hsieh, W.T.; Stevenson, T.R.; U-Yen, K.; Wollack, E.J.; Moseley, S.H. Overview of the Design, Fabrication and Performance Requirements of Micro-Spec, an Integrated Submillimeter Spectrometer. Available online: https://ntrs.nasa.gov/search.jsp?R=20150016073 (accessed on 25 January 2020).
- Bertola, L.; Cox, T.; Wheeler, P.; Garvey, S. Superconducting and conventional electromagnetic launch system for civil aircraft assisted take-off. In Proceedings of the 2016 IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, MI, USA, 18–22 September 2016. [Google Scholar] [CrossRef] [Green Version]
- Ashtineh, H.; Pishvaee, M.S. Alternative fuel vehicle-routing problem: A life cycle analysis of transportation fuels. J. Clean. Prod. 2019, 219, 166–182. [Google Scholar] [CrossRef]
- Shaukat, N.; Khan, B.; Ali, S.; Mehmood, C.; Khan, J.; Farid, U.; Majid, M.; Anwar, S.; Jawad, M.; Ullah, Z. A survey on electric vehicle transportation within smart grid system. Renew. Sustain. Energy Rev. 2018, 81, 1329–1349. [Google Scholar] [CrossRef]
- Tolpygo, S.K.; Bolkhovsky, V.; Weir, T.; Wynn, A.; Oates, D.; Johnson, L.; Gouker, M. Advanced fabrication processes for superconducting very large-scale integrated circuits. IEEE Trans. Appl. Supercond. 2016, 26, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Snitchler, G. Progress on high temperature superconductor propulsion motors and direct drive wind generators. In Proceedings of the 2010 International Power Electronics Conference—ECCE ASIA, Sapporo, Japan, 21–24 June 2010. [Google Scholar]
- Snitchler, G.; Gamble, B.; Kalsi, S.S. The performance of a 5 MW high temperature superconductor ship propulsion motor. IEEE Trans. Appl. Supercond. 2005, 15, 2206–2209. [Google Scholar] [CrossRef]
- Stumberger, G.; Aydemir, M.T.; Zarko, D.; Lipo, T.A. Design of a linear bulk superconductor magnet synchronous motor for electromagnetic aircraft launch systems. IEEE Trans. Appl. Supercond. 2004, 14, 54–62. [Google Scholar] [CrossRef]
- Snitchler, G.; Gamble, B.; King, C.; Winn, P. 10 MW class superconductor wind turbine generators. IEEE Trans. Appl. Supercond. 2011, 21, 1089–1092. [Google Scholar] [CrossRef]
- Lee, H.W.; Kim, K.C.; Lee, J. Review of maglev train technologies. IEEE Trans. Mag. 2006, 42, 1917–1925. [Google Scholar]
- Xu, Y.L.; Wang, Z.L.; Li, G.Q.; Chen, S.; Yang, Y.B. High-speed running maglev trains interacting with elastic transitional viaducts. Eng. Struct. 2019, 183, 562–578. [Google Scholar] [CrossRef]
- Younis, L.; Al Suhail, A.; Ziai, S.; Sun, L. Connecting the GCC Countries with the Maglev Train. Available online: https://dspace.aus.edu/xmlui/bitstream/handle/11073/7483/HGCCcountries26theMaglevtrain.pdf?sequence=1&isAllowed=y (accessed on 25 January 2020).
- Anthopoulos, L. Smart utopia VS smart reality: Learning by experience from 10 smart city cases. Cities 2017, 63, 128–148. [Google Scholar] [CrossRef]
- Rothengatter, W. Megaprojects in transportation networks. Transp. Policy 2019, 75, A1–A15. [Google Scholar] [CrossRef]
- Hossain, M.F. Chapter Five—Infrastructure and Transportation. In Sustainable Design and Build; Hossain, M.F., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 231–300. [Google Scholar] [CrossRef]
- Ali, M.H.; Wu, B.; Dougal, R.A. An overview of SMES applications in power and energy systems. IEEE Trans. Sustain. Energy 2010, 1, 38–47. [Google Scholar] [CrossRef]
- Trevisani, L.; Morandi, A.; Negrini, F.; Ribani, P.L.; Fabbri, M. Cryogenic Fuel-Cooled SMES for Hybrid Vehicle Application. IEEE Trans. Appl. Supercond. 2009, 19, 2008–2011. [Google Scholar] [CrossRef]
- Xing, Y.Q.; Jin, J.X.; Wang, Y.L.; Du, B.X.; Wang, S.C. An Electric Vehicle Charging System Using an SMES Implanted Smart Grid. IEEE Trans. Appl. Supercond. 2016, 26, 1–4. [Google Scholar] [CrossRef]
- Furrer+Frey Opbrid Charging Systems. Available online: https://opbrid.info/ (accessed on 26 January 2020).
- A Giant Charger That Juices Up Electric Buses in Three Minutes | WIRED. Available online: https://www.wired.com/2014/10/giant-charger-juices-electric-buses-three-minutes/ (accessed on 27 June 2017).
- Lagorse, J.; Simoes, M.; Miraoui, A. A Multiagent Fuzzy-Logic-Based Energy Management of Hybrid Systems. IEEE Trans. Ind. Appl. 2009, 45, 2123–2129. [Google Scholar] [CrossRef]
- Annaswamy, A.M.; Malekpour, A.R.; Baros, S. Emerging research topics in control for smart infrastructures. Annu. Rev. Control 2016, 42, 259–270. [Google Scholar] [CrossRef] [Green Version]
- Shoham, Y.; Leyton-Brown, K. Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Postráneckỳ, F.; Svítek, M. Conceptual model of complex multi-agent system smart city 4. In 0. In Proceedings of the International Conference on Industrial Applications of Holonic and Multi-Agent Systems, Lyon, France, 28–30 August 2017; Springer: Berlin, Germany, 2017; pp. 215–226. [Google Scholar] [CrossRef]
- Zambonelli, F. Engineering self-organizing urban superorganisms. Eng. Appl. Artif. Intell. 2015, 41, 325–332. [Google Scholar] [CrossRef]
- Bicocchi, N.; Leonardi, L.; Zambonelii, F. Software-Intensive Systems for Smart Cities: From Ensembles to Superorganisms. In Software, Services, and Systems; Springer: Berlin, Germany, 2015; pp. 538–551. [Google Scholar] [CrossRef]
- Chen, M. Towards smart city: M2M communications with software agent intelligence. Multimed. Tool. Appl. 2013, 67, 167–178. [Google Scholar] [CrossRef] [Green Version]
- Marsa-Maestre, I.; Lopez-Carmona, M.A.; Velasco, J.R.; Navarro, A. Mobile agents for service personalization in smart environments. J. Netw. 2008, 3, 30–41. [Google Scholar] [CrossRef]
- Mannion, P.; Duggan, J.; Howley, E. Parallel reinforcement learning for traffic signal control. Procedia Comput. Sci. 2015, 52, 956–961. [Google Scholar] [CrossRef] [Green Version]
- Prendinger, H.; Gajananan, K.; Zaki, A.B.; Fares, A.; Molenaar, R.; Urbano, D.; van Lint, H.; Gomaa, W. Tokyo virtual living lab: Designing smart cities based on the 3d internet. IEEE Internet Comput. 2013, 17, 30–38. [Google Scholar] [CrossRef]
- Bjornskau, T. The Zebra Crossing Game – Using game theory to explain a discrepancy between road user behaviour and traffic rules. Saf. Sci. 2017, 92, 298–301. [Google Scholar] [CrossRef]
- Soares, G.; Kokkinogenis, Z.; Macedo, J.L.; Rossetti, R.J.F. Agent-Based Traffic Simulation Using SUMO and JADE: An Integrated Platform for Artificial Transportation Systems. In Proceedings of the Simulation of Urban MObility User Conference, Berlin, Germany, 15–17 May 2013. [Google Scholar] [CrossRef]
- Lämmer, S.; Helbing, D. Self-control of traffic lights and vehicle flows in urban road networks. J. Stat. Mech.: Theory Exp. 2008, 2008, P04019. [Google Scholar] [CrossRef] [Green Version]
- Paruchuri, P.; Pullalarevu, A.R.; Karlapalem, K. Multi agent simulation of unorganized traffic. In Proceedings of the First International Joint Conference on Autonomous Agents and Multiagent Systems: Part 1, Bologna, Italy, 15–19 July 2002. [Google Scholar]
- Hernández, R.; Cárdenas, C.; Muõz, D. Game theory applied to transportation systems in Smart Cities: Analysis of evolutionary stable strategies in a generic car pooling system. Int. J. Interact. Des. Manuf. 2018, 12, 179–185. [Google Scholar] [CrossRef]
- Wang, J.; Wang, C.; Song, X.; Raghavan, V. Automatic intersection and traffic rule detection by mining motor-vehicle GPS trajectories. Comput. Environ. Urban Syst. 2017, 64, 19–29. [Google Scholar] [CrossRef]
- Xie, X.; Liao, W.; Aghajan, H.; Veelaert, P.; Philips, W. A novel approach for detecting intersections from GPS traces. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016. [Google Scholar] [CrossRef]
- D’Andrea, E.; Marcelloni, F. Detection of traffic congestion and incidents from GPS trace analysis. Expert Syst. Appl. 2017, 73, 43–56. [Google Scholar] [CrossRef]
- Qiu, J.; Wang, R.; Wang, X. Inferring road maps from sparsely-sampled GPS traces. Lect. Note Comput. Sci. 2014, 8436, 339–344. [Google Scholar] [CrossRef]
- Sandel, M.J. Justice: What’s the Right Thing to Do? Farrar, Straus and Giroux: New York, NY, USA, 2010. [Google Scholar]
- Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System. Available online: https://git.dhimmel.com/bitcoin-whitepaper/ (accessed on 25 January 2020).
- Da, H.; Zhang, E. NEO: A Distributed Network for the Smart Economy. Available online: https://bravenewcoin.com/insights/neo-white-paper-a-distributed-network-for-the-smart-economy (accessed on 25 January 2020).
- Perlman, L. Distributed Ledger Technologies and Financial Inclusion. Available online: https://www.itu.int/en/ITU-T/focusgroups/dfs/Documents/201703/ITU_FGDFS_Report-on-DLT-and-Financial-Inclusion.pdf (accessed on 25 January 2020).
- The Linux Foundation. Blockchain for Business—An Introduction to Hyperledger Technologies. Available online: https://d37djvu3ytnwxt.cloudfront.net/assets/courseware/v1/f78e55f0cfc90346abab4ae5096007d2/asset-v1:LinuxFoundationX+LFS171x+3T2017+type@asset+block@LFS171x_-_Blockchain_for_Business_-_An_Introduction_to_Hyperledger_Technologies_Outline.pdf (accessed on 26 January 2020).
- Blockchains for Social Good. Available online: https://ec.europa.eu/research/eic/index.cfm?pg=prizes_blockchains (accessed on 26 January 2020).
- Swan, M. Blockchain: Blueprint for a New Economy; O’Reilly Media: Sebastopol, CA, USA, 2015. [Google Scholar]
- PwC. Blockchain—An Opportunity for Energy Producers and Consumers? Available online: https://www.pwc.com/gx/en/industries/assets/pwc-blockchain-opportunity-for-energy-producers-and-consumers.pdf (accessed on 25 January 2020).
- Lamport, L.; Shostak, R.; Pease, M. The Byzantine generals problem. ACM Trans. Program. Lang. Syst. 1982, 4, 382–401. [Google Scholar] [CrossRef] [Green Version]
- Castro, M.; Liskov, B. Practical Byzantine fault tolerance. OSDI 1999, 99, 173–186. [Google Scholar]
- Kandaswamy, R. Blockchain: How Real Is The Market? Available online: https://www.gartner.com/en/site-index (accessed on 25 January 2020).
- Valtanen, K.; Backman, J.; Yrjölä, S. Blockchain-Powered Value Creation in the 5G and Smart Grid Use Cases. IEEE Access 2019, 7, 25690–25707. [Google Scholar] [CrossRef]
- Merz, M. Potential of the Blockchain Technology in Energy Trading. Available online: http://www.ponton.de/downloads/mm/Potential-of-the-Blockchain-Technology-in-Energy-Trading_Merz_2016.en.pdf (accessed on 25 January 2020).
- Groarke, D. Utilities and Blockchain Pilots—A Global Snapshot. Available online: https://www.indigoadvisorygroup.com/blog/2016/10/7/utilities-piloting-blockchain-application-globally (accessed on 24 September 2017).
- Grid Singularity. The Blockchain: Enabling a Distributed and Connected Energy Future. Available online: https://www.youtube.com/watch?v=cpMwPhA9QzM&feature=youtu.be&t=1h33m5s (accessed on 26 January 2020).
- Power Ledger Whitepaper. Available online: https://cdn2.hubspot.net/hubfs/4519667/Documents /Power Ledger Whitepaper.pdf (accessed on 25 January 2020).
- Smolenski, N. BLOCKCHAIN IN GOVERNMENT BRIEFING: Q3 2017. Available online: http://www.learningmachine.com/wp-content/uploads/2017/07/Blockchain-in-Government-2017-Q3.pdf (accessed on 25 January 2020).
- Council of European Union. Regulation (EU) 2016/679 of the European Parliament and of the Council. Available online: https://eur-lex.europa.eu/eli/reg/2016/679/2016-05-04 (accessed on 25 January 2020).
- Portier, C.C.M.L.B. Blockchain and GDPR: How Blockchain Could Address Five Areas Associated with GDPR Compliance. Available online: https://www.ibm.com/downloads/cas/2EXR2XYP (accessed on 25 January 2020).
- Timsit, T.L.L.C.K. Blockchain and the GDPR. Available online: https://www.cnil.fr/en/blockchain-and-gdpr-solutions-responsible-use-blockchain-context-personal-data (accessed on 25 January 2020).
- Morkunas, V.J.; Paschen, J.; Boon, E. How blockchain technologies impact your business model. Bus. Horiz. 2019, 62, 295–306. [Google Scholar] [CrossRef]
- Di Stasi, G.; Avallone, S.; Canonico, R.; Ventre, G. Routing Payments on the Lightning Network. In Proceedings of the 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), Halifax, NS, Canada, 30 July–3 August 2018. [Google Scholar] [CrossRef]
- Xie, L.; Ding, Y.; Yang, H.; Wang, X. Blockchain-Based Secure and Trustworthy Internet of Things in SDN-Enabled 5G-VANETs. IEEE Access 2019, 7, 56656–56666. [Google Scholar] [CrossRef]
- Molina-Masegosa, R.; Gozalvez, J. LTE-V for Sidelink 5G V2X Vehicular Communications: A New 5G Technology for Short-Range Vehicle-to-Everything Communications. IEEE Veh. Technol. Mag. 2017, 12, 30–39. [Google Scholar] [CrossRef]
- Qiu, H.; Qiu, M.; Lu, Z.; Memmi, G. An efficient key distribution system for data fusion in V2X heterogeneous networks. Inf. Fusion 2019, 50, 212–220. [Google Scholar] [CrossRef]
- Kenney, J.B. Dedicated Short-Range Communications (DSRC) Standards in the United States. Proc. IEEE 2011, 99, 1162–1182. [Google Scholar] [CrossRef]
- Vukadinovic, V.; Bakowski, K.; Marsch, P.; Garcia, I.D.; Xu, H.; Sybis, M.; Sroka, P.; Wesolowski, K.; Lister, D.; Thibault, I. 3GPP C-V2X and IEEE 802.11p for Vehicle-to-Vehicle communications in highway platooning scenarios. Ad Hoc Netw. 2018, 74, 17–29. [Google Scholar] [CrossRef]
- Al-Turjman, F.; Malekloo, A. Smart parking in IoT-enabled cities: A survey. Sustain. Cities Soc. 2019, 49, 101608. [Google Scholar] [CrossRef]
- Ligo, A.K.; Peha, J.M.; Ferreira, P.; Barros, J. Throughput and Economics of DSRC-Based Internet of Vehicles. IEEE Access 2018, 6, 7276–7290. [Google Scholar] [CrossRef]
- Smith, A. EARN AS YOU DRIVE WITH JAGUAR LAND ROVER AND IOTA. 2019. Available online: https://blog.iota.org/earn-as-you-drive-with-jaguar-land-rover-and-iota-3c744d8c0cba (accessed on 26 January 2020).
- Carrese, S.; Giacchetti, T.; Patella, S.M.; Petrelli, M. Real time ridesharing: Understanding user behavior and policies impact: Carpooling service case study in Lazio Region, Italy. In Proceedings of the 2017 5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS), Naples, Italy, 26–28 June 2017. [Google Scholar] [CrossRef]
- Santoso, A.S.; Nelloh, L.A.M. User Satisfaction and Intention to Use Peer-to-Peer Online Transportation: A Replication Study. Procedia Comput. Sci. 2017, 124, 379–387. [Google Scholar] [CrossRef]
- Zhu, M.; Liu, X.; Wang, X. An Online Ride-Sharing Path-Planning Strategy for Public Vehicle Systems. IEEE Trans. Intell. Transp. Syst. 2019, 20, 616–627. [Google Scholar] [CrossRef]
- Tavory, S.S.; Trop, T.; Shiftan, Y. Self-organized ridesharing: Multiperspective annotated review. Int. J. Sustain. Transp. 2019, 1–10. [Google Scholar] [CrossRef]
- Yan, C.Y.; Hu, M.B.; Jiang, R.; Long, J.; Chen, J.Y.; Liu, H.X. Stochastic Ridesharing User Equilibrium in Transport Networks. Netw. Spat. Econ. 2019, 19, 1007–1030. [Google Scholar] [CrossRef]
- Yu, J.J.Q.; Yu, W.; Gu, J. Online Vehicle Routing With Neural Combinatorial Optimization and Deep Reinforcement Learning. IEEE Trans. Intell. Transp. Syst. 2019, 20, 3806–3817. [Google Scholar] [CrossRef]
- Teubner, T.; Flath, C.M. The Economics of Multi-Hop Ride Sharing. Bus. Inf. Syst. Eng. 2015, 57, 311–324. [Google Scholar] [CrossRef]
- Barbosa, H.; Barthelemy, M.; Ghoshal, G.; James, C.R.; Lenormand, M.; Louail, T.; Menezes, R.; Ramasco, J.J.; Simini, F.; Tomasini, M. Human mobility: Models and applications. Phys. Rep. 2018, 734, 1–74. [Google Scholar] [CrossRef] [Green Version]
- Noel, L.; de Rubens, G.Z.; Kester, J.; Sovacool, B.K. Navigating expert skepticism and consumer distrust: Rethinking the barriers to vehicle-to-grid (V2G) in the Nordic region. Transp. Policy 2019, 76, 67–77. [Google Scholar] [CrossRef]
- Coelho, V.N.; Grasas, A.; Ramalhinho, H.; Coelho, I.M.; Souza, M.J.F.; Cruz, R.C. An ILS-based algorithm to solve a large-scale real heterogeneous fleet VRP with multi-trips and docking constraints. Eur. J. Oper. Res. 2016, 250, 367–376. [Google Scholar] [CrossRef] [Green Version]
- Coelho, I.M.; Munhoz, P.L.A.; Ochi, L.S.; Souza, M.J.F.; Bentes, C.; Farias, R. An integrated CPU–GPU heuristic inspired on variable neighbourhood search for the single vehicle routing problem with deliveries and selective pickups. Int. J. Prod. Res. 2016, 54, 945–962. [Google Scholar] [CrossRef]
- Silva, M.M.; Subramanian, A.; Ochi, L.S. An iterated local search heuristic for the split delivery vehicle routing problem. Comput. Oper. Res. 2015, 53, 234–249. [Google Scholar] [CrossRef]
- Subramanian, A.; Uchoa, E.; Ochi, L.S. A hybrid algorithm for a class of vehicle routing problems. Comput. Oper. Res. 2013, 40, 2519–2531. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, T.A.; Gabrich, Y.B.; Ramalhinho, H.; Oliver, M.; Cohen, M.W.; Ochi, L.S.; Gueye, S.; Protti, F.; Pinto, A.A.; Ferreira, D.V.M.; et al. Mobility, Citizens, Innovation and Technology in Digital and Smart Cities. Future Internet 2020, 12, 22. https://doi.org/10.3390/fi12020022
Oliveira TA, Gabrich YB, Ramalhinho H, Oliver M, Cohen MW, Ochi LS, Gueye S, Protti F, Pinto AA, Ferreira DVM, et al. Mobility, Citizens, Innovation and Technology in Digital and Smart Cities. Future Internet. 2020; 12(2):22. https://doi.org/10.3390/fi12020022
Chicago/Turabian StyleOliveira, Thays A., Yuri B. Gabrich, Helena Ramalhinho, Miquel Oliver, Miri W. Cohen, Luiz S. Ochi, Serigne Gueye, Fábio Protti, Alysson A. Pinto, Diógenes V. M. Ferreira, and et al. 2020. "Mobility, Citizens, Innovation and Technology in Digital and Smart Cities" Future Internet 12, no. 2: 22. https://doi.org/10.3390/fi12020022
APA StyleOliveira, T. A., Gabrich, Y. B., Ramalhinho, H., Oliver, M., Cohen, M. W., Ochi, L. S., Gueye, S., Protti, F., Pinto, A. A., Ferreira, D. V. M., Coelho, I. M., & Coelho, V. N. (2020). Mobility, Citizens, Innovation and Technology in Digital and Smart Cities. Future Internet, 12(2), 22. https://doi.org/10.3390/fi12020022