Tourist Recommender Systems Based on Emotion Recognition—A Scientometric Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset Collection
2.2. Review Methodology
- First, the subject of the review was searched in the Scopus and WoS databases. The search string was designed according to the research topic of recommendation systems in the tourism domain based on recognizing emotions from wearable devices’ physiological data.
- Secondly, the scientometric tool ScientoPy [37] was used, which pre-processed these two bibliographic databases’ files. In this way, several clusters were determined, and the categories related to the research topic were formed. Besides, the lead authors’ first 1000 keywords were chosen from this dataset consisting of 1449 documents. Then, the most relevant author keywords from this list were analyzed to consolidate 16 categories (recommender system, tourism, emotion recognition, machine learning, social media, user modeling, collaborative filtering, mobile application, context, personalization, sentiment analysis, wearable, healthcare, ontology, affective computing, and physiological signal). Later, the categories presented in the graphics cluster the similar author keywords that belong to the same topic (such as words in plural/singular, acronyms, classes, or category types). For instance, the RS topic includes the keywords (recommender system, recommendation system, recommendation, recommendation systems, recommendations, and others), and the deep learning topic includes the keywords (convolutional neural networks, convolutional neural network, CNN, deep neural network, LSTM, and others).
- Third, it shows the statistical graphs of the bar and parametric trend analysis constructed with the indicators of Average Documents per Year (ADY) and Percentage of Documents in Recent Years (PDLY) [37]. It is interesting to highlight the rise of the RS and tourism as transversal and thematic axes. Figure 2 shows the trend bar graph of the main categories and highlights in the orange bar the documents published in the last four years in sentiment analysis, wearable devices, physiological signals, and use of ML algorithms in the ER. Also, it includes the value of PDLY (2016–2019). Similarly, the trend analysis in Figure 3 uses the ADY and PDLY indicators to describe the behavior of the strongly related themes to SR-based research. The graph on the left shows the evolution of the S curve of technology or category calculated by the number of documents accumulated per year (logarithmic scale). It represents the initial evolution, the period of growth, and the boom of the publication of documents related to research topics. While the parametric scatter graph located on the right side visualizes the growth of publications in recent years (2016–2019). New themes have emerged to support tourism SR development, such as sentiment analysis, wearable devices, social networks, and ML algorithms. The thematic axes of ER, affective computing, and collaborative filtering are of great interest to recommenders.
- Fourth, the trend analysis of research belonging to these clusters was carried out with the WoSViewer (Section 7) and ScientoPy tools, which determined that the boom in these clusters’ publications began in 2016 (see Figure 2 and Figure 3). These figures show the boom of 2016, especially in the clusters of collaborative filtering, wearables, physiological signals, sentiment analysis, healthcare, affective computing, and social networks. The topics mentioned are included in Section 3, Section 4, Section 5 and Section 6. In each section, reference is made to the documents most relevant to SR, ER, wearable technology, and ML.
3. Recommender Systems
3.1. Content-Based Filtering
3.2. Collaborative Filtering
3.3. Knowledge-Based
3.4. Tourist Context
3.5. Context-Aware
3.6. Emotion-Based
3.7. Sentiment Analysis-Based
3.8. Evaluation of Recommender
- Mean Absolute Error (MAE) and Root Mean Square Error (RMSE): Compare the predicted scores’ closeness to the actual ones and estimate the mean model’s prediction error. In particular, RMSE assesses all rating inaccuracies, while MAE measures the average magnitude of prediction errors. Some RS investigations implemented these metrics [4,6,12,53,68,116,155,159,165,166].
4. Emotion Recognition
4.1. Emotion Models
4.2. Emotion Measurements
5. Wearable Technology
5.1. Devices
5.2. Sensors
Physiological
- The ANS directs the physiological responses associated with emotional ones derived from stimuli from the external environment or the human body’s reactions [11].
- The raw physiological data is processed by applying resampling and filters to reduce noise, detect the affective components in the signals captured within a time window [187].
6. Machine Learning
6.1. Classification
6.2. Clustering
6.3. Deep Learning
7. Clusters Mapping
- The first red cluster focuses on implementing machine learning algorithms to recognize emotions based on physiological data from wearable devices [11,12,32,36,184,187] and social networks’ affective data [15,16,46,49,63]. The emerging IoT topic encourages collecting large datasets analyzed in big data architectures that support smart tourism applications [22,94,195] and health care recommenders [24,25,198,206,208].
- The second green cluster considers the implementation of on-line product recommender systems [6,14,15,16,17,46,49,63,67], tourism recommenders [4,48,53,61,71,113,114,115], and user modeling using clustering algorithms [64,112,116]. The pop-up theme is oriented to the recommendation of interest points based on data from social networks [7,13,50,99,100,101,116].
- The fourth yellow cluster establishes the relationship between collaborative filtering and semantic web techniques in the definition of user-profiles and the construction of the recommender systems’ ontologies. [4,54,80,81,82,137]. An emerging approach is content-based filtering that leverages the knowledge base in the recommendation process [45,50,51,52,53,54].
- The fifth blue cluster is oriented to implementing recommenders and context-sensitive mobile applications supported in the ubiquitous computing infrastructure [89,93,126,127,128,130,131,132,133]. It is worth highlighting the importance of the user’s context in the planning of tourist trips [44,59,104,105,110,111,112].
8. Discussion
9. Conclusions
- User models are the starting point of research approaches and, based on contextual data, recommendation services are defined in various application domains. User models have evolved by delving into daily life data obtained from ubiquitous devices. Although in medical tourism, physiological measures have already been used for health care. The user models have not yet been enriched with the data recorded from the wearables devices intended to design personalized services according to the tourist’s affective state.
- The tourist information sources come mainly from user reviews on social networks and openly available datasets. There is a limitation in using other sources to discover contextual patterns that enrich the data models. Furthermore, the restriction of heterogeneous information access on tourist behavior directly impacts the performance of the ML models.
- Approaches based on user emotions increased the predictive capacity of recommendation models by fusing contextual features and sentiment analysis. Also, the emotions polarity, POI ratings, and contextual factors infer behavior from user preferences. In most researches, affective states were taken into account for the recommendation process’s implicit feedback.
Author Contributions
Funding
Conflicts of Interest
References
- Omata, M.; Iuchi, M.; Sakiyama, M. Comparison of eye-tracking data with physiological signals for estimating level of understanding. In Proceedings of the 30th Australian Conference on Computer-Human Interaction, OzCHI 2018, Melbourne, Australia, 4–7 December 2018; pp. 563–567. [Google Scholar] [CrossRef]
- Aljawarneh, S.; Anguera, A.; Atwood, J.W.; Lara, J.A.; Lizcano, D. Particularities of data mining in medicine: Lessons learned from patient medical time series data analysis. Eurasip J. Wirel. Commun. Netw. 2019, 2019. [Google Scholar] [CrossRef]
- Uria-Rivas, R.; Rodriguez-Sanchez, M.C.; Santos, O.C.; Vaquero, J.; Boticario, J.G. Impact of Physiological Signals Acquisition in the Emotional Support Provided in Learning Scenarios. Sensors 2019, 19, 4520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, X.; Luo, Y.; Xu, Z.; Yu, Q.; Lu, L. Tourism Destination Recommender System for the Cold Start Problem. Ksii Trans. Internet Inf. Syst. 2016, 10, 3192–3212. [Google Scholar] [CrossRef]
- Yeh, D.Y.; Cheng, C.H. Recommendation system for popular tourist attractions in Taiwan using Delphi panel and repertory grid techniques. Tour. Manag. 2015, 46, 164–176. [Google Scholar] [CrossRef]
- Contratres, F.; Alves-Souza, S.; Filgueiras, L.; DeSouza, L. Sentiment analysis of social network data for cold-start relief in recommender systems. In Proceedings of the 6th World Conference on Information Systems and Technologies, Naples, Italy, 27–29 March 2018. [Google Scholar]
- Arampatzis, A.; Kalamatianos, G. Suggesting Points-of-Interest via Content-Based, Collaborative, and Hybrid Fusion Methods in Mobile Devices. ACM Trans. Inf. Syst. 2018, 36. [Google Scholar] [CrossRef]
- Deng, S.; Wang, D.; Li, X.; Xu, G. Exploring user emotion in microblogs for music recommendation. Expert Syst. Appl. 2015, 42, 9284–9293. [Google Scholar] [CrossRef]
- Li, S.; Yan, Z.; Wu, X.; Li, A.; Zhou, B. A Method of Emotional Analysis of Movie Based on Convolution Neural Network and Bi-directional LSTM RNN. In Proceedings of the 2nd IEEE International Conference on Data Science in Cyberspace, Shenzhen, China, 26–29 June 2017. [Google Scholar]
- Alarcao, S.; Fonseca, M. Emotions Recognition Using EEG Signals: A Survey. IEEE Trans. Affect. Comput. 2017. [Google Scholar] [CrossRef]
- Dordevic, C.D.; Barreda-Angeles, M.; Kukolj, D.; Le, C.P. Modelling effects of S3D visual discomfort in human emotional state using data mining techniques. Multimed. Tools Appl. 2020. [Google Scholar] [CrossRef]
- Chiu, M.C.; Ko, L.W. Develop a personalized intelligent music selection system based on heart rate variability and machine learning. Multimed. Tools Appl. 2017, 76, 15607–15639. [Google Scholar] [CrossRef]
- Logesh, R.; Subramaniyaswamy, V. Learning Recency and Inferring Associations in Location Based Social Network for Emotion Induced Point-of-Interest Recommendation. J. Inf. Sci. Eng. 2017, 33, 1629–1647. [Google Scholar] [CrossRef]
- Qian, Y.; Zhang, Y.; Ma, X.; Yu, H.; Peng, L. EARS: Emotion-aware recommender system based on hybrid information fusion. Inf. Fusion 2019, 46, 141–146. [Google Scholar] [CrossRef]
- Zheng, Y.; Burke, R.; Mobasher, B. The role of emotions in context-aware recommendation. In Proceedings of the 3rd Workshop on Human Decision Making in Recommender Systems, Decisions@RecSys 2013—In Conjunction with the 7th ACM Conference on Recommender Systems, Hong Kong, China, 12 October 2013. [Google Scholar]
- Wang, L.; Meng, X.; Zhang, Y.; Shi, Y. New approaches to mood-based hybrid collaborative filtering. In Proceedings of the RecSys’2010 ACM Challenge on Context-Aware Movie Recommendation, CAMRa2010, Barcelona, Spain, 10 September 2010; pp. 28–33. [Google Scholar] [CrossRef]
- Alhamid, M.; Rawashdeh, M.; Al, O.H.; El, S.A. Leveraging biosignal and collaborative filtering for context-aware recommendation. In Proceedings of the 1st ACM International Workshop on Multimedia Indexing and Information Retrieval for Heathcare, MIIRH 2013—Co-located with ACM Multimedia 2013, Barcelona, Spain, 22 October 2013; pp. 41–48. [Google Scholar] [CrossRef]
- Noguera, J.M.; Barranco, M.J.; Segura, R.J.; Martinez, L. A mobile 3D-GIS hybrid recommender system for tourism. Inf. Sci. 2012, 215, 37–52. [Google Scholar] [CrossRef]
- Lass, C.; Worndl, W.; Herzog, D. A multi-tier web service and mobile client for city trip recommendations. In Proceedings of the 8th EAI International Conference on Mobile Computing, Applications and Services, Cambridge, UK, 30 November–1 December 2016. [Google Scholar] [CrossRef]
- Lass, C.; Herzog, D.; Worndl, W. Context-aware tourist trip recommendations. In Proceedings of the 2nd Workshop on Recommenders in Tourism, Como, Italy, 27 August 2017; Volume 1906, pp. 18–25. [Google Scholar]
- Khadra, J.; Goncharova, N.; Radwan, Y. Regional aspects Tourism Destination Management. In Proceedings of the 33rd International Business Information Management Association Conference: Education Excellence and Innovation Management through Vision 2020, Granada, Spain, 10–11 April 2019; pp. 1360–1363. [Google Scholar]
- Su, X.; Sperli, G.; Moscato, V.; Picariello, A.; Esposito, C.; Choi, C. An Edge Intelligence Empowered Recommender System Enabling Cultural Heritage Applications. IEEE Trans. Ind. Informatics 2019, 15, 4266–4275. [Google Scholar] [CrossRef]
- Ryu, B.; Kim, N.; Heo, E.; Yoo, S.; Lee, K.; Hwang, H.; Kim, J.W.; Kim, Y.; Lee, J.; Jung, S.Y. Impact of an Electronic Health Record-Integrated Personal Health Record on Patient Participation in Health Care: Development and Randomized Controlled Trial of MyHealthKeeper. J. Med Internet Res. 2017, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dufour, S.; Fedorkow, D.; Kun, J.; Deng, S.X.; Fang, Q. Exploring the Impact of a Mobile Health Solution for Postpartum Pelvic Floor Muscle Training: Pilot Randomized Controlled Feasibility Study. JMIR Mhealth Uhealth 2019, 7. [Google Scholar] [CrossRef]
- Selvan, N.S.; Vairavasundaram, S.; Ravi, L. Fuzzy ontology-based personalized recommendation for internet of medical things with linked open data. J. Intell. Fuzzy Syst. 2019, 36, 4065–4075. [Google Scholar] [CrossRef]
- Ali, F.; Islam, S.M.R.; Kwak, D.; Khand, P.; Ullah, N.; Yoo, S.j.; Kwak, K.S. Type-2 fuzzy ontology-aided recommendation systems for IoT-based healthcare. Comput. Commun. 2018, 119, 138–155. [Google Scholar] [CrossRef]
- Yadav, N.; Keshtkar, F.; Schweikert, C.; Crocetti, G. Cradle: An IOMT psychophysiological analytics platform. In Proceedings of the Workshop on Human-Habitat for Health: Human-Habitat Multimodal Interaction for Promoting Health and Well-Being in the Internet of Things Era, H3 2018—20th ACM International Conference on Multimodal Interaction, Boulder, Colorado, 16 October 2018. [Google Scholar] [CrossRef]
- Mohamed, W.; Abdellatif, M. Telemedicine: An IoT Application for Healthcare systems. In Proceedings of the 8th International Conference on Software and Information Engineering, Cairo, Egypt, 9–12 April 2019; pp. 173–177. [Google Scholar] [CrossRef]
- CCSInsight. Forecast Reveals Steady Growth in Smartwatch Market; Technical Report; CCSInsight: London, UK, 2017. [Google Scholar]
- Cvetkovic, B.; Szeklicki, R.; Janko, V.; Lutomski, P.; Lustrek, M. Real-time activity monitoring with a wristband and a smartphone. Inf. Fusion 2018, 43, 77–93. [Google Scholar] [CrossRef]
- Angelides, M.C.; Wilson, L.A.C.; Echeverria, P.L.B. Wearable data analysis, visualisation and recommendations on the go using android middleware. Multimed. Tools Appl. 2018, 77, 26397–26448. [Google Scholar] [CrossRef] [Green Version]
- Matsubara, M.; Augereau, O.; Kise, K.; Sanches, C. Emotional arousal estimation while reading comics based on physiological signal analysis. In Proceedings of the 1st International Workshop on coMics ANalysis, Processing and Understanding, Cancun, Mexico, 4 December 2016. [Google Scholar] [CrossRef]
- Barral, O.; Kosunen, I.; Ruotsalo, T.; Spape, M.M.; Eugster, M.J.A.; Ravaja, N.; Kaski, S.; Jacucci, G. Extracting relevance and affect information from physiological text annotation. User Model. User-Adapt. Interact. 2016, 26, 493–520. [Google Scholar] [CrossRef]
- Dharia, S.; Jain, V.; Patel, J.; Vora, J.; Chawla, S.; Eirinaki, M. PRO-Fit: A personalized fitness assistant framework. In Proceedings of the 28th International Conference on Software Engineering and Knowledge Engineering, Redwood City, SA, USA, 1–3 July 2016; Volume 2016, pp. 386–389. [Google Scholar] [CrossRef]
- Pinardi, S.; Sartori, F.; Melen, R. Integrating knowledge artifacts and inertial measurement unit sensors for decision support. In Proceedings of the 8th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management, Porto, Portugal, 9–11 November 2016; Volume 3, pp. 307–313. [Google Scholar] [CrossRef]
- Santamaria-Granados, L.; Munoz-Organero, M.; Ramirez-Gonzalez, G.; Abdulhay, E.; Arunkumar, N. Using Deep Convolutional Neural Network for Emotion Detection on a Physiological Signals Dataset (AMIGOS). IEEE Access 2019, 7, 57–67. [Google Scholar] [CrossRef]
- Ruiz-Rosero, J.; Ramirez-Gonzalez, G.; Khanna, R. Field Programmable Gate Array Applications—A Scientometric Review. Computation 2019, 7, 63. [Google Scholar] [CrossRef] [Green Version]
- Mooghali, A.; Alijani, R.; Karami, N.; Khasseh, A. Scientometric Analysis of the Scientometric Literature. Int. J. Inf. Sci. Manag. 2011, 19–31. [Google Scholar]
- Gavalas, D.; Konstantopoulos, C.; Mastakas, K.; Pantziou, G. Mobile recommender systems in tourism. J. Netw. Comput. Appl. 2014, 39, 319–333. [Google Scholar] [CrossRef]
- Borras, J.; Moreno, A.; Valls, A. Intelligent tourism recommender systems: A survey. Expert Syst. Appl. 2014, 41, 7370–7389. [Google Scholar] [CrossRef]
- Jia, Z.; Yang, Y.; Gao, W.; Chen, X. User-based collaborative filtering for tourist attraction recommendations. In Proceedings of the 2015 IEEE International Conference on Computational Intelligence and Communication Technology, Cluj-Napoca, Romania, 13–14 February 2015; pp. 22–25. [Google Scholar] [CrossRef]
- Ricci, F.; Rokach, L. Recommender Systems Handbook Second Edition, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Sappelli, M.; Kraaij, W.; Verberne, S. Recommending personalized touristic sights using Google Places. In Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2013, Dublin, Ireland, 28 July–1 August 2013; pp. 781–784. [Google Scholar] [CrossRef] [Green Version]
- Dietz, L.; Weimert, A. Recommending Crowdsourced Trips on wOndary. Available online: http://www.ec.tuwien.ac.at/rectour2018/wp-content/uploads/2018/09/RecTour2018_Proceedings.pdf#page=22 (accessed on 1 August 2020).
- Neidhardt, J.; Seyfang, L.; Schuster, R.; Werthner, H. A picture-based approach to recommender systems. Inf. Technol. Tour. 2015, 15, 49–69. [Google Scholar] [CrossRef]
- Tkalcic, M.; Kosir, A.; Tasic, J. The LDOS-PerAff-1 corpus of facial-expression video clips with affective, personality and user-interaction metadata. J. Multimodal User Interfaces 2013, 7, 143–155. [Google Scholar] [CrossRef]
- Goncalves, V.P.; Costa, E.P.; Valejo, A.; Filho, G.P.R.; Johnson, T.M.; Pessin, G.; Ueyama, J. Enhancing intelligence in multimodal emotion assessments. Appl. Intell. 2017, 46, 470–486. [Google Scholar] [CrossRef]
- An, H.W.; Moon, N. Design of recommendation system for tourist spot using sentiment analysis based on CNN-LSTM. J. Ambient Intell. Hum. Comput. 2019. [Google Scholar] [CrossRef]
- Tkalcic, M.; Burnik, U.; Kosir, A. Using affective parameters in a content-based recommender system for images. User Model. User-Adapt. Interact. 2010, 20, 279–311. [Google Scholar] [CrossRef]
- Pliakos, K.; Kotropoulos, C. Building an Image Annotation and Tourism Recommender System. Int. J. Artif. Intell. Tools 2015, 24. [Google Scholar] [CrossRef]
- Chen, L.; Chen, G.; Wang, F. Recommender systems based on user reviews: The state of the art. User Model. User-Adapt. Interact. 2015, 25, 99–154. [Google Scholar] [CrossRef]
- Pliakos, K.; Kotropoulos, C. PLSA Driven Image Annotation, Classification, and Tourism Recommendation; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2014; pp. 3003–3007. [Google Scholar] [CrossRef]
- Christensen, I.; Schiaffino, S.; Armentano, M. Social group recommendation in the tourism domain. J. Intell. Inf. Syst. 2016, 47, 209–231. [Google Scholar] [CrossRef]
- De Pessemier, T.; Dhondt, J.; Martens, L. Hybrid group recommendations for a travel service. Multimed. Tools Appl. 2017, 76, 2787–2811. [Google Scholar] [CrossRef] [Green Version]
- Fayyaz, Z.; Ebrahimian, M.; Nawara, D.; Ibrahim, A.; Kashef, R. Recommendation Systems: Algorithms, Challenges, Metrics, and Business Opportunities. Appl. Sci. 2020, 10, 7748. [Google Scholar] [CrossRef]
- Mahmood, F.; Bin, A.S.Z. A conceptual framework for personalized location-based Services (LBS) tourism mobile application leveraging semantic web to enhance tourism experience. In Proceedings of the 2013 3rd IEEE International Advance Computing Conference, IACC 2013, Ghaziabad, India, 22–23 February 2013; pp. 287–291. [Google Scholar] [CrossRef]
- Boratto, L.; Carta, S.; Fenu, G.; Saia, R. Semantics-aware content-based recommender systems: Design and architecture guidelines. Neurocomputing 2017, 254, 79–85. [Google Scholar] [CrossRef]
- Aggarwal, C. Recommender Systems; Springer International Publishing: Berlin/Heidelberg, Germany, 2016. [Google Scholar] [CrossRef] [Green Version]
- Ravi, L.; Subramaniyaswamy, V.; Vijayakumar, V.; Chen, S.; Karmel, A.; Devarajan, M. Hybrid Location-based Recommender System for Mobility and Travel Planning. Mob. Netw. Appl. 2019, 24, 1226–1239. [Google Scholar] [CrossRef]
- Poirson, E.; Da Cunha, C. A recommender approach based on customer emotions. Expert Syst. Appl. 2019, 122, 281–288. [Google Scholar] [CrossRef]
- Ishanka, U.; Yukawa, T. User Emotion and Personality in Context-aware Travel Destination Recommendation. In Proceedings of the 5th International Conference on Advanced Informatics: Concepts Theory and Applications, Krabi, Thailand, 14–17 August 2018; pp. 13–18. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, J.T.; Song, X. A RaaS Model Based on Emotion Analysis and Double Labeling Applied to Mobile Terminal. IEEE Access 2018, 6, 70974–70982. [Google Scholar] [CrossRef]
- Piazza, A.; Krockel, P.; Bodendorf, F. Emotions & fashion recommendations: Evaluating the predictive power of affective information for the prediction of fashion product preferences in cold-start scenarios. In Proceedings of the 16th IEEE/WIC/ACM International Conference on Web Intelligence, Thessaloniki, Greece, 23–26 August 2017; pp. 1234–1240. [Google Scholar] [CrossRef]
- Gavalas, D.; Kenteris, M. A web-based pervasive recommendation system for mobile tourist guides. Pers. Ubiquitous Comput. 2011, 15, 759–770. [Google Scholar] [CrossRef]
- Huang, T.H.D.; Kao, H.Y. C-3PO: Click-sequence-aware deeP neural network (DNN)-based Pop-uPs recOmmendation I know you’ll click. Soft Comput. 2019, 23, 11793–11799. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Yu, L.; Wang, M.; Gao, W. FM-based: Algorithm research on rural tourism recommendation combining seasonal and distribution features. Pattern Recognit. Lett. 2019. [Google Scholar] [CrossRef]
- Wu, C.; Jia, J.; Zhu, W.; Chen, X.; Yang, B.; Zhang, Y. Affective contextual mobile recommender system. In Proceedings of the 24th ACM Multimedia Conference, Amsterdam, Netherlands, 15–19 October 2016; pp. 1375–1384. [Google Scholar] [CrossRef]
- Tallapally, D.; Sreepada, R.; Patra, B.; Babu, K. User preference learning in multi-criteria recommendations using stacked auto encoders. In Proceedings of the 12th ACM Conference on Recommender Systems, Vancouver, BC, Canada, 2–7 October 2018; pp. 475–479. [Google Scholar] [CrossRef]
- Braunhofer, M.; Ricci, F. Selective contextual information acquisition in travel recommender systems. Inf. Technol. Tour. 2017, 17, 5–29. [Google Scholar] [CrossRef]
- Zheng, Y. Affective prediction by collaborative chains in movie recommendation. In Proceedings of the 16th IEEE/WIC/ACM International Conference on Web Intelligence, Thessaloniki, Greece, 23–26 August 2017; pp. 815–822. [Google Scholar] [CrossRef]
- Zheng, X.; Luo, Y.; Sun, L.; Zhang, J.; Chen, F. A tourism destination recommender system using users’ sentiment and temporal dynamics. J. Intell. Inf. Syst. 2018, 51, 557–578. [Google Scholar] [CrossRef]
- Lim, H.; Kim, H.J. Item recommendation using tag emotion in social cataloging services. Expert Syst. Appl. 2017, 89, 179–187. [Google Scholar] [CrossRef]
- Alhijawi, B. Improving collaborative filtering recommender system results and performance using satisfaction degree and emotions of users. WEB Intell. 2019, 17, 229–241. [Google Scholar] [CrossRef]
- Baba-Hamed, L.; Bourenane, D.; Hamoudi, L. Point-of-interest recommendation in a city. In Proceedings of the 3rd Edition of the National Study Day on Research on Computer Sciences, Saida, Algeria, 27 April 2019; Volume 2351. [Google Scholar]
- Ben, K.F.; Elkhleifi, A.; Faiz, R. Improving Collaborative Filtering Algorithms. In Proceedings of the 12th International Conference on Semantics, Knowledge and Grids, Beijing, China, 15–17 August 2016; pp. 109–114. [Google Scholar] [CrossRef]
- Xie, X.; Wang, B.; Yang, X. SoftRec: Multi-Relationship Fused Software Developer Recommendation. Appl. Sci. 2020, 10, 4333. [Google Scholar] [CrossRef]
- Fong, A.C.M.; Zhou, B.; Hui, S.C.; Tang, J.; Hong, G.Y. Generation of Personalized Ontology Based on Consumer Emotion and Behavior Analysis. IEEE Trans. Affect. Comput. 2012, 3, 152–164. [Google Scholar] [CrossRef]
- Alemu, T.; Tegegne, A.; Tarekegn, A. Developing knowledge based recommender system for tourist attraction area selection in Ethiopia: A case based reasoning approach. In Proceedings of the 1st International Conference on Information and Communication Technology for Development for Africa, Bahir Dar, Ethiopia, 25–27 September 2018; Volume 244, pp. 112–128. [Google Scholar] [CrossRef]
- Li, Y.; Hu, C.; Huang, C.; Duan, L. The concept of smart tourism in the context of tourism information services. Tour. Manag. 2017, 58, 293–300. [Google Scholar] [CrossRef]
- Omar Colombo-Mendoza, L.; Valencia-Garcia, R.; Rodriguez-Gonzalez, A.; Alor-Hernandez, G.; Javier Samper-Zapater, J. RecomMetz: A context-aware knowledge-based mobile recommender system for movie showtimes. Expert Syst. Appl. 2015, 42, 1202–1222. [Google Scholar] [CrossRef]
- Frikha, M.; Turki, H.; Mhiri, M.B.A.; Gargouri, F. Trust Level Computation based on Time-aware Social Interactions for Recommending Medical Tourism Destinations. J. Inf. Assur. Secur. 2019, 14, 86–97. [Google Scholar]
- Rosa, R.L.; Schwartz, G.M.; Ruggiero, W.V.; Rodrigue, D.Z. A Knowledge-Based Recommendation System That Includes Sentiment Analysis and Deep Learning. IEEE Trans. Ind. Inform. 2019, 15, 2124–2135. [Google Scholar] [CrossRef]
- Mizgajski, J.; Morzy, M. Affective recommender systems in online news industry: How emotions influence reading choices. User Model. User-Adapt. Interact. 2019, 29, 345–379. [Google Scholar] [CrossRef] [Green Version]
- Buhalis, D.; Amaranggana, A. Smart Tourism Destinations Enhancing Tourism Experience Through Personalisation of Services. In Proceedings of the Information and Communication Technologies in Tourism 2015, Lugano, Switzerland, 3–6 February 2015. [Google Scholar] [CrossRef]
- Kim, J.Y.; Canina, L. An analysis of smart tourism system satisfaction scores: The role of priced versus average quality. Comput. Hum. Behav. 2015, 50, 610–617. [Google Scholar] [CrossRef] [Green Version]
- Richards, G. Tourism attraction systems: Exploring Cultural Behavior. Ann. Tour. Res. 2002, 29, 1048–1064. [Google Scholar] [CrossRef] [Green Version]
- Ram, Y.; Björk, P.; Weidenfeld, A. Authenticity and place attachment of major visitor attractions. Tour. Manag. 2016, 52, 110–122. [Google Scholar] [CrossRef] [Green Version]
- Volo, S. Emotions in Tourism: From Exploration to Design. In Design Science in Tourism; Springer: Berlin/Heidelberg, Germany, 2017; pp. 31–40. [Google Scholar] [CrossRef]
- Tussyadiah, I.P.; Wang, D. Tourists’ Attitudes toward Proactive Smartphone Systems. J. Travel Res. 2016, 55, 493–508. [Google Scholar] [CrossRef]
- Tussyadiah, I. Expectation of Travel Experiences with Wearable Computing Devices. In Proceedings of the Information and Communication Technologies in Tourism 2014, Dublin, Ireland, 21–24 January 2014. [Google Scholar] [CrossRef]
- Liang, S.; Schuckert, M.; Law, R.; Masiero, L. The relevance of mobile tourism and information technology: An analysis of recent trends and future research directions. J. Travel Tour. Mark. 2017, 34, 732–748. [Google Scholar] [CrossRef]
- Herzog, D.; Sikander, S.; Worndl, W. Integrating route attractiveness attributes into tourist trip recommendations. In Proceedings of the 2019 World Wide Web Conference, San Francisco, California, 13–17 May 2019; pp. 96–101. [Google Scholar] [CrossRef]
- Anacleto, R.; Figueiredo, L.; Almeida, A.; Novais, P. Mobile application to provide personalized sightseeing tours. J. Netw. Comput. Appl. 2014, 41, 56–64. [Google Scholar] [CrossRef] [Green Version]
- Artemenko, O.; Pasichnyk, V.; Korz, H.; Fedorka, P.; Kis, Y. Using Big Data in E-tourism Mobile Recommender Systems: A project approach. In Proceedings of the 1st International Workshop IT Project Management, Slavsko, Lviv region, Ukraine, 18–20 February 2020; Volume 2565, pp. 194–204. [Google Scholar]
- Mikhailov, S.; Kashevnik, A. Tourist Behaviour Analysis Based on Digital Pattern of Life—An Approach and Case Study. Future Internet 2020, 12, 165. [Google Scholar] [CrossRef]
- Alexandridis, G.; Chrysanthi, A.; Tsekouras, G.; Caridakis, G. Personalized and content adaptive cultural heritage path recommendation: An application to the Gournia and Catalhoyuk archaeological sites. User Model. User-Adapt. Interact. 2019, 29, 201–238. [Google Scholar] [CrossRef]
- Roy, A.; Arefin, M.; Kayes, A.; Hammoudeh, M.; Ahmed, K. An Empirical Recommendation Framework to Support Location-Based Services. Future Internet 2020, 12, 154. [Google Scholar] [CrossRef]
- D’Agostino, D.; Gasparetti, F.; Micarelli, A.; Sansonetti, G. A Social Context-Aware Recommender of Itineraries Between Relevant Points of Interest. In Proceedings of the International Conference on Human-Computer Interaction, Toronto, ON, Canada, 17–22 July 2016. [Google Scholar]
- Yang, W.S.; Hwang, S.Y. iTravel: A recommender system in mobile peer-to-peer environment. J. Syst. Softw. 2013, 86, 12–20. [Google Scholar] [CrossRef]
- Biuk-Aghai, R.; Fong, S.; Si, Y.W. Design of a recommender system for mobile tourism multimedia selection. In Proceedings of the IMSAA’08—2nd International Conference on Internet Multimedia Services Architecture and Application, New York, NY, USA, 10–12 December 2008. [Google Scholar] [CrossRef]
- Hwang, S.Y.; Yang, W.S. On-tour attraction recommendation in a mobile environment. In Proceedings of the 2012 IEEE International Conference on Pervasive Computing and Communications Workshops, PERCOM Workshops 2012, Lugano, Switzerland, 19–23 March 2012; pp. 661–666. [Google Scholar] [CrossRef]
- Kikuhara, K.; Kiyoki, Y. Context-Oriented Tour Planning System in Physical and Emotional Distance. In Proceedings of the 29th International Conference on Information Modeling and Knowledge Bases, Lappeenranta, Finland, 3–7 June 2019; Volume 321, pp. 519–530. [Google Scholar] [CrossRef]
- Herzog, D.; Worndl, W. A travel recommender system for combining multiple travel regions to a composite trip. In Proceedings of the 1st Workshop on New Trends in Content-Based Recommender Systems, CBRecSys 2014, Co-located with the 8th ACM Conference on Recommender Systems, Sillicon Valley, CA, USA, 6 October 2014; Volume 1245, pp. 42–47. [Google Scholar]
- Herzog, D. Recommending a sequence of points of interest to a group of users in a mobile context. In Proceedings of the 11th ACM Conference on Recommender Systems, Como, Italy, 27–31 August 2017; pp. 402–406. [Google Scholar] [CrossRef]
- Woerndl, W.; Hefele, A.; Herzog, D. Recommending a sequence of interesting places for tourist trips. Inf. Technol. Tour. 2017, 17, 31–54. [Google Scholar] [CrossRef]
- Fesenmaier, D.R.; Wöber, K.W.; Werthner, H. Destination Recommendation Systems: Behavioural Foundations and Applications. Available online: https://www.cabi.org/cabebooks/ebook/20063136636 (accessed on 1 August 2020).
- Gavalas, D.; Kasapakis, V.; Konstantopoulos, C.; Pantziou, G.; Vathis, N.; Zaroliagis, C. The eCOMPASS multimodal tourist tour planner. Expert Syst. Appl. 2015, 42, 7303–7316. [Google Scholar] [CrossRef]
- Tenemaza, M.; Lujan-Mora, S.; De Antonio, A.; Ramirez, J. Improving Itinerary Recommendations for Tourists Through Metaheuristic Algorithms: An Optimization Proposal. IEEE Access 2020, 8, 79003–79023. [Google Scholar] [CrossRef]
- Konstantakis, M.; Alexandridis, G.; Caridakis, G. A Personalized Heritage-Oriented Recommender System Based on Extended Cultural Tourist Typologies. Big Data Cogn. Comput. 2020, 4, 12. [Google Scholar] [CrossRef]
- Taylor, K.; Lim, K.; Chan, J. Travel Itinerary Recommendations with Must-see Points-of-Interest. In Proceedings of the 27th International World Wide Web, Lyon, France, 23–27 April 2018; pp. 1198–1205. [Google Scholar] [CrossRef]
- Benouaret, I.; Lenne, D. A Composite Recommendation System for Planning Tourist Visits. In Proceedings of the 2016 IEEE/WIC/ACM International Conference on Web Intelligence, Omaha, NE, USA, 13–16 October 2016; pp. 626–631. [Google Scholar] [CrossRef]
- Parikh, V.; Keskar, M.; Dharia, D.; Gotmare, P. A Tourist Place Recommendation and Recognition System. In Proceedings of the 2nd International Conference on Inventive Communication and Computational Technologies, Namakkal, India, 20–21 April 2018; pp. 218–222. [Google Scholar] [CrossRef]
- Majid, A.; Chen, L.; Chen, G.; Mirza, H.T.; Hussain, I.; Woodward, J. A context-aware personalized travel recommendation system based on geotagged social media data mining. Int. J. Geogr. Inf. Sci. 2013, 27, 662–684. [Google Scholar] [CrossRef]
- Memon, I.; Chen, L.; Majid, A.; Lv, M.; Hussain, I.; Chen, G. Travel Recommendation Using Geo-tagged Photos in Social Media for Tourist. Wirel. Pers. Commun. 2015, 80, 1347–1362. [Google Scholar] [CrossRef]
- Majid, A.; Chen, L.; Mirza, H.T.; Hussain, I.; Chen, G. A system for mining interesting tourist locations and travel sequences from public geo-tagged photos. Data Knowl. Eng. 2015, 95, 66–86. [Google Scholar] [CrossRef]
- Logesh, R.; Subramaniyaswamy, V.; Vijayakumar, V.; Li, X. Efficient User Profiling Based Intelligent Travel Recommender System for Individual and Group of Users. Mob. Netw. Appl. 2019, 24, 1018–1033. [Google Scholar] [CrossRef]
- De Angelis, A.; Gasparetti, F.; Micarelli, A.; Sansonetti, G. A Social Cultural Recommender based on Linked Open Data. Available online: https://dl.acm.org/doi/abs/10.1145/3099023.3099092 (accessed on 1 August 2020).
- Shih, H.Y. Network characteristics of drive tourism destinations: An application of network analysis in tourism. Tour. Manag. 2006, 27, 1029–1039. [Google Scholar] [CrossRef]
- Paul, V.; Trillo-Santamaria, J.M.; Haslam-Mckenzie, F. The invention of a mountain tourism destination: An exploration of Trevinca—A Veiga (Galicia, Spain). Tour. Stud. 2019, 19, 313–335. [Google Scholar] [CrossRef]
- Sutjiadi, R.; Trianto, E.; Budihardjo, A. Surabaya tourism destination recommendation using fuzzy c-means algorithm. J. Telecommun. Electron. Comput. Eng. 2018, 10, 177–181. [Google Scholar]
- Loehr, J. The Vanuatu Tourism Adaptation System: A holistic approach to reducing climate risk. J. Sustain. Tour. 2020, 28, 515–534. [Google Scholar] [CrossRef]
- Wang, M.j.; Chen, L.H.; Su, P.a.; Morrison, A.M. The right brew? An analysis of the tourism experiences in rural Taiwan’s coffee estates. Tour. Manag. Perspect. 2019, 30, 147–158. [Google Scholar] [CrossRef]
- Santana-Jimenez, Y.; Sun, Y.Y.; Hernandez, J.M.; Suarez-Vega, R. The Influence of Remoteness and Isolation in the Rural Accommodation Rental Price among Eastern and Western Destinations. J. Travel Res. 2015, 54, 380–395. [Google Scholar] [CrossRef]
- John, S.P.; Larke, R. An analysis of push and pull motivators investigated in medical tourism research published from 2000 to 2016. Tour. Rev. Int. 2016, 20, 73–90. [Google Scholar] [CrossRef]
- Lo, C.C.; Chen, C.H.; Cheng, D.Y.; Kung, H.Y. Ubiquitous Healthcare Service System with Context-awareness Capability: Design and Implementation. Expert Syst. Appl. 2011, 38, 4416–4436. [Google Scholar] [CrossRef]
- Zeng, J.; Li, F.; Li, Y.; Wen, J.; Wu, Y. Exploring the Influence of Contexts for Mobile Recommendation. Int. J. Web Serv. Res. 2017, 14, 33–49. [Google Scholar] [CrossRef] [Green Version]
- Rosmawarni, N.; Djatna, T.; Nurhadryani, Y. A mobile ecotourism recommendations system using cars-context aware approaches. Telkomnika 2013, 11, 845–852. [Google Scholar] [CrossRef] [Green Version]
- Magrin, E.; Seychell, D.; Briffa, D. Evaluating the use of mobile sensors in improving the user model in mobile recommender systems. In Proceedings of the 8th IADIS International Conference on Information Systems, Madeira, Portugal, 14–16 March 2015; pp. 153–160. [Google Scholar]
- Ashley-Dejo, E.; Ngwira, S.; Zuva, T. A survey of Context-Aware Recommender System and services. In Proceedings of the International Conference on Computing, Communication and Security, Patna, India, 4–5 December 2015. [Google Scholar] [CrossRef]
- Meehan, K.; Lunney, T.; Curran, K.; McCaughey, A. Aggregating social media data with temporal and environmental context for recommendation in a mobile tour guide system. J. Hosp. Tour. Technol. 2016, 7, 281–299. [Google Scholar] [CrossRef]
- Papadimitriou, G.; Komninos, A.; Garofalakis, J. An investigation of the suitability of heterogeneous social network data for use in mobile tourist guides. In Proceedings of the 19th Panhellenic Conference on Informatics, Athens, Greece, 1–3 October 2015; pp. 283–288. [Google Scholar] [CrossRef]
- Najafian, S.; Worndl, W.; Braunhofer, M. Context-aware user interaction for mobile recommender systems. In Proceedings of the 24th ACM Conference on User Modeling, Adaptation and Personalisation. Available online: http://ceur-ws.org/Vol-1618/HAAPIE_paper2.pdf (accessed on 1 August 2020).
- Alghamdi, H.; Zhu, S.; El, S.A. E-tourism: Mobile dynamic trip planner. In Proceedings of the 18th IEEE International Symposium on Multimedia, Guangzhou, China, 11–13 December 2016; pp. 185–188. [Google Scholar] [CrossRef]
- Zheng, Y.; Mobasher, B.; Burke, R. Emotions in Context-Aware Recommender Systems. Available online: https://link.springer.com/chapter/10.1007/978-3-319-31413-6_15 (accessed on 1 August 2020).
- Ekman, P. Emotions Revealed: Recognizing Faces and Feelings to Improve Communication and Emotional Life. Available online: https://www.nomos-elibrary.de/10.5771/1865-4789-2015-1-2-68/politische-entscheidungen-muessen-nachvollziehbar-sein-volume-7-2015-issue-1-2?hitid=4&search-click (accessed on 1 August 2020).
- Wang, D.; Deng, S.; Xu, G. Sequence-based context-aware music recommendation. Inf. Retr. J. 2018, 21, 230–252. [Google Scholar] [CrossRef] [Green Version]
- Moreno, A.; Valls, A.; Isern, D.; Marin, L.; Borras, J. SigTur/E-Destination: Ontology-based personalized recommendation of Tourism and Leisure Activities. Eng. Appl. Artif. Intell. 2013, 26, 633–651. [Google Scholar] [CrossRef]
- Plutchik, R. A psychoevolutionary theory of emotions. Soc. Sci. Inf. 1982, 21. [Google Scholar] [CrossRef]
- Sansonetti, G.; Gasparetti, F.; Micarelli, A.; Cena, F.; Gena, C. Enhancing cultural recommendations through social and linked open data. User Model. User-Adapt. Interact. 2019, 29, 121–159. [Google Scholar] [CrossRef]
- Sundermann, C.; Domingues, M.; Sinoara, R.; Marcacini, R.; Rezende, S. Using Opinion Mining in Context-Aware Recommender Systems: A Systematic Review. Information 2019, 10, 42. [Google Scholar] [CrossRef] [Green Version]
- Fogli, A.; Sansonetti, G. Exploiting semantics for context-aware itinerary recommendation. Pers. Ubiquitous Comput. 2019, 23. [Google Scholar] [CrossRef]
- Castillo, M.; Clarizia, F.; Colace, F.; Lombardi, M.; Pascele, F.; Santaniello, D. An Approach for Recommending Contextualized Services in e-Tourism. Information 2019, 10, 180. [Google Scholar] [CrossRef] [Green Version]
- Michalakis, K.; Alexandridis, G.; Caridakis, G.; Mylonas, P. Context Incorporation in Cultural Path Recommendation Using Topic Modelling. In Proceedings of the 1st International Workshop on Visual Pattern Extraction and Recognition for Cultural, Pisa, Italy, 30 January 2019. [Google Scholar]
- Savchuk, V.; Vykyuk, Y.; Pasichnyk, V.; Holoshchuk, R.; Kunanets, N. The Architecture of Mobile Information System for Providing Safety Recommendations During the Trip. In Proceedings of the 2nd International Conference on Computer Science, Engineering and Education Applications, Barcelona, Spain, 26–27 January 2020; Volume 938, pp. 493–502. [Google Scholar] [CrossRef]
- Kaklauskas, A.; Zavadskas, E.; Bardauskiene, D.; Cerkauskas, J.; Ubarte, I.; Seniut, M.; Dzemyda, G.; Kaklauskaite, M.; Vinogradova, I.; Velykorusova, A. An Affect-Based Built Environment Video Analytics. Autom. Constr. 2019, 106. [Google Scholar] [CrossRef]
- Kaklauskas, A.; Seniut, M.; Zavadskas, E.; Dzemyda, G.; Stankevic, V.; Simkevicius, C.; Ivanikovas, S.; Stankevic, T.; Matuliauskaite, A.; Zemeckyte, L. Recommender system to analyse students’ learning productivity. In Proceedings of the 2011 3rd International Asia Conference on Informatics in Control, Automation and Robotics, CAR 2011, Shenzhen, China, 24–25 December 2011; Volume 133 LNEE, pp. 161–164. [Google Scholar] [CrossRef]
- Gonzalez, G.; Lopez, B.; De, L.R.J. Managing emotions in smart user models for recommender systems. In Proceedings of the ICEIS 2004—Proceedings of the Sixth International Conference on Enterprise Information Systems, Porto, Portugal, 14–17 April 2004; pp. 187–194. [Google Scholar]
- Tkalcic, M.; Kosir, A.; Tasic, J. Affective recommender systems: The role of emotions in recommender systems. In Proceedings of the Joint Workshop on Human Decision Making in Recommender Systems, Decisions@RecSys 2011 and User-Centric Evaluation of Recommender Systems and Their Interfaces-2, UCERSTI 2—Affiliated with the 5th ACM Conference on Recommender Systems, RecSys 2011, Chicago, IL, USA, 23–26 October 2011; Volume 811, pp. 9–13. [Google Scholar]
- Masthoff, J.; Gatt, A. In pursuit of satisfaction and the prevention of embarrassment: Affective state in group recommender systems. User Model. User-Adapt. Interact. 2006, 16, 281–319. [Google Scholar] [CrossRef] [Green Version]
- Abdul, A.; Chen, J.; Liao, H.; Chang, S. An Emotion-Aware Personalized Music Recommendation System Using a Convolutional Neural Networks Approach. Appl. Sci. 2020, 8, 1103. [Google Scholar] [CrossRef] [Green Version]
- Munoz, S.; Araque, O.; Sánchez-Rada, J.; Iglesias, C. An Emotion Aware Task Automation Architecture Based on Semantic Technologies for Smart Offices. Sensors 2018, 18, 1499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Long, J.; Wang, Y.; Yuan, X.; Li, T.; Liu, Q. A Recommendation Model Based on Multi-Emotion Similarity in the Social Networks. Information 2019, 10, 18. [Google Scholar] [CrossRef] [Green Version]
- Ludewig, M.; Jannach, D. Learning to rank hotels for search and recommendation from session-based interaction logs and meta data. In Proceedings of the 2019 ACM Recommender Systems Challenge Workshop, RecSys Challenge 2019, Held at the 13th ACM Conference on Recommender Systems, Copenhagen, Denmark, 20 September 2019. [Google Scholar] [CrossRef]
- Sun, J.; Wang, G.; Cheng, X.; Fu, Y. Mining affective text to improve social media item recommendation. Inf. Process. Manag. 2015, 51, 444–457. [Google Scholar] [CrossRef]
- Hendry; Chen, R.C.; Li, L.H.; Zhao, Q. Using deep learning to learn user rating from user comments. Int. J. Innov. Comput. Inf. Control 2018, 14, 1141–1149. [Google Scholar] [CrossRef]
- Shrivastava, K.; Kumar, S.; Jain, D.K. An effective approach for emotion detection in multimedia text data using sequence based convolutional neural network. Multimed. Tools Appl. 2019, 78, 29607–29639. [Google Scholar] [CrossRef]
- Zangerle, E.; Chen, C.; Tsai, M.; Yang, Y. Leveraging Affective Hashtags for Ranking Music Recommendations. IEEE Trans. Affect. Comput. 2018. [Google Scholar] [CrossRef] [Green Version]
- Muzaffar, S.; Shahzad, K.; Malik, K.; Mahmood, K. Intention mining: A deep learning-based approach for smart devices. J. Ambient Intell. Smart Environ. 2020, 12, 61–73. [Google Scholar] [CrossRef]
- Chen, H.; Xie, H.; Li, X.; Wang, F.; Rao, Y.; Wong, T.L. Sentiment strength prediction using auxiliary features. In Proceedings of the 26th International World Wide Web Conference, Perth, Australia, 3–7 April 2019; pp. 5–14. [Google Scholar] [CrossRef]
- Narducci, F.; De, G.M.; Lops, P. A general architecture for an emotion-aware content-based recommender system. In Proceedings of the 3rd Workshop on Emotions and Personality in Personalized Systems, Vienna, Austria, 16–20 September 2015; pp. 3–6. [Google Scholar] [CrossRef]
- Alsagri, H.; Ykhlef, M. A framework for analyzing and detracting negative emotional contagion in online social networks. In Proceedings of the 7th International Conference on Information and Communication Systems, Bangkok, Thailand, 5–7 April 2016; pp. 115–120. [Google Scholar] [CrossRef]
- Carta, S.; Corriga, A.; Mulas, R.; Recupero, D.; Saia, R. A Supervised Multi-class Multi-label Word Embeddings Approach for Toxic Comment Classification. In Proceedings of the 11th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (KDIR-2019), Vienna, Austria, 17–19 September 2019. [Google Scholar]
- Dabas, H.; Sethi, C.; Dua, C.; Dalawat, M.; Sethia, D. Emotion classification using EEG signals. In Proceedings of the 2nd International Conference on Computer Science and Artificial Intelligence, CSAI 2018, New York, NY, USA, 8–10 December 2018; pp. 380–384. [Google Scholar] [CrossRef]
- Hakim, N.L.; Shih, T.K.; Arachchi, S.P.K.; Aditya, W.; Chen, Y.C.; Lin, C.Y. Dynamic Hand Gesture Recognition Using 3DCNN and LSTM with FSM Context-Aware Model. Sensors 2019, 19, 5429. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Tong, M.; Jiang, Z.; Zhong, S.; Tian, Q. Hybrid feature-based analysis of video’s affective content using protagonist detection. Expert Syst. Appl. 2019, 128, 316–326. [Google Scholar] [CrossRef]
- Yang, S.; Zaki, W.S.W.; Morgan, S.P.; Cho, S.Y.; Correia, R.; Zhang, Y. Blood pressure estimation with complexity features from electrocardiogram and photoplethysmogram signals. Opt. Quantum Electron. 2020, 52. [Google Scholar] [CrossRef]
- Pantic, M.; Rothkrantz, L. Toward an affect-sensitive multimodal human-computer interaction. Proc. IEEE 2003, 91, 1370–1390. [Google Scholar] [CrossRef] [Green Version]
- Scheirer, J.; Fernandez, R.; Klein, J.; Picard, R. Frustrating the user on purpose: A step toward building an affective computer. Interact. Comput. 2002, 14, 93–118. [Google Scholar] [CrossRef]
- Al-Omair, O.; Huang, S. A comparative study on detection accuracy of cloud-based emotion recognition services. In Proceedings of the 2018 International Conference on Signal Processing and Machine Learning, Shanghai, China, 28–30 November 2018; pp. 142–148. [Google Scholar] [CrossRef]
- Kaklauskas, A.; Gudauskas, R.; Kozlovas, M.; Peciure, L.; Lepkova, N.; Cerkauskas, J.; Banaitis, A. An Affect-Based Multimodal Video Recommendation System. Stud. Inform. Control 2016, 25, 5–14. [Google Scholar] [CrossRef]
- Tkalcic, M. Emotions and personality in recommender systems. In Proceedings of the 12th ACM Conference on Recommender Systems, Vancouver, BC, Canada, 2–7 October 2018; pp. 535–536. [Google Scholar] [CrossRef]
- Rho, S.; Yeo, S.S. Bridging the semantic gap in multimedia emotion/mood recognition for ubiquitous computing environment. J. Supercomput. 2013, 65, 274–286. [Google Scholar] [CrossRef]
- Hassib, M.; Pfeiffer, M.; Schneegass, S.; Rohs, M.; Alt, F. Emotion actuator: Embodied emotional feedback through electroencephalography and electrical muscle stimulation. In Proceedings of the 2017 ACM SIGCHI Conference on Human Factors in Computing Systems, Denver, CO, USA, 6–11 May 2017; pp. 6133–6146. [Google Scholar] [CrossRef]
- Raptis, G.; Fidas, C.; Katsini, C.; Avouris, N. A cognition-centered personalization framework for cultural-heritage content. User Model. User-Adapt. Interact. 2019, 29, 9–65. [Google Scholar] [CrossRef]
- Ekman, P.; Levenson, R.W.; Friesen, W.V. Autonomic nervous system activity distinguishes among emotions. Science 1983. [Google Scholar] [CrossRef] [Green Version]
- Johnston, E.; Olson, L. The Feeling Brain: The Biology and Psychology of Emotions. Available online: https://psycnet.apa.org/record/2014-37586-000 (accessed on 1 August 2020).
- Kaklauskas, A.; Zavadskas, E.K.; Seniut, M.; Dzemyda, G.; Stankevic, V.; Simkevicius, C.; Stankevic, T.; Paliskiene, R.; Matuliauskaite, A.; Kildiene, S.; et al. Web-based Biometric Computer Mouse Advisory System to Analyze a User’s Emotions and Work Productivity. Eng. Appl. Artif. Intell. 2011, 24, 928–945. [Google Scholar] [CrossRef]
- Ganster, D.; Crain, T.; Brossoit, R. Physiological measurement in the organizational sciences: A review and recommendations for future use. Annu. Rev. Organ. Psychol. Organ. Behav. 2018, 5, 267–293. [Google Scholar] [CrossRef]
- Schmidt, P.; Reiss, A.; Dürichen, R.; Laerhoven, K. Wearable-Based Affect Recognition—A Review. Sensor 2019, 19, 4079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koelstra, S.; Muhl, C.; Soleymani, M.; Lee, J.; Yazdani, A.; Ebrahimi, T.; Pun, T.; Nijholt, A.; Patras, I. DEAP: A Database for Emotion Analysis; Using Physiological Signals. IEEE Trans. Affect. Comput. 2012, 3, 18–31. [Google Scholar] [CrossRef] [Green Version]
- Russell, J.A. A circumplex model of affect. Journal of Personality and Social Psychology. J. Pers. Soc. Psychol. 1980, 39, 1161–1178. [Google Scholar] [CrossRef]
- Odic, A.; Tkalcic, M.; Tasic, J.; Kosir, A. Personality and social context: Impact on emotion induction from movies. In Proceedings of the 21st Conference on User Modeling, Adaptation, and Personalization, Rome, Italy, 10–14 June 2013; Volume 997. [Google Scholar]
- Oliveira, E.; Chambel, T.; Ribeiro, N. Sharing video emotional information in the web. Int. J. Web Portals 2013, 5, 19–39. [Google Scholar] [CrossRef] [Green Version]
- Ayata, D.; Yaslan, Y.; Kamasak, M.E. Emotion Based Music Recommendation System Using Wearable Physiological Sensors. IEEE Trans. Consum. Electron. 2018, 64, 196–203. [Google Scholar] [CrossRef]
- Sartori, F.; Melen, R.; Redaelli, S. A multilayer intelligent system architecture and its application to a music recommendation system. In Proceedings of the 17th International Conference on New Trends in Intelligent Software Methodology Tools and Techniques, Granada, Spain, 26–28 September 2018; Volume 303, pp. 271–284. [Google Scholar] [CrossRef]
- Gilda, S.; Zafar, H.; Soni, C.; Waghurdekar, K. Smart music player integrating facial emotion recognition and music mood recommendation. In Proceedings of the 2nd IEEE International Conference on Wireless Communications, Signal Processing and Networking, Chennai, India, 22–24 March 2017; Volume 2018, pp. 154–158. [Google Scholar] [CrossRef]
- Mahmud, M.; Wang, H.; Fang, H. SensoRing: An Integrated Wearable System for Continuous Measurement of Physiological Biomarkers. In Proceedings of the 2018 IEEE International Conference on Communications, Kansas City, MO, USA, 20–4 May 2018. [Google Scholar] [CrossRef]
- Alvarez, P.; Beltran, J.; Baldassarri, S. DJ-Running: Wearables and Emotions for Improving Running Performance. In Proceedings of the 1st International Conference on Human Systems Engineering and Design: Future Trends and Applications, Reims, France, 25–27 October 2019; Volume 876, pp. 847–853. [Google Scholar] [CrossRef]
- Sergeev, A.; Bilyi, A. Data collection and processing problems in automatic EEG emotion recognition. In Proceedings of the 11th Majorov International Conference on Software Engineering and Computer Systems, Saint Petersburg, Russia, 12–13 December 2019; Volume 2590. [Google Scholar]
- Watson, D.; Tellegen, A. Toward a consensual structure of mood. Psychol. Bull. 1985. [Google Scholar] [CrossRef]
- Lang, P.; Bradley, M.; Cuthbert, B. International Affective Picture System (IAPS): Affective Ratings of Pictures and Instruction Manual. Available online: https://link.springer.com/referenceworkentry/10.1007%2F978-3-319-28099-8_42-1 (accessed on 1 August 2020).
- Marchewka, A.; Zurawski, L.; Jednorog, K.; Grabowska, A. The Nencki Affective Picture System (NAPS): Introduction to a novel, standardized, wide-range, high-quality, realistic picture database. Behav. Res. Methods 2013. [Google Scholar] [CrossRef] [Green Version]
- Qu, Q.X.; Song, Y. Using ubiquitous data to improve smartwatches’ context awareness: A case study applied to develop wearable products. Int. J. Ad Hoc Ubiquitous Comput. 2020, 33, 1–10. [Google Scholar] [CrossRef]
- Roy, S.; Sarkar, D.; De, D. Entropy-aware ambient IoT analytics on humanized music information fusion. J. Ambient Intell. Humaniz. Comput. 2020, 11, 151–171. [Google Scholar] [CrossRef]
- Cena, F.; Likavec, S.; Rapp, A. Real World User Model: Evolution of User Modeling Triggered by Advances in Wearable and Ubiquitous Computing State of the Art and Future Directions. Inf. Syst. Front. 2019, 21, 1085–1110. [Google Scholar] [CrossRef]
- Sun, C.; Li, H.; Li, X.; Wen, J.; Xiong, Q.; Zhou, W. Convergence of Recommender Systems and Edge Computing: A Comprehensive Survey. IEEE Access 2020, 8, 47118–47132. [Google Scholar] [CrossRef]
- Beckmann, S.; Lahmer, S.; Markgraf, M.; Meindl, O.; Rauscher, J.; Regal, C.; Gimpel, H.; Bauer, B. Generic sensor framework enabling personalized healthcare. In Proceedings of the 1st International IEEE Life-Science Conference, Sydney, Australia, 13–15 December 2017; Volume 2018, pp. 83–86. [Google Scholar] [CrossRef]
- Khowaja, S.A.; Prabono, A.G.; Setiawan, F.; Yahya, B.N.; Lee, S.L. Contextual activity based Healthcare Internet of Things, Services, and People (HIoTSP): An architectural framework for healthcare monitoring using wearable sensors. Comput. Netw. 2018, 145, 190–206. [Google Scholar] [CrossRef]
- Roy, R.; Dietz, L. Modeling Physiological Conditions for Proactive Tourist Recommendations. Available online: https://dl.acm.org/doi/abs/10.1145/3345002.3349289 (accessed on 1 August 2020).
- Koelle, M.; Wolf, K.; Boll, S. Beyond LED status lights—Design requirements of privacy notices for body-worn cameras. In Proceedings of the 12th International Conference on Tangible, Embedded, and Embodied Interaction, Stockholm, Sweden, 18–21 March 2018; pp. 177–187. [Google Scholar] [CrossRef]
- Lidynia, C.; Heek, J.V.; Ziefle, M. Nudging vs. Budging - Users’ Acceptance of Nudging for More Physical Activity. In Proceedings of the AHFE International Conference on Human Factors and Wearable Technologies, 2019 and the AHFE International Conference on Game Design and Virtual Environments, Washington, DC, USA, 24–28 July 2019; Volume 973, pp. 20–33. [Google Scholar] [CrossRef]
- Kumar, G.; Jerbi, H.; Gurrin, C.; O’Mahony, M. Towards activity recommendation from lifelogs. In Proceedings of the 16th International Conference on Information Integration and Web-Based Applications and Services, Hanoi, Vietnam, 4–6 December 2014; pp. 87–96. [Google Scholar] [CrossRef] [Green Version]
- Dharia, S.; Eirinaki, M.; Jain, V.; Patel, J.; Varlamis, I.; Vora, J.; Yamauchi, R. Social recommendations for personalized fitness assistance. Pers. Ubiquitous Comput. 2018, 22, 245–257. [Google Scholar] [CrossRef]
- Issa, H.; Shafaee, A.; Agne, S.; Baumann, S.; Dengel, A. User-sentiment based evaluation for market fitness trackers: Evaluation of fitbit one, Jawbone up and nike+ fuelband based on Amazon.com customer reviews. In Proceedings of the 1st International Conference on Information and Communication Technologies for Ageing Well and e-Health, Lisbon, Portugal, 20–22 May 2015; pp. 171–179. [Google Scholar]
- Lopez, B.; Pla, A.; Mordvanyuk, N.; Gay, P. Knowledge representation and machine learning on wearable sensor data: A study on gait monitoring. In Proceedings of the 1st International Conference on Data Science, E-Learning and Information Systems, Madrid, Spain, 1–2 October 2018. [Google Scholar] [CrossRef]
- Gerdes, M.; Martinez, S.; Tjondronegoro, D. Conceptualization of a personalized ecoach for wellness promotion. In Proceedings of the 11th EAI International Conference on Pervasive Computing Technologies for Healthcare, Barcelona, Spain, 23–26 May 2017; pp. 365–374. [Google Scholar] [CrossRef]
- Toledo, R.Y.; Alzahrani, A.A.; Martinez, L. A Food Recommender System Considering Nutritional Information and User Preferences. IEEE Access 2019, 7, 96695–96711. [Google Scholar] [CrossRef]
- Maghawry, N.; Ghoniemy, S. A proposed internet of everything framework for disease prediction. Int. J. Online Biomed. Eng. 2019, 15, 20–27. [Google Scholar] [CrossRef]
- Gautam, B.; Basava, A.; Singh, A.; Agrawal, A. When and where?: Behavior dominant location forecasting with micro-blog streams. In Proceedings of the 18th IEEE International Conference on Data Mining Workshops, Singapore, 17–20 November 2018; pp. 1178–1185. [Google Scholar] [CrossRef] [Green Version]
- Cena, F.; Rapp, A.; Likavec, S.; Marcengo, A. Envisioning the Future of Personalization Through Personal Informatics: A User Study. Int. J. Mob. Hum. Comput. Interact. 2018, 10, 52–66. [Google Scholar] [CrossRef] [Green Version]
- Ge, M.; Massimo, D.; Ricci, F.; Zini, F. Integrating wearable devices into a mobile food recommender system. In Proceedings of the 7th International Conference on Mobile Computing, Applications, and Services, Kraków, Poland, 12–13 November 2015; Volume 162, pp. 335–337. [Google Scholar]
- Yoo, H.; Chung, K. Mining-based lifecare recommendation using peer-to-peer dataset and adaptive decision feedback. Peer- Netw. Appl. 2018, 11, 1309–1320. [Google Scholar] [CrossRef]
- Munoz, J.; Cameirao, M.; Bermudez, i.B.S.; Rubio, G.E. Closing the loop in exergaming—Health benefits of biocybernetic adaptation in senior adults. In Proceedings of the 5th ACM SIGCHI Annual Symposium on Computer-Human Interaction in Play, Ottawa, ON, Canada, 28–31 October 2018; pp. 329–339. [Google Scholar] [CrossRef]
- Xu, C.; Zhu, J.; Huang, J.; Li, Z.; Fung, G. A health management tool based smart phone. Multimed. Tools Appl. 2017, 76, 17541–17558. [Google Scholar] [CrossRef]
- Chow, V.; Sung, K.; Meng, H.; Wong, K.; Leung, G.; Kuo, Y.H.; Tsoi, K. Utilizing real-time travel information, mobile applications and wearable devices for smart public transportation. In Proceedings of the 7th International Conference on Cloud Computing and Big Data, Sydney, Australia, 16–18 November 2016; pp. 138–144. [Google Scholar] [CrossRef]
- Yingling, L.R.; Brooks, A.T.; Wallen, G.R.; Peters-Lawrence, M.; McClurkin, M.; Cooper-McCann, R.; Kenneth, L.J.; Mitchell, V.; Saygbe, J.N.; Johnson, T.D.; et al. Community Engagement to Optimize the Use of Web-Based and Wearable Technology in a Cardiovascular Health and Needs Assessment Study: A Mixed Methods Approach. JMIR Mhealth Uhealth 2016, 4, 38–55. [Google Scholar] [CrossRef]
- Akbar, F.; Mark, G.; Pavlidis, I.; Gutierrez-Osuna, R. An Empirical Study Comparing Unobtrusive Physiological Sensors for Stress Detection in Computer Work. Sensors 2019, 19, 3766. [Google Scholar] [CrossRef] [Green Version]
- Barile, N.; Sugiyama, S. The Automation of Taste: A Theoretical Exploration of Mobile ICTs and Social Robots in the Context of Music Consumption. Int. J. Soc. Robot. 2015, 7, 407–416. [Google Scholar] [CrossRef]
- Brusie, T.; Fijal, T.; Keller, A.; Lauff, C.; Barker, K.; Schwinck, J.; Calland, J.; Guerlain, S. Usability evaluation of two smart glass systems. In Proceedings of the 2015 Systems and Information Engineering Design Symposium, Charlottesville, VA, USA, 24 April 2015; pp. 336–341. [Google Scholar] [CrossRef]
- Nguyen, T.; Nguyen, D.; Iqbal, S.; Ofek, E. The known stranger: Supporting conversations between strangers with personalized topic suggestions. In Proceedings of the 33rd Annual CHI Conference on Human Factors in Computing Systems, Glasgow, UK, 18–23 April 2015; pp. 555–564. [Google Scholar] [CrossRef]
- Fujita, S.; Yamamoto, K. Development of Dynamic Real-Time Navigation System. Int. J. Adv. Comput. Sci. Appl. 2016, 7, 116–130. [Google Scholar] [CrossRef] [Green Version]
- Koh, W.; Kaliappan, J.; Rice, M.; Ma, K.T.; Tay, H.; Tan, W. Preliminary investigation of augmented intelligence for remote assistance using a wearable display. In Proceedings of the 2017 IEEE Region 10 Conference, Penang, Malaysia, 5–8 November 2017; pp. 2093–2098. [Google Scholar] [CrossRef]
- Demir, F.; Ahmad, S.; Calyam, P.; Jiang, D.; Huang, R.; Jahnke, I. A Next-Generation Augmented Reality Platform for Mass Casualty Incidents (MCI). J. Usability Stud. 2017, 12, 193–214. [Google Scholar]
- Tanenbaum, K.; Hatala, M.; Tanenbaum, J.; Wakkary, R.; Antle, A. A case study of intended versus actual experience of adaptivity in a tangible storytelling system. User Model. User-Adapt. Interact. 2014, 24, 175–217. [Google Scholar] [CrossRef] [Green Version]
- Fergus, P.; Hussain, A.J.; Hearty, J.; Fairclough, S.; Boddy, L.; Mackintosh, K.; Stratton, G.; Ridgers, N.; Al-Jumeily, D.; Aljaaf, A.J.; et al. A machine learning approach to measure and monitor physical activity in children. Neurocomputing 2017, 228, 220–230. [Google Scholar] [CrossRef] [Green Version]
- Mario, M.O. Human Activity Recognition Based on Single Sensor Square HV Acceleration Images and Convolutional Neural Networks. IEEE Sens. J. 2019, 19, 1487–1498. [Google Scholar] [CrossRef]
- Murakami, M.; Sakamoto, T.; Kato, T. Music retrieval and recommendation based on musical tempo. In Proceedings of the AHFE International Conference on Affective and Pleasurable, Orlando, FL, USA, 21–25 July 2018; Volume 774, pp. 362–367. [Google Scholar] [CrossRef]
- Nirjon, S.; Dickerson, R.; Li, Q.; Asare, P.; Stankovic, J.; Hong, D.; Zhang, B.; Jiang, X.; Shen, G.; Zhao, F. MusicalHeart: A hearty way of listening to music. In Proceedings of the 10th ACM Conference on Embedded Networked Sensor Systems, SenSys 2012, Toronto, ON, Canada, 6–9 November 2012; pp. 43–56. [Google Scholar] [CrossRef]
- Douglas, M.D. Machine intelligence in cardiovascular medicine. Cardiol. Rev. 2020, 28, 53–64. [Google Scholar] [CrossRef]
- Zhang, M.; Dumas, G.; Kelso, J.A.S.; Tognoli, E. Enhanced emotional responses during social coordination with a virtual partner. Int. J. Psychophysiol. 2016, 104, 33–43. [Google Scholar] [CrossRef] [Green Version]
- Kalaganis, F.P.; Adamos, D.A.; Laskaris, N.A. Musical NeuroPicks: A consumer-grade BCI for on-demand music streaming services. Neurocomputing 2018, 280, 65–75. [Google Scholar] [CrossRef] [Green Version]
- Pozo, M.; Chiky, R.; Meziane, F.; Métais, E. Exploiting Past Users’ Interests and Predictions in an Active Learning Method for Dealing with Cold Start in Recommender Systems. Informatics 2018, 5, 35. [Google Scholar] [CrossRef] [Green Version]
- Asthana, S.; Megahed, A.; Strong, R. A Recommendation System for Proactive Health Monitoring Using IoT and Wearable Technologies. In Proceedings of the 6th IEEE International Conference on AI and Mobile Services, Honolulu, HI, USA, 25–30 June 2017; pp. 14–21. [Google Scholar] [CrossRef]
- Yang, S.; Zhou, P.; Duan, K.; Hossain, M.S.; Alhamid, M.F. emHealth: Towards Emotion Health Through Depression Prediction and Intelligent Health Recommender System. Mob. Netw. Appl. 2018, 23, 216–226. [Google Scholar] [CrossRef]
- Otebolaku, A.M.; Andrade, M.T. User context recognition using smartphone sensors and classification models. J. Netw. Comput. Appl. 2016, 66, 33–51. [Google Scholar] [CrossRef]
- Reichherzer, T.; Timm, M.; Earley, N.; Reyes, N.; Kumar, V. Using machine learning techniques to track individuals & their fitness activities. In Proceedings of the 32nd International Conference on Computers and Their Applications, San Diego, CA, USA, 20–22 March 2017; pp. 119–124. [Google Scholar]
- Moocarme, M.; Abdolahnejad, M.; Bhagwat, R. The Deep Learning with Keras Workshop. Available online: https://courses.packtpub.com/courses/deep-learning-with-keras (accessed on 1 August 2020).
- Arteaga, D.; Arenas, J.; Paz, F.; Tupia, M.; Bruzza, M. Design of information system architecture for the recommendation of tourist sites in the city of Manta, Ecuador through a Chatbot. In Proceedings of the 14th Iberian Conference on Information Systems and Technologies, Coimbra, Portugal, 19–22 June 2019. [Google Scholar] [CrossRef]
- Acharya, A.; Sneha, Y.; Khettry, A.; Patil, D. AtheNA an avid traveller using LSTM based RNN architecture. J. Eng. Sci. Technol. 2020, 15, 1413–1428. [Google Scholar]
- Van, N.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, F.; Metrolho, J.; Leal, J.; Martins, H.; Bastos, P. A mobile application to provide personalized information for mobility impaired tourists. In Proceedings of the 6th World Conference on Information Systems and Technologies, Naples, Italy, 27–29 March 2018; Volume 746, pp. 164–173. [Google Scholar] [CrossRef]
- Ribeiro, F.R.; Silva, A.; Barbosa, F.; Silva, A.P.; Metrolho, J.C. Mobile applications for accessible tourism: Overview, challenges and a proposed platform. Inf. Technol. Tour. 2018, 19, 29–59. [Google Scholar] [CrossRef]
- Massimo, D.; Not, E.; Ricci, F. User behaviour analysis in a simulated IoT augmented space*. In Proceedings of the 23rd International Conference on Intelligent User Interfaces, Tokyo, Japan, 7–11 March 2018. [Google Scholar] [CrossRef]
Filter | Scopus | WoS | Documents |
---|---|---|---|
By years: Limit-to | 2001 to 2020 | 2001 to 2020 | (4308, 1623) |
By subject area: Limit-to | Computer Science, Medicine, Engineering, Psychology, and Business. | Computer Science Information Systems, Artificial Intelligence, Engineering, Tourism, Telecommunications, and, Psychology. | (3637, 570) |
By subject area: Exclude | Mathematics, Social Sciences, Decision Sciences, Biochemistry, Nursing, Health, among others. | - | (2030, 570) |
By document type: Exclude | Exclude Short Survey, Note, Editorial, and Letter. | - | (2016, 570) |
By language: Limit-to | English | English | (1861, 551) |
By keywords: Exclude | Human, article, priority journal, female, review, male, adult, adolescent, among others. | - | (1303, 551) |
By source title: Exclude | Advanced Materials Research, Information Japan, Applied Mechanics, among others. | - | (1278, 551) |
Information | Number | Percentage |
---|---|---|
Total loaded documents | 1829 | |
Omitted documents by type | 200 | 10.9% |
Total documents after omitted documents removed | 1629 | |
Loaded documents from WoS | 547 | 33.6% |
Loaded documents from Scopus | 1082 | 66.4% |
Duplication removal statics: | ||
Duplicated papers found | 180 | 11.0% |
Removed duplicated papers from WoS | ||
Removed duplicated papers from Scopus | 180 | 16.6% |
Total papers after remove duplicates | 1449 | |
Papers from WoS | 547 | 37.8% |
Papers from Scopus | 902 | 62.2% |
Period | Research | Approach | Data Collection | CARS | Machine Learning | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CB | KB | CF | Item | User Model | Dataset | PRF | POS | CM | EM | SA | Algorithms | Sim | Valid | Result | ||
2010 | Wang et al. [16] | ✓ | Movie | Mood and preferences. | Moviepilot: 4.544.409 ratings, 105.137 users, and 25.058 movies. | ✓ | UBCF, Similarity Fusion (SF), and Rating Fusion (RF) based on KNN. | PCC | With other methods. | AUC: 0.71 UBCF, 0.72 SF, and 0.73 RF. | ||||||
2013 | Alhamid et al. [17] | ✓ | Music and movies | Profile, HRV, and stress status. | Last.fm: 192 users, 2509 items, 15 contexts, and 11632 assignments. | ✓ | ✓ | CARS: User CS and IBCF. | CS | With other methods. | MAP: 0.25 CARS, 0.2 UBCF and 0.23 ItemRank. | |||||
Tkalcic et al. [46,49] | ✓ | ✓ | Image | User personality. | LDOS PerAff-1 and Cohn-Kanade. | ✓ | SVM emotion classifier and UBCF. | ED | - | Mean accuracy: 0.77 SVM and 0.72 relevant content. | ||||||
2015 | Pliakos and Kotropoulos [50] | ✓ | POI | Profile, emotion and test imagen input. | Flickr images 150000. | ✓ | SVM images classifier, PLSA, and geo-cluster. | HD | 5-fold CV with SVM. | MAP: 0.82 SVM, 0.92 maxPLS, and 0.86 TF-IDF. | ||||||
2016 | Zheng et al. [15,134] | ✓ | Movie | Emotional state (mood, dominant emotion, and end emotion). | LDOS - CoMoDa: 113 users, 1186 items, 2094 ratings, and 12 contexts. | ✓ | ✓ | ✓ | Context-aware: item, user, and UI Splitting. UBCF: DCR and DCW. | User context | 5-fold CV. | RMSE Splitting: 0.94 all contexts, 0.95 emotions only, and 0.98 no emotions. | ||||
Wu et al. [67] | ✓ | Image | Emotion, mobile behavior pattern, and social closeness. | Flickr images and 16.952 people Twitter traces. | ✓ | Social friendship K-means, cluster-based LBM, SGD, LR, and SVM. | User cluster | With other methods. | Accuracy: 0.82 LBM, 0.71 LR, and 0.68 SVM. | |||||||
Christensen et al. [53] | ✓ | ✓ | Tours | Individual profile and group profile. | 1300 tours and 800 users. | ✓ | ✓ | KNN CF rating, demographic rating, and CB rating. | PCC | With other methods. | MAE: 0.55 CF, 0.45 CB, and, 0.4 Hybrid. | |||||
Zheng et al. [4] | ✓ | Tourism | Profiles of user preferences and item opinion. | 312.896 Tongcheng reviews and 5.722 destinations. | ✓ | UBCF, IBCF, and TF-IDF (scenery, cost, traffic, infrastructure, lodging, and travel sentiments). | CS | LOOCV for the items. 5-fold CV. | MAE and RMSE: Hybrid CF: 0.63 and 0.97 TopicMF: 0.76 and 1.04. | |||||||
2017 | Piazza et al. [63] | ✓ | Fashion product | Profile, mood (PANAS), and emotion (SAM). | 337 users,64 products, and 1081 ratings. | ✓ | ✓ | Vector representation of the user, item, and context. FM and SGD. | User, item, and context | 10-fold CV. | AUC: FM: 0.85 PANAS, 0.73 SAM, and 0.89 only ratings. | |||||
Logesh et al. [13] | ✓ | POI | User Emotion, location, and time. | TripAdvisor and Yelp: 48.253 POI, 33.576 users, and 738.995 ratings. | ✓ | ✓ | Emotion Induced UBCF and Emotion Induced IBCF. | CS | With other methods. | Precision: 0.74 UBCF, 0.66 IBCF, and 0.67 Hybrid. | ||||||
2018 | Zheng et al. [71] | ✓ | Tourism | User preferences | 312.896 Tongcheng reviews and 5.722 destinations. | ✓ | ✓ | Syn-ST SVD++ model:vsentiment tendency and temporal factors dynamic. | PCC | Latent factors vector (f = 50). | MAE and RMSE: Syn-ST SVD++: 1.04 and 0.91 SVD++: 1.17 and 0.96. | |||||
Arampatzis and Kalamatianos [7] | ✓ | ✓ | POI | Profile and positive and negative rated. | TREC Contextual Suggestion: 1.235.844 POI. | ✓ | Weighted kNN and Rated Rocchio. | PCC | With other methods. | Precision and MRR: Rrocchio: 0.47 and 0.68. WkNN: 0.46 and 0.66. | ||||||
Contratres et al. [6] | ✓ | Product | Emotion and social networks profile. | 12.172 Facebook and Twitter; reviews, 163 users, and 1758 documents. | ✓ | TF-IDF: vector space, SVM: emotions classifier, and NB: product category classifier. | CS | - | Accuracy: 0.8 SVM and 0.93 NB. RMSE: 1.22 RS. | |||||||
2019 | Qian et al. [14] | ✓ | Song book | Social network, rating, and reviews (sentiment). | Watercress: 346.242 musical acts and 373.648 behavior of several books. | ✓ | UBCF: user-friendly collection, IBCF: user behavior history items, sentiment lexicon, and SVD. | PCC | With two methods. | F-measure: 0.55 UBCF, 0.56 IBCF, and 0.70 emotion- aware. | ||||||
Logesh et al. [116] | ✓ | POI | Demographic, social, contextual, behavioral, and categorical. | TripAdvisor and Yelp: 48.253 POI, 33.576 users, and 738.995 ratings. | ✓ | ✓ | Fuzzy C-means: user. HSS: AKNN and SPTW. AbiPRS: Fuzzy-C-means. | User cluster | With other methods. | Precision, MAE, and Hit rate: HSS: 0.81, 0.63, and 81%. AbiPRS: 0.77, 0.73, and 76%. |
Period | Research | Experiment Data | Physiologic Signals | Classifiers | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Emotion | Measuring | Elicitation | Sb | Device | Sensor | Features | Algorithm | Result | ||
2016 | Matsubara et al. [32] | Emotional arousal. | A: 10 points scale. | Comic reading. | 5 | E4 Wristband and RED250 | EDA, BVP, HR, TEMP, and pupil diameter. | SCL, SCR, and HR. | SVM | Accuracy: 0.58 A. |
2017 | Hassib et al. [173] | Amused, sad, angry, and neutral. | Emotions: Likert scale. AV: SAM 9 point scale. | FilmStim movie clips database. | 10 | Emotiv EPOC | EEG | Min, max, mean, median, and SD. | RF | Accuracy: 0.72 AV. |
Chiu and Ko [12] | Sleep, boredom, anxiety, and panic. | AV point scale. | 15 song. | 30 | Gear live smartwatch | HRV | SDNN, pNN50, ULF, VLF, LF, and HF. | DT and LR. 5-fold CV. | MAE: DT: 0.82 A and 0.26 V. LR: 1.77 A and 0.32 V. | |
2018 | Dabas et al. [163] | VA and dominance. | AV: SAM 9 point scale. | 40 videos. | 32 | DEAP Dataset | EEG | Wavelet function and mean. | NB and SVM | Accuracy: 0.78 NB and 0.58 SVM of emotional states eight. |
Ayata et al. [184] | Four quadrants in VA dimension. | AV: SAM 9 point scale. | 40 videos. | 32 | DEAP Dataset | GSR and PPG | Mean, min, max, var, SD, median, skewness, kurtosis, moment, 1 and 2 degree difference. | RF, SVM, and KNN. 10-fold CV. | Accuracy: RF: 0.72 A and 0.71 V. | |
Mahmud et al. [187] | Stress | Emotion survey. | Exercise (cycling task). | 43 | SensoRing | EDA, HR, TEMP, and ACC | R-peaks, SRC, SCL. Mean RR and STD RR. | Signal processing. | Correlation: 0.9 Measured data from SensoRing with BITalino. | |
2019 | Santamaria- Granados et al. [36] | Arousal and valence: Low and High. | AV: SAM 9 point scale. | 16 short videos. | 40 | AMIGOS Dataset | ECG and GSR | R peaks and SCR peaks. | CNN | Accuracy: 0.76 A and V 0.73 in ECG and GSR signals. |
2020 | Dordevic et al. [11] | Arousal and valence. | V: SAM 9 point scale. | 3D video contents. | 18 | EDA and ECG Electrodes Emotiv EPOC | HR, EDA, and EEG | HR: median, SD, and PCA. EDA: median, SD, and SCR. EEG: mean, median, and SD. | MLP and GRNN. 9-fold CV. | RMSE: MLP: 0.05 A and 0.024 V. GRNN: 0.12 A and 0.14 V. In HR and EDA signals. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santamaria-Granados, L.; Mendoza-Moreno, J.F.; Ramirez-Gonzalez, G. Tourist Recommender Systems Based on Emotion Recognition—A Scientometric Review. Future Internet 2021, 13, 2. https://doi.org/10.3390/fi13010002
Santamaria-Granados L, Mendoza-Moreno JF, Ramirez-Gonzalez G. Tourist Recommender Systems Based on Emotion Recognition—A Scientometric Review. Future Internet. 2021; 13(1):2. https://doi.org/10.3390/fi13010002
Chicago/Turabian StyleSantamaria-Granados, Luz, Juan Francisco Mendoza-Moreno, and Gustavo Ramirez-Gonzalez. 2021. "Tourist Recommender Systems Based on Emotion Recognition—A Scientometric Review" Future Internet 13, no. 1: 2. https://doi.org/10.3390/fi13010002
APA StyleSantamaria-Granados, L., Mendoza-Moreno, J. F., & Ramirez-Gonzalez, G. (2021). Tourist Recommender Systems Based on Emotion Recognition—A Scientometric Review. Future Internet, 13(1), 2. https://doi.org/10.3390/fi13010002