Towards the Quantum Internet: Satellite Control Plane Architectures and Protocol Design
Abstract
:1. Introduction
- The design of a modular two-tier CP which includes an MCS and multiple controllers belonging to the constellation itself with entanglement generation and management functionalities;
- A Network Layer protocol for E2E entanglement generation specifically designed for the presented architecture;
- A first protocol test with the aim of interconnecting two QCs on a practical LEO constellation.
2. Related Works
3. System Model
3.1. Presented Architecture
3.2. Protocol
- (1)
- Management of the connection request between GSs and the setup of the satellite path;
- (2)
- Generation of E2E entanglement using the configured satellite path.
- Type: This field is composed of 4 bits and it defines the type of packet;
- C: This is a field composed of a single bit. It is useful in order to enable the controller’s functionality for a specific satellite if the field Type is set to 3, or if the field Type is set to 8, it is used in order to signal that the inter domain teleport between two border QSRs is completed;
- Duration: This field contains the lifetime of the path. It is important in order to program the opening and closing of the connections between the satellites that compose the path;
- Source: This field contains the address of the source of the message that could be the MCS or a satellite controller;
- Destination: This field contains the address of the destination of the message;
- Previous: Address of the previous satellite;
- Next: Address of the next satellite;
- Teleportation Data: This field contains the classic bits related to teleportation.
4. Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wehner, S.; Elkouss, D.; Hanson, R. Quantum internet: A vision for the road ahead. Science 2018, 362, eaam9288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caleffi, M. Optimal Routing for Quantum Networks. IEEE Access 2017, 5, 22299–22312. [Google Scholar] [CrossRef]
- Horodecki, R.; Horodecki, P.; Horodecki, M.; Horodecki, K. Quantum entanglement. Rev. Mod. Phys. 2009, 81, 865–942. [Google Scholar] [CrossRef] [Green Version]
- Franco, R.L.; Compagno, G. Indistinguishability of Elementary Systems as a Resource for Quantum Information Processing. Phys. Rev. Lett. 2018, 120, 240403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bennett, C.H.; Brassard, G.; Crépeau, C.; Jozsa, R.; Peres, A.; Wootters, W.K. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 1993, 70, 1895–1899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gyöngyösi, L.; Bacsardi, L.; Imre, S. A survey on quantum key distribution. Infocommun. J. 2019, 11, 14–21. [Google Scholar] [CrossRef]
- Perseguers, S.; Lapeyre, G.J.; Cavalcanti, D.; Lewenstein, M.; Acín, A. Distribution of entanglement in large-scale quantum networks. Rep. Prog. Phys. 2013, 76, 096001. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, D.; Cacciapuoti, A.S.; Amoretti, M.; Caleffi, M. Compiler Design for Distributed Quantum Computing. IEEE Trans. Quantum Eng. 2021, 2, 1–20. [Google Scholar] [CrossRef]
- Wang, C.; Rahman, A.; Li, R.; Aelmans, M. Applications and Use Cases for the Quantum Internet. Internet-Draft draft-irtf-qirg-quantum-internet-use-cases-04, Internet Engineering Task Force. Unpublished work. 2021. [Google Scholar]
- Cuomo, D.; Caleffi, M.; Cacciapuoti, A.S. Towards a distributed quantum computing ecosystem. IET Quantum Commun. 2020, 1, 3–8. [Google Scholar] [CrossRef]
- Jiang, L.; Taylor, J.M.; Nemoto, K.; Munro, W.J.; Van Meter, R.; Lukin, M.D. Quantum repeater with encoding. Phys. Rev. A 2009, 79, 032325. [Google Scholar] [CrossRef] [Green Version]
- Collins, O.A.; Jenkins, S.D.; Kuzmich, A.; Kennedy, T.A.B. Multiplexed Memory-Insensitive Quantum Repeaters. Phys. Rev. Lett. 2007, 98, 060502. [Google Scholar] [CrossRef] [Green Version]
- Munro, W.J.; Azuma, K.; Tamaki, K.; Nemoto, K. Inside Quantum Repeaters. IEEE J. Sel. Top. Quantum Electron. 2015, 21, 78–90. [Google Scholar] [CrossRef]
- Ruihong, Q.; Ying, M. Research Progress Of Quantum Repeaters. J. Phys. Conf. Ser. 2019, 1237, 052032. [Google Scholar] [CrossRef] [Green Version]
- Azuma, K.; Tamaki, K.; Lo, H.K. All-photonic quantum repeaters. Nat. Commun. 2015, 6, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Pan, J.W.; Bouwmeester, D.; Weinfurter, H.; Zeilinger, A. Experimental Entanglement Swapping: Entangling Photons That Never Interacted. Phys. Rev. Lett. 1998, 80, 3891–3894. [Google Scholar] [CrossRef]
- Bose, S.; Vedral, V.; Knight, P.L. Purification via entanglement swapping and conserved entanglement. Phys. Rev. A 1999, 60, 194–197. [Google Scholar] [CrossRef] [Green Version]
- Jin, R.B.; Takeoka, M.; Takagi, U.; Shimizu, R.; Sasaki, M. Highly efficient entanglement swapping and teleportation at telecom wavelength. Sci. Rep. 2015, 5, 9333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bacsardi, L. On the way to quantum-based satellite communication. IEEE Commun. Mag. 2013, 51, 50–55. [Google Scholar] [CrossRef]
- Vasylyev, D.; Vogel, W.; Moll, F. Satellite-mediated quantum atmospheric links. Phys. Rev. A 2019, 99, 053830. [Google Scholar] [CrossRef] [Green Version]
- Vallone, G.; Bacco, D.; Dequal, D.; Gaiarin, S.; Luceri, V.; Bianco, G.; Villoresi, P. Experimental Satellite Quantum Communications. Phys. Rev. Lett. 2015, 115, 040502. [Google Scholar] [CrossRef]
- Picchi, R.; Chiti, F.; Fantacci, R.; Pierucci, L. Towards Quantum Satellite Internetworking: A Software-Defined Networking Perspective. IEEE Access 2020, 8, 210370–210381. [Google Scholar] [CrossRef]
- Papazoglou, M.P.; Van Den Heuvel, W.J. Service oriented architectures: Approaches, technologies and research issues. VLDB J. 2007, 16, 389–415. [Google Scholar] [CrossRef] [Green Version]
- Segura, R. Service-oriented architecture for coalition satellite communications. In Proceedings of the MILCOM 2008—2008 IEEE Military Communications Conference, San Diego, CA, USA, 16–19 November 2008; pp. 1–8. [Google Scholar]
- Chiti, F.; Fantacci, R.; Pierucci, L. Energy Efficient Communications for Reliable IoT Multicast 5G/Satellite Services. Future Internet 2019, 11, 164. [Google Scholar] [CrossRef] [Green Version]
- Pecorella, T.; Pierucci, L.; Nizzi, F. “Network Sentiment” Framework to Improve Security and Privacy for Smart Home. Future Internet 2018, 10, 125. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, L.; Merson, P.; Bass, L. Quality Attributes for Service-Oriented Architectures. In Proceedings of the International Workshop on Systems Development in SOA Environments (SDSOA’07: ICSE Workshops 2007), Minneapolis, MN, USA, 20–26 May 2007; p. 3. [Google Scholar] [CrossRef] [Green Version]
- Kozlowski, W.; Wehner, S. Towards Large-Scale Quantum Networks. In Proceedings of the Sixth Annual ACM International Conference on Nanoscale Computing and Communication; Association for Computing Machinery, NANOCOM ’19, Dublin, Ireland, 25–27 September 2019. [Google Scholar] [CrossRef] [Green Version]
- Brask, J.B.; Rigas, I.; Polzik, E.S.; Andersen, U.L.; Sørensen, A.S. Hybrid Long-Distance Entanglement Distribution Protocol. Phys. Rev. Lett. 2010, 105, 160501. [Google Scholar] [CrossRef] [Green Version]
- Shor, P.W. Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 1995, 52, R2493–R2496. [Google Scholar] [CrossRef]
- Helm, J.; Strunz, W.T. Quantum decoherence of two qubits. Phys. Rev. A 2009, 80, 042108. [Google Scholar] [CrossRef] [Green Version]
- Simon, C. Towards a global quantum network. Nat. Photonics 2017, 11, 678–680. [Google Scholar] [CrossRef] [Green Version]
- Brito, S.; Canabarro, A.; Cavalcanti, D.; Chaves, R. Satellite-Based Photonic Quantum Networks Are Small-World. PRX Quantum 2021, 2, 010304. [Google Scholar] [CrossRef]
- Liao, S.K.; Cai, W.Q.; Handsteiner, J.; Liu, B.; Yin, J.; Zhang, L.; Rauch, D.; Fink, M.; Ren, J.G.; Liu, W.Y.; et al. Satellite-Relayed Intercontinental Quantum Network. Phys. Rev. Lett. 2018, 120, 030501. [Google Scholar] [CrossRef] [Green Version]
- Jianwei, P. Progress of the Quantum Experiment Science Satellite (QUESS) Micius Project. Chin. J. Space Sci. 2018, 38, 604. [Google Scholar] [CrossRef]
- Bennett, C.H.; Brassard, G. Quantum cryptography: Public key distribution and coin tossing. Theor. Comput. Sci. 2014, 560, 7–11. [Google Scholar] [CrossRef]
- Ma, X.S.; Herbst, T.; Scheidl, T.; Wang, D.; Kropatschek, S.; Naylor, W.; Wittmann, B.; Mech, A.; Kofler, J.; Anisimova, E. Quantum teleportation over 143 kilometres using active feed-forward. Nature 2012, 489, 269–273. [Google Scholar] [CrossRef] [Green Version]
- Tom, G.; Joel, B.; George, L. Analysis of Free Space Optics as a Transmission Technology; US Army Information Systems Engineering Command: Fort Huachuca, AZ, USA, 2005; Volume 3. [Google Scholar]
- Hosseinidehaj, N.; Babar, Z.; Malaney, R.; Ng, S.X.; Hanzo, L. Satellite-Based Continuous-Variable Quantum Communications: State-of-the-Art and a Predictive Outlook. IEEE Commun. Surv. Tutor. 2019, 21, 881–919. [Google Scholar] [CrossRef] [Green Version]
- Horwath, J.; Knapek, M.; Epple, B.; Brechtelsbauer, M.; Wilkerson, B. Broadband backhaul communication for stratospheric platforms: The stratospheric optical payload experiment (STROPEX). In Free-Space Laser Communications VI; International Society for Optics and Photonics: San Diego, CA, USA, 2006; Volume 6304, p. 63041N. [Google Scholar]
- Toyoshima, M.; Fuse, T.; Carrasco-Casado, A.; Kolev, D.R.; Takenaka, H.; Munemasa, Y.; Suzuki, K.; Koyama, Y.; Kubo-oka, T.; Kunimori, H. Research and development on a hybrid high throughput satellite with an optical feeder link Study of a link budget analysis. In Proceedings of the 2017 IEEE International Conference on Space Optical Systems and Applications (ICSOS), Naha, Japan, 14–16 November 2017; pp. 267–271. [Google Scholar] [CrossRef]
- Bacsardi, L. Resources for Satellite-Based Quantum Communication Networks. In Proceedings of the 2018 IEEE 22nd International Conference on Intelligent Engineering Systems (INES), Las Palmas de Gran Canaria, Spain, 21–23 June 2018; pp. 000097–000102. [Google Scholar] [CrossRef]
- Huang, D.; Zhao, Y.; Yang, T.; Rahman, S.; Yu, X.; He, X.; Zhang, J. Quantum Key Distribution Over Double-Layer Quantum Satellite Networks. IEEE Access 2020, 8, 16087–16098. [Google Scholar] [CrossRef]
- Khatri, S.; Brady, A.J.; Desporte, R.A.; Bart, M.P.; Dowling, J.P. Spooky action at a global distance: Analysis of space-based entanglement distribution for the quantum internet. Npj Quantum Inf. 2021, 7, 1–15. [Google Scholar] [CrossRef]
- Chiti, F.; Fantacci, R.; Picchi, R.; Pierucci, L. Quantum Satellite Backbone Networks Design and Performance Evaluation. In Proceedings of the IEEE International Conference on Communications, Montreal, QC, Canada, 14–23 June 2021. [Google Scholar]
- Pirker, A.; Dür, W. A quantum network stack and protocols for reliable entanglement-based networks. New J. Phys. 2019, 21, 033003. [Google Scholar] [CrossRef]
- Dahlberg, A.; Skrzypczyk, M.; Coopmans, T.; Wubben, L.; Rozpundefineddek, F.; Pompili, M.; Stolk, A.; Pawełczak, P.; Knegjens, R.; de Oliveira Filho, J.; et al. A Link Layer Protocol for Quantum Networks. In Proceedings of the ACM Special Interest Group on Data Communication SIGCOMM ’19, New York, NY, USA, 9–24 August 2019. [Google Scholar] [CrossRef] [Green Version]
- Meter, R.V.; Touch, J. Designing quantum repeater networks. IEEE Commun. Mag. 2013, 51, 64–71. [Google Scholar] [CrossRef]
- Kozlowski, W.; Wehner, S.; Meter, R.V.; Rijsman, B.; Cacciapuoti, A.S.; Caleffi, M.; Nagayama, S. Architectural Principles for a Quantum Internet. Internet-Draft draft-irtf-qirg-principles-06, Internet Engineering Task Force. Unpublished work. 2021. [Google Scholar]
- Munro, W.; Harrison, K.; Stephens, A.; Devitt, S.; Nemoto, K. From quantum multiplexing to high-performance quantum networking. Nat. Photonics 2010, 4, 792–796. [Google Scholar] [CrossRef] [Green Version]
- Li, Y. Methods of Generating Entangled Photon Pairs. J. Phys. Conf. Ser. 2020, 1634, 012172. [Google Scholar] [CrossRef]
- Norad Two-Line Element Sets Current Data. Available online: https://celestrak.com/NORAD/elements/ (accessed on 3 July 2021).
- Vallado, D.A.; Cefola, P.J. Two-line element sets-practice and use. In Proceedings of the 63rd International Astronautical Congress, Naples, Italy, 1–5 October 2012. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiti, F.; Fantacci, R.; Picchi, R.; Pierucci, L. Towards the Quantum Internet: Satellite Control Plane Architectures and Protocol Design. Future Internet 2021, 13, 196. https://doi.org/10.3390/fi13080196
Chiti F, Fantacci R, Picchi R, Pierucci L. Towards the Quantum Internet: Satellite Control Plane Architectures and Protocol Design. Future Internet. 2021; 13(8):196. https://doi.org/10.3390/fi13080196
Chicago/Turabian StyleChiti, Francesco, Romano Fantacci, Roberto Picchi, and Laura Pierucci. 2021. "Towards the Quantum Internet: Satellite Control Plane Architectures and Protocol Design" Future Internet 13, no. 8: 196. https://doi.org/10.3390/fi13080196
APA StyleChiti, F., Fantacci, R., Picchi, R., & Pierucci, L. (2021). Towards the Quantum Internet: Satellite Control Plane Architectures and Protocol Design. Future Internet, 13(8), 196. https://doi.org/10.3390/fi13080196