Modeling and Analyzing Preemption-Based Service Prioritization in 5G Networks Slicing Framework
Abstract
:1. Introduction
2. System Model
2.1. Case Example of Two NSIs
2.2. Case Example of Three NSIs
- The highest priority be assigned to all servicing requests at the 1st NSI;
- The medium priority be assigned to all servicing requests at the 2nd NSI;
- The lowest priotity be assigned to all servicing requests at the 3rd NSI.
2.3. General Case of S NSIs
3. Mathematical Model
- when ,
4. Numerical Analysis
- The highest priority to servicing 4K Live Video requests at the 1st NSI;
- The medium priority to servicing 4K 360-degree VR Panoramic Video requests at the 2nd NSI;
- The lowest priority to servicing 8K FOV VR Video requests at the 3rd NSI.
5. Conclusions
- Up to more than 60% gain in terms of admission probability of arriving 4K 360-degree VR Panoramic Video requests at the 2nd NSI;
- Up to 100% gain in terms of blocking probabilities of arriving requests;
- Up to 15% in terms of average utilization of the guaranteed network capacity of the 2nd NSI.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
3GPP | Third Generation Partnership Project |
5G | Fifth generation |
BE | Best effort |
BG | Best effort with minimum guaranteed |
BS | Base station |
CN | Core network |
DN | Data network |
E2E | End-to-End |
FOV | Field of vision/view |
GB | Guaranteed bit rate |
GSM | Groupe Speciale Mobile |
IoT | Internet of Things |
IoV | Internet of Vehicles |
MNO | Mobile network operator |
NS | Network slicing |
NSI | Network slice instance |
PP | Pre-emption-based prioritization |
QoS | Quality of Service |
QS | Queueing system |
RAC | Radio admission control |
RAT | Radio access technology |
RR | Resource reservation |
TN | Transport network |
VoIP | Voice over Internet Protocol |
VR | Virtual reality |
References
- Meredith, J.M.; Firmin, F.; Pope, M. Release 16 Description; Summary of Rel-16 Work Items. Technical Report (TR) 21.916, 3rd Generation Partnership Project (3GPP). 2022. Version 16.2.0. Available online: https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3493 (accessed on 1 September 2022).
- Sultan, A.; Pope, M. Feasibility Study on New Services and Markets Technology Enablers for Network Operation; Stage 1. Technical Report (TR) 22.864, 3rd Generation Partnership Project (3GPP). 2016. Version 15.0.0. Available online: https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3016 (accessed on 1 September 2022).
- Meredith, J.M.; Soveri, M.C.; Pope, M. Management and Orchestration; 5G End to end Key Performance Indicators (KPI). Technical Specification (TS) 28.554, 3rd Generation Partnership Project (3GPP). 2022. Version 17.8.0. Available online: https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3415 (accessed on 1 September 2022).
- 5G Industry Campus Network Deployment Guideline. Official Document NG.123, GSM Association (GSMA). 2021. Version 2.0. Available online: https://www.gsma.com/newsroom/wp-content/uploads//NG.123-v2.0.pdf (accessed on 1 September 2022).
- DOCOMO Today, Technology Reports (Special Articles), Technology Reports, Standardization. Technical Journal, NTT DOCOMO. 2022, Volume 23. No.4. Available online: https://www.docomo.ne.jp/english/binary/pdf/corporate/technology/rd/technical_journal/bn/vol23_4/vol23_4_en_total.pdf (accessed on 1 September 2022).
- Zambianco, M.; Lieto, A.; Malanchini, I.; Verticale, G. A Learning Approach for Production-Aware 5G Slicing in Private Industrial Networks. In Proceedings of the ICC 2022—IEEE International Conference on Communications, Seoul, Korea, 16–20 May 2022. [Google Scholar] [CrossRef]
- Zheng, Q.; Zhang, G.; Ou, M.; Bao, J. 5G Slice Allocation Algorithm Based on Mapping Relation. In Advances in Intelligent Systems and Computing; Springer: Singapore, 2020; pp. 1608–1616. [Google Scholar] [CrossRef]
- Luntovskyy, A.; Shubyn, B.; Maksymyuk, T.; Klymash, M. 5G Slicing and Handover Scenarios: Compulsoriness and Machine Learning. In Current Trends in Communication and Information Technologies; Springer International Publishing: Cham, Switzerland, 2021; pp. 223–255. [Google Scholar] [CrossRef]
- Riad, M.A.; El-Ghandour, O.; El-Haleem, A.M.A. Joint User-Slice Pairing and Association Framework Based on H-NOMA in RAN Slicing. Sensors 2022, 22, 7343. [Google Scholar] [CrossRef]
- Singh, S.; Babu, C.R.; Ramana, K.; Ra, I.H.; Yoon, B. BENS-B5G: Blockchain-Enabled Network Slicing in 5G and Beyond-5G (B5G) Networks. Sensors 2022, 22, 6068. [Google Scholar] [CrossRef]
- Zahoor, S.; Ahmad, I.; Othman, M.T.B.; Mamoon, A.; Rehman, A.U.; Shafiq, M.; Hamam, H. Comprehensive Analysis of Network Slicing for the Developing Commercial Needs and Networking Challenges. Sensors 2022, 22, 6623. [Google Scholar] [CrossRef]
- Awada, Z.; Boulos, K.; El-Helou, M.; Khawam, K.; Lahoud, S. Distributed multi-tenant RAN slicing in 5G networks. Wirel. Netw. 2022, 28, 3185–3198. [Google Scholar] [CrossRef]
- Wichary, T.; Batalla, J.M.; Mavromoustakis, C.X.; Żurek, J.; Mastorakis, G. Network Slicing Security Controls and Assurance for Verticals. Electronics 2022, 11, 222. [Google Scholar] [CrossRef]
- Dangi, R.; Jadhav, A.; Choudhary, G.; Dragoni, N.; Mishra, M.K.; Lalwani, P. ML-Based 5G Network Slicing Security: A Comprehensive Survey. Future Internet 2022, 14, 116. [Google Scholar] [CrossRef]
- Thantharate, A.; Paropkari, R.; Walunj, V.; Beard, C.; Kankariya, P. Secure5G: A Deep Learning Framework Towards a Secure Network Slicing in 5G and Beyond. In Proceedings of the 2020 10th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 6–8 January 2020. [Google Scholar] [CrossRef]
- Chen, C.; Tian, H.; Nie, G. Fairness Resource Allocation Scheme for GBR Services in Downlink SCMA System. In Proceedings of the 2020 IEEE/CIC International Conference on Communications in China (ICCC), Chongqing, China, 9–11 August 2020. [Google Scholar] [CrossRef]
- D, M.P.; Das, D. Efficient way of Non-GBR, High Latency GTP-U Packet Transmission in 4G and 5G Networks. In Proceedings of the 2021 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), Bangalore, India, 9–11 July 2021. [Google Scholar] [CrossRef]
- Kheddar, H.; Ouldkhaoua, S.; Bouguerra, R. All you need for horizontal slicing in 5G network. arXiv 2022, arXiv:2207.11477. [Google Scholar]
- Kotulski, Z.; Nowak, T.W.; Sepczuk, M.; Tunia, M.A. 5G networks: Types of isolation and their parameters in RAN and CN slices. Comput. Netw. 2020, 171, 107135. [Google Scholar] [CrossRef]
- Alotaibi, D. Survey on Network Slice Isolation in 5G Networks: Fundamental Challenges. Procedia Comput. Sci. 2021, 182, 38–45. [Google Scholar] [CrossRef]
- Wong, S.; Han, B.; Schotten, H.D. 5G Network Slice Isolation. Network 2022, 2, 153–167. [Google Scholar] [CrossRef]
- Kermani, P.; Kleinrock, L. Analysis of buffer allocation schemes in a multiplexing node. In Proceedings of the Conference Record, International Conference on Communications, Chicago, IL, USA, 12–15 June 1977; Volume 2, pp. 30–34. [Google Scholar]
- Kamoun, F.; Kleinrock, L. Analysis of Shared Finite Storage in a Computer Network Node Environment Under General Traffic Conditions. IEEE Trans. Commun. 1980, 28, 992–1003. [Google Scholar] [CrossRef] [Green Version]
- Marabissi, D.; Fantacci, R. Highly Flexible RAN Slicing Approach to Manage Isolation, Priority, Efficiency. IEEE Access 2019, 7, 97130–97142. [Google Scholar] [CrossRef]
- Chinchilla-Romero, L.; Prados-Garzon, J.; Ameigeiras, P.; Muñoz, P.; Lopez-Soler, J.M. 5G Infrastructure Network Slicing: E2E Mean Delay Model and Effectiveness Assessment to Reduce Downtimes in Industry 4.0. Sensors 2021, 22, 229. [Google Scholar] [CrossRef]
- Yarkina, N.; Correia, L.M.; Moltchanov, D.; Gaidamaka, Y.; Samouylov, K. Multi-tenant resource sharing with equitable-priority-based performance isolation of slices for 5G cellular systems. Comput. Commun. 2022, 188, 39–51. [Google Scholar] [CrossRef]
- Gabilondo, Á.; Fernández, Z.; Viola, R.; Martín, Á.; Zorrilla, M.; Angueira, P.; Montalbán, J. Traffic Classification for Network Slicing in Mobile Networks. Electronics 2022, 11, 1097. [Google Scholar] [CrossRef]
- Rehman, A.U.; Mahmood, I.; Kamran, M.; Sanaullah, M.; Ijaz, A.; Ali, J.; Ali, M. Enhancement in Quality-of-Services using 5G cellular network using resource reservation protocol. Phys. Commun. 2022, 101907. [Google Scholar] [CrossRef]
- Luu, Q.T.; Kerboeuf, S.; Kieffer, M. Admission Control and Resource Reservation for Prioritized Slice Requests With Guaranteed SLA Under Uncertainties. IEEE Trans. Netw. Serv. Manag. 2022, 19, 3136–3153. [Google Scholar] [CrossRef]
- Yarkina, N.; Gaidamaka, Y.; Correia, L.M.; Samouylov, K. An Analytical Model for 5G Network Resource Sharing with Flexible SLA-Oriented Slice Isolation. Mathematics 2020, 8, 1177. [Google Scholar] [CrossRef]
- Basharin, G.P.; Gaidamaka, Y.V.; Samouylov, K.E. Mathematical theory of teletraffic and its application to the analysis of multiservice communication of next generation networks. Autom. Control Comput. Sci. 2013, 47, 62–69. [Google Scholar] [CrossRef]
- Naumov, V.; Gaidamaka, Y.; Yarkina, N.; Samouylov, K. Matrix and Analytical Methods for Performance Analysis of Telecommunication Systems; Springer Nature: Singapore, 2021. [Google Scholar]
- Althumali, H.; Othman, M.; Noordin, N.K.; Hanapi, Z.M. Priority-based load-adaptive preamble separation random access for QoS-differentiated services in 5G networks. J. Netw. Comput. Appl. 2022, 203, 103396. [Google Scholar] [CrossRef]
- Gedikli, A.M.; Koseoglu, M.; Sen, S. Deep reinforcement learning based flexible preamble allocation for RAN slicing in 5G networks. Comput. Netw. 2022, 215, 109202. [Google Scholar] [CrossRef]
- Enderton, H.B. Elements of Set Theory; Elsevier: Amsterdam, The Netherlands, 1977. [Google Scholar] [CrossRef]
- Devlin, K. The Joy of Sets; Undergraduate Texts in Mathematics; Springer: New York, NY, USA, 1993. [Google Scholar] [CrossRef]
- Bagaria, J. Set Theory. In The Stanford Encyclopedia of Philosophy, Winter 2021 ed.; Zalta, E.N., Ed.; Metaphysics Research Lab, Stanford University: Stanford, CA, USA, 2021. [Google Scholar]
- Xie, D. An efficient finite element iterative method for solving a nonuniform size modified Poisson-Boltzmann ion channel model. J. Comput. Phys. 2022, 470, 111556. [Google Scholar] [CrossRef]
- Zhou, D.; Chen, Z.; Pan, E.; Zhang, Y. Dynamic statistical responses of gear drive based on improved stochastic iteration method. Appl. Math. Model. 2022, 108, 46–65. [Google Scholar] [CrossRef]
- Stepanov, S.N. Theory of Teletraffic: Concepts, Models, Applications [Teoriya Teletraffika: Kontseptsii, Modeli, Prilozheniya]; Goryachaya Liniya-Telekom: Moscow, Russia, 2015; p. 868. (In Russian) [Google Scholar]
- Schoolar, D.; Lambert, P.; Nanbin, W.; Liang, Z. 5G Service Experience-Based Network Planning Criteria. White Paper, Ovum Consulting. 2019. in Partnership with Huawei. Available online: https://carrier.huawei.com/~/media/cnbgv2/download/products/servies/5g-planning-criteria-white-paper.pdf (accessed on 1 September 2022).
Notation | Description |
---|---|
The set of NSIs at the 5G BS, , [units (u.)] | |
S | The number of NSIs at the 5G BS, , [u.] |
C | The total network capacity of the 5G BS, [capacity units (c.u.)] |
The overall network capacity of the NSI, , , [c.u.] | |
The guaranteed network capacity of the NSI, , , [c.u.] | |
The arrival rate of requests at the NSI, , [requests per time units (requests/t.u.)] | |
The average service time for a request at the NSI, , [t.u.] | |
The offered load at the NSI | |
The requirement for starting service of a request at the NSI, , , [c.u.] | |
The maximum number of requests that may be admitted for service with the overall network capacity of the NSI, , [u.] | |
The maximum number of requests that may be admitted for service with the guaranteed network capacity of the NSI, , [u.] | |
The current number of servicing requests at the NSI, , [u.] | |
The row of the size identity matrix | |
The S-dimensional all-ones vector |
Parameter | Value RR-Scheme | Value PP-Scheme | Unit of Measure |
---|---|---|---|
C | 5.0 | Gbps | |
1.0, 1.5, 2.5 | Gbps | ||
1.5, 2.0, 3.0 | Gbps | ||
0.04, 0.08, 0.1 | Gbps | ||
from 5 to 100 | - | ||
60, 30, 45 | min | ||
requests/min |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adou, Y.; Markova, E.; Gaidamaka, Y. Modeling and Analyzing Preemption-Based Service Prioritization in 5G Networks Slicing Framework. Future Internet 2022, 14, 299. https://doi.org/10.3390/fi14100299
Adou Y, Markova E, Gaidamaka Y. Modeling and Analyzing Preemption-Based Service Prioritization in 5G Networks Slicing Framework. Future Internet. 2022; 14(10):299. https://doi.org/10.3390/fi14100299
Chicago/Turabian StyleAdou, Yves, Ekaterina Markova, and Yuliya Gaidamaka. 2022. "Modeling and Analyzing Preemption-Based Service Prioritization in 5G Networks Slicing Framework" Future Internet 14, no. 10: 299. https://doi.org/10.3390/fi14100299
APA StyleAdou, Y., Markova, E., & Gaidamaka, Y. (2022). Modeling and Analyzing Preemption-Based Service Prioritization in 5G Networks Slicing Framework. Future Internet, 14(10), 299. https://doi.org/10.3390/fi14100299