Drifting Streaming Peaks-Over-Threshold-Enhanced Self-Evolving Neural Networks for Short-Term Wind Farm Generation Forecast
Abstract
:1. Introduction
- We propose a Drifting Streaming Peaks-over-Threshold (DSPOT)-enhanced self-evolving neural networks-based short-term wind farm generation forecast, which is adaptive machine learning for wind farm generation forecasting. The proposed framework addresses the challenges of the non-stationarity and the ramp dynamics of wind farm generation and can greatly facilitate the integration of wind generation in the real world.
- The proposed method first classifies the wind farm generation data into the ramp and non-ramp datasets, where time-varying dynamics are captured by utilizing an adaptive thresholding framework to separate the ramp and non-ramp events, based on which different neural networks are trained to learn the dynamics of wind farm generation.
- As the efficacy of the neural networks relies on the quality of the training datasets (i.e., the classification accuracy of the ramp and non-ramp events), a Bayesian optimization-based approach is developed to optimize the parameters of the DSPOT algorithm to enhance the quality of the training datasets and the corresponding performance of the neural networks, which enables the model parameters to be adjusted automatically.
- The experimental results show that compared with other forecast approaches, the proposed forecast approach can substantially improve the forecast accuracy, especially for ramp events.
2. Data Description and Key Observations
3. DSPOT-Enhanced Self-Evolving Neural Networks
3.1. DSPOT-Based Ramp Classifier
3.1.1. Calculating
3.1.2. DSPOT Algorithm
Algorithm 1 DSPOT |
|
3.2. Self-Evolving Neural Network
3.3. Bayesian Optimization-Based Parameter Search
Algorithm 2 Bayesian optimization-based parameter search |
|
3.4. Short-Term Wind Farm Generation Forecast
4. Case Studies of Real Wind Power Data
4.1. Experimental Setup
4.1.1. Data
4.1.2. Evaluation Metrics
4.1.3. Parameter Tuning
4.1.4. Benchmark
- The adaptive AR model [37];
- The Markov chain-based (MC) model [36];
- The SVM-enhanced Markov (SVM-MC) model [37];
- The seasonal NEAT (SNEAT) model trained by different season data without splitting ramp events;
- The NEAT model trained by the entire year data without splitting ramp events;
- The long short-term memory (LSTM) model trained by the entire year data;
- The artificial neural network (ANN);
- The seasonal self-evolving neural networks (SSEN) model [38].
4.2. Experimental Results
4.2.1. 10 min Ahead Forecast
4.2.2. Other Forecasting Horizons
4.2.3. Distributional Forecast
4.2.4. Model Updating
4.2.5. Discussions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Barbose, G. US Renewables Portfolio Standards; Lawrence Berkeley National Lab. (LBNL): Berkeley, CA, USA, 2016. [Google Scholar]
- Niu, T.; Guo, Q.; Jin, H.; Sun, H.; Zhang, B.; Liu, H. Dynamic reactive power optimal allocation to decrease wind power curtailment in a large-scale wind power integration area. IET Renew. Power Gener. 2017, 11, 1667–1678. [Google Scholar] [CrossRef]
- Huang, S.; Wu, Q.; Guo, Y.; Lin, Z. Bi-level decentralised active power control for large-scale wind farm cluster. IET Renew. Power Gener. 2018, 12, 1486–1492. [Google Scholar] [CrossRef]
- Pinson, P.; Madsen, H. Adaptive modelling and forecasting of offshore wind power fluctuations with Markov-switching autoregressive models. J. Forecast. 2012, 31, 281–313. [Google Scholar] [CrossRef] [Green Version]
- Erdem, E.; Shi, J. ARMA based approaches for forecasting the tuple of wind speed and direction. Appl. Energy 2011, 88, 1405–1414. [Google Scholar] [CrossRef]
- Mori, H.; Kurata, E. Application of gaussian process to wind speed forecasting for wind power generation. In Proceedings of the 2008 IEEE International Conference on Sustainable Energy Technologies, Singapore, 24–27 November 2008; pp. 956–959. [Google Scholar]
- Zuluaga, C.D.; Alvarez, M.A.; Giraldo, E. Short-term wind speed prediction based on robust Kalman filtering: An experimental comparison. Appl. Energy 2015, 156, 321–330. [Google Scholar] [CrossRef]
- Papaefthymiou, G.; Klockl, B. MCMC for wind power simulation. IEEE Trans. Energy Convers. 2008, 23, 234–240. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Han, J.; Pan, G.; Xu, Y.; Wang, F. A multi-stage predicting methodology based on data decomposition and error correction for ultra-short-term wind energy prediction. J. Clean. Prod. 2021, 292, 125981. [Google Scholar] [CrossRef]
- Liu, Z.; Jiang, P.; Zhang, L.; Niu, X. A combined forecasting model for time series: Application to short-term wind speed forecasting. Appl. Energy 2020, 259, 114137. [Google Scholar] [CrossRef]
- Lv, L.; Wu, Z.; Zhang, J.; Zhang, L.; Tan, Z.; Tian, Z. A VMD and LSTM based hybrid model of load forecasting for power grid security. IEEE Trans. Ind. Inform. 2021, 18, 6474–6482. [Google Scholar] [CrossRef]
- Abdoos, A.A. A new intelligent method based on combination of VMD and ELM for short term wind power forecasting. Neurocomputing 2016, 203, 111–120. [Google Scholar] [CrossRef]
- Bokde, N.; Feijóo, A.; Villanueva, D.; Kulat, K. A review on hybrid empirical mode decomposition models for wind speed and wind power prediction. Energies 2019, 12, 254. [Google Scholar] [CrossRef] [Green Version]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef] [Green Version]
- Andreas, J.; Rohrbach, M.; Darrell, T.; Klein, D. Learning to compose neural networks for question answering. arXiv 2016, arXiv:1601.01705. [Google Scholar]
- Silver, D.; Huang, A.; Maddison, C.J.; Guez, A.; Sifre, L.; Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Panneershelvam, V.; Lanctot, M.; et al. Mastering the game of Go with deep neural networks and tree search. Nature 2016, 529, 484–489. [Google Scholar] [CrossRef] [PubMed]
- Fan, G.f.; Wang, W.s.; Liu, C.; DAI, H.z. Wind power prediction based on artificial neural network. Proc. CSEE 2008, 28, 118–123. [Google Scholar]
- Osório, G.; Matias, J.; Catalão, J. Short-term wind power forecasting using adaptive neuro-fuzzy inference system combined with evolutionary particle swarm optimization, wavelet transform and mutual information. Renew. Energy 2015, 75, 301–307. [Google Scholar] [CrossRef]
- Chitsaz, H.; Amjady, N.; Zareipour, H. Wind power forecast using wavelet neural network trained by improved Clonal selection algorithm. Energy Convers. Manag. 2015, 89, 588–598. [Google Scholar] [CrossRef]
- Hu, H.; Wang, L.; Lv, S.X. Forecasting energy consumption and wind power generation using deep echo state network. Renew. Energy 2020, 154, 598–613. [Google Scholar] [CrossRef]
- Wang, H.z.; Li, G.q.; Wang, G.b.; Peng, J.c.; Jiang, H.; Liu, Y.t. Deep learning based ensemble approach for probabilistic wind power forecasting. Appl. Energy 2017, 188, 56–70. [Google Scholar] [CrossRef]
- Bhaskar, K.; Singh, S.N. AWNN-assisted wind power forecasting using feed-forward neural network. IEEE Trans. Sustain. Energy 2012, 3, 306–315. [Google Scholar] [CrossRef]
- Sideratos, G.; Hatziargyriou, N.D. Probabilistic wind power forecasting using radial basis function neural networks. IEEE Trans. Power Syst. 2012, 27, 1788–1796. [Google Scholar] [CrossRef]
- Ghoushchi, S.J.; Manjili, S.; Mardani, A.; Saraji, M.K. An extended new approach for forecasting short-term wind power using modified fuzzy wavelet neural network: A case study in wind power plant. Energy 2021, 223, 120052. [Google Scholar] [CrossRef]
- Yu, R.; Gao, J.; Yu, M.; Lu, W.; Xu, T.; Zhao, M.; Zhang, J.; Zhang, R.; Zhang, Z. LSTM-EFG for wind power forecasting based on sequential correlation features. Future Gener. Comput. Syst. 2019, 93, 33–42. [Google Scholar] [CrossRef]
- Wang, S.; Li, B.; Li, G.; Yao, B.; Wu, J. Short-term wind power prediction based on multidimensional data cleaning and feature reconfiguration. Appl. Energy 2021, 292, 116851. [Google Scholar] [CrossRef]
- Shahid, F.; Zameer, A.; Muneeb, M. A novel genetic LSTM model for wind power forecast. Energy 2021, 223, 120069. [Google Scholar] [CrossRef]
- Liu, X.; Yang, L.; Zhang, Z. Short-Term Multi-Step Ahead Wind Power Predictions Based On A Novel Deep Convolutional Recurrent Network Method. IEEE Trans. Sustain. Energy 2021, 12, 1820–1833. [Google Scholar] [CrossRef]
- Nikodinoska, D.; Käso, M.; Müsgens, F. Solar and wind power generation forecasts using elastic net in time-varying forecast combinations. Appl. Energy 2022, 306, 117983. [Google Scholar] [CrossRef]
- Liang, J.; Tang, W. Ultra-Short-Term Spatiotemporal Forecasting of Renewable Resources: An Attention Temporal Convolutional Network Based Approach. IEEE Trans. Smart Grid 2022, 13, 3798–3812. [Google Scholar] [CrossRef]
- Lu, P.; Ye, L.; Tang, Y.; Zhao, Y.; Zhong, W.; Qu, Y.; Zhai, B. Ultra-short-term combined prediction approach based on kernel function switch mechanism. Renew. Energy 2021, 164, 842–866. [Google Scholar] [CrossRef]
- Wu, Q.; Guan, F.; Lv, C.; Huang, Y. Ultra-short-term multi-step wind power forecasting based on CNN-LSTM. IET Renew. Power Gener. 2021, 15, 1019–1029. [Google Scholar] [CrossRef]
- Ahmad, T.; Zhang, D. A data-driven deep sequence-to-sequence long-short memory method along with a gated recurrent neural network for wind power forecasting. Energy 2022, 239, 122109. [Google Scholar] [CrossRef]
- Lv, L.; Wu, Z.; Zhang, L.; Gupta, B.B.; Tian, Z. An edge-AI based forecasting approach for improving smart microgrid efficiency. IEEE Trans. Ind. Inform. 2022, 18, 7946–7954. [Google Scholar] [CrossRef]
- Ding, D.; Zhang, M.; Pan, X.; Yang, M.; He, X. Modeling extreme events in time series prediction. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019; pp. 1114–1122. [Google Scholar]
- He, M.; Yang, L.; Zhang, J.; Vittal, V. A spatio-temporal analysis approach for short-term forecast of wind farm generation. IEEE Trans. Power Syst. 2014, 29, 1611–1622. [Google Scholar] [CrossRef]
- Yang, L.; He, M.; Zhang, J.; Vittal, V. Support-vector-machine-enhanced markov model for short-term wind power forecast. IEEE Trans. Sustain. Energy 2015, 6, 791–799. [Google Scholar] [CrossRef]
- Liu, Y.; Ghasemkhani, A.; Yang, L.; Zhao, J.; Zhang, J.; Vittal, V. Seasonal Self-evolving Neural Networks Based Short-term Wind Farm Generation Forecast. In Proceedings of the 2020 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm), Virtual Conference, 11–13 November 2020; pp. 1–6. [Google Scholar]
- Stanley, K.O.; Miikkulainen, R. Evolving neural networks through augmenting topologies. Evol. Comput. 2002, 10, 99–127. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Feng, C.; Hodge, B.M. A Regime-Switching Spatio-temporal GARCH Method for Short-Term Wind Forecasting. In Proceedings of the 2022 IEEE Power & Energy Society General Meeting (PESGM), Denver, CO, USA, 17–21 July 2022; pp. 1–6. [Google Scholar]
- Chang, G.; Lu, H.; Chang, Y.; Lee, Y. An improved neural network-based approach for short-term wind speed and power forecast. Renew. Energy 2017, 105, 301–311. [Google Scholar] [CrossRef]
- Shi, X.; Lei, X.; Huang, Q.; Huang, S.; Ren, K.; Hu, Y. Hourly day-ahead wind power prediction using the hybrid model of variational model decomposition and long short-term memory. Energies 2018, 11, 3227. [Google Scholar] [CrossRef] [Green Version]
- Grimshaw, S.D. Computing maximum likelihood estimates for the generalized Pareto distribution. Technometrics 1993, 35, 185–191. [Google Scholar] [CrossRef]
- Bommier, E. Peaks-over-Threshold Modelling of Environmental Data; Department of Mathematics, Uppsala University: Uppsala, Sweden, 2014. [Google Scholar]
- Mitchell, M. An Introduction to Genetic Algorithms; MIT Press: Cambridge, MA, USA, 1998. [Google Scholar]
- Radcliffe, N.J. Genetic set recombination and its application to neural network topology optimisation. Neural Comput. Appl. 1993, 1, 67–90. [Google Scholar] [CrossRef]
- Montana, D.J.; Davis, L. Training Feedforward Neural Networks Using Genetic Algorithms. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), Detroit, MI, USA, 20–25 August 1989; Volume 89, pp. 762–767. [Google Scholar]
- Snoek, J.; Larochelle, H.; Adams, R.P. Practical bayesian optimization of machine learning algorithms. In Proceedings of the Advances in Neural Information Processing Systems, Stateline, NV, USA, 3–6 December 2012; pp. 2951–2959. [Google Scholar]
- Yang, L.; He, M.; Vittal, V.; Zhang, J. Stochastic Optimization-Based Economic Dispatch and Interruptible Load Management With Increased Wind Penetration. IEEE Trans. Smart Grid 2016, 7, 730–739. [Google Scholar] [CrossRef]
Error | AR | MC | SVM-MC | NEAT | SNEAT | LSTM | SSEN | ANN | DSN |
---|---|---|---|---|---|---|---|---|---|
MAE | 2.441 | 2.413 | 2.214 | 1.734 | 1.778 | 1.799 | 1.704 | 1.826 | 1.661 |
RMSE | 3.974 | 3.524 | 3.342 | 3.030 | 3.074 | 3.072 | 3.023 | 2.993 | 2.996 |
Error | AR | MC | SVM-MC | NEAT | SNEAT | LSTM | SSEN | ANN | DSN |
---|---|---|---|---|---|---|---|---|---|
MAE | 2.945 | 2.856 | 2.657 | 2.363 | 2.416 | 2.469 | 2.320 | 2.426 | 2.288 |
RMSE | 4.403 | 3.837 | 3.654 | 3.593 | 3.667 | 3.679 | 3.534 | 3.580 | 3.518 |
Model | 30 min | 40 min | 50 min | 60 min |
---|---|---|---|---|
AR | 4.837 | 6.516 | 8.160 | 9.624 |
MC | 4.733 | 6.233 | 7.551 | 8.727 |
SVM-MC | 4.733 | 6.233 | 7.550 | 8.727 |
NEAT | 4.804 | 5.851 | 6.939 | 7.640 |
SNEAT | 5.064 | 6.322 | 7.681 | 8.277 |
LSTM | 4.664 | 6.517 | 7.681 | 8.257 |
SSEN | 4.852 | 5.970 | 7.095 | 7.862 |
ANN | 4.755 | 5.846 | 6.580 | 7.491 |
DSN | 3.755 | 4.220 | 4.746 | 5.069 |
Model | 30 min | 40 min | 50 min | 60 min |
---|---|---|---|---|
AR | 6.991 | 8.871 | 11.883 | 11.996 |
MC | 6.592 | 8.426 | 10.654 | 11.091 |
SVM-MC | 6.591 | 8.425 | 10.654 | 11.091 |
NEAT | 7.255 | 8.379 | 10.366 | 10.274 |
SNEAT | 7.427 | 8.612 | 10.471 | 10.385 |
LSTM | 7.025 | 9.255 | 11.558 | 10.915 |
SSEN | 7.092 | 8.182 | 9.727 | 9.849 |
ANN | 7.109 | 8.087 | 9.384 | 9.627 |
DSN | 5.420 | 5.595 | 7.023 | 6.197 |
Model | 10 min | 30 min | 40 min | 50 min | 60 min |
---|---|---|---|---|---|
NEAT | 1.628 | 4.595 | 5.761 | 6.451 | 7.371 |
SNEAT | 1.601 | 4.655 | 5.773 | 6.751 | 7.512 |
LSTM | 2.000 | 4.644 | 5.574 | 6.947 | 7.309 |
SSEN | 1.584 | 4.614 | 5.776 | 6.704 | 7.464 |
ANN | 1.651 | 4.84 | 5.844 | 6.756 | 7.755 |
DSN | 1.611 | 3.598 | 4.120 | 4.303 | 4.725 |
Model | 10 min | 30 min | 40 min | 50 min | 60 min |
---|---|---|---|---|---|
NEAT | 2.296 | 7.048 | 8.123 | 9.585 | 9.897 |
SNEAT | 2.234 | 6.995 | 7.952 | 9.632 | 9.743 |
LSTM | 2.719 | 6.944 | 7.781 | 9.799 | 9.290 |
SSEN | 2.186 | 6.845 | 7.975 | 9.447 | 9.513 |
ANN | 2.276 | 7.192 | 8.010 | 9.739 | 9.941 |
DSN | 2.276 | 5.137 | 5.445 | 5.776 | 6.018 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Ghasemkhani, A.; Yang, L. Drifting Streaming Peaks-Over-Threshold-Enhanced Self-Evolving Neural Networks for Short-Term Wind Farm Generation Forecast. Future Internet 2023, 15, 17. https://doi.org/10.3390/fi15010017
Liu Y, Ghasemkhani A, Yang L. Drifting Streaming Peaks-Over-Threshold-Enhanced Self-Evolving Neural Networks for Short-Term Wind Farm Generation Forecast. Future Internet. 2023; 15(1):17. https://doi.org/10.3390/fi15010017
Chicago/Turabian StyleLiu, Yunchuan, Amir Ghasemkhani, and Lei Yang. 2023. "Drifting Streaming Peaks-Over-Threshold-Enhanced Self-Evolving Neural Networks for Short-Term Wind Farm Generation Forecast" Future Internet 15, no. 1: 17. https://doi.org/10.3390/fi15010017
APA StyleLiu, Y., Ghasemkhani, A., & Yang, L. (2023). Drifting Streaming Peaks-Over-Threshold-Enhanced Self-Evolving Neural Networks for Short-Term Wind Farm Generation Forecast. Future Internet, 15(1), 17. https://doi.org/10.3390/fi15010017