Consumer’s Attitude towards Display Google Ads
Abstract
:1. Introduction
1.1. Literature Review
1.2. Hypotheses Development and Research Model
1.2.1. Display Google Ads Creativity: Ad Relevance
1.2.2. Display Google Ads Creativity: Ad Originality
1.2.3. Display Google Ads Credibility
1.2.4. Prior Experience with Display Google Ads
1.2.5. Consumer Attitude towards Display Google ads
1.3. Study Model
2. Materials and Methods
2.1. Quantitative Data Collection
2.2. Survey Design
2.3. Data Collection Procedures and Sample Characteristics
3. Results
3.1. Reliability Test and Validation of Model
3.1.1. Exploratory of Factorial Analysis (EFA)
3.1.2. Reliability Analysis
3.1.3. Validation of Model of Discriminant Validity
3.2. Testing Hypotheses
4. Discussion
Conclusions about the Research Hypotheses; Intention to Click
5. Conclusions
5.1. Future Research
5.2. Theoretical Implications
5.3. Practical Implications
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hirvijärvi, A.F. Viral Marketing and Content Forwarding on Social Media Outlining the Key Elements behind Successful Viral Content Creation. Master’s Thesis, Arcada Business School, University of Applied Sciences, Helsinki, Finland, 2017; pp. 1–56. [Google Scholar]
- Tejedor, S.; Cervi, L.; Pérez-Escoda, A.; Tusa, F. Smartphone Usage among Students during COVID-19 Pandemic in Spain, Italy and Ecuador. In Proceedings of the Eight International Conference on Technological Ecosystems for Enhancing Multiculturality, Salamanca, Spain, 21–23 October 2020; pp. 571–576. [Google Scholar]
- Cervi, L.; Pérez Tornero, J.M. Changing the Policy Paradigm for the Promotion of Digital and Media Literacy. The European Challenge. In Pursuing Digital Literacy in Compulsory Education: Reconstructing the School to Provide Digital Literacy for All; Drenoyianni, H., Stergioulas, L.K., Eds.; International Academic Publishers: New York, NY, USA, 2011; pp. 50–70. [Google Scholar]
- Subrahmanyam, K.; Reich, S.M.; Waechter, N.; Espinoza, G. Online and Offline Social Networks: Use of Social Networking Sites by Emerging Adults. J. Appl. Dev. Psychol. 2008, 29, 420–433. [Google Scholar] [CrossRef]
- Li, F.; Larimo, J.; Leonidou, L.C. Social Media Marketing Strategy: Definition, Conceptualization, Taxonomy, Validation, and Future Agenda. J. Acad. Mark. Sci. 2021, 49, 51–70. [Google Scholar] [CrossRef]
- Anant Saxena, U.K. Advertising on Social Network Sites (SNS’s): A Structural Equation Modeling Approach. Vis. J. Bus. Perspect. 2013, 17, 17–25. [Google Scholar] [CrossRef]
- Simon, F.; Tossan, V. Does Brand-Consumer Social Sharing Matter? A Relational Framework of Customer Engagement to Brand-Hosted Social Media. J. Bus. Res. 2018, 85, 175–184. [Google Scholar] [CrossRef]
- Zhu, Y.Q.; Chen, H.G. Social Media and Human Need Satisfaction: Implications for Social Media Marketing. Bus. Horiz. 2015, 58, 335–345. [Google Scholar] [CrossRef]
- Osinga, E.C.; Zevenbergen, M.; van Zuijlen, M.W.G. Do Mobile Banner Ads Increase Sales? Yes, in the Offline Channel. Int. J. Res. Mark. 2019, 36, 439–453. [Google Scholar] [CrossRef]
- Sharma, D.; Gupta, A.; Mateen, A.; Pratap, S. Making Sense of the Changing Face of Google’s Search Engine Results Page: An Advertiser’s Perspective. J. Inf. Commun. Ethics Soc. 2018, 16, 90–107. [Google Scholar] [CrossRef] [Green Version]
- Liang, J.; Yang, H.; Gao, J.; Ge, S.; Qu, B. MOPSO-Based CNN for Keyword Selection on Google Ads. IEEE Access 2019, 7, 125387–125400. [Google Scholar] [CrossRef]
- Usman, M. A Study of Perception and Engagement as a Response of Consumers Towards Ads on Facebook and Google Search Engine. Arch. Bus. Rev. 2020, 8, 102–112. [Google Scholar] [CrossRef]
- Nancy, K.; Busolo, H.; Chepkilot, R. Impact of Advertising through Online Media Channels of Facebook, Google Ads & Youtube on Consumers’ Attitude; a Study of Consumers in Selected Profitmaking Banks in Nairobi County, Kenya. Int. J. Econ. Commer. Manag. 2020, VIII, 115–131. [Google Scholar]
- Wenning, S. Use and Effect of Google Ads Effect of Google Ads for Marketing Success. Int. J. Manag. Humanit. 2021, 0913, 23–26. [Google Scholar] [CrossRef]
- Sijabat, B. Analisis Keputusan Membeli Berbasis Brand Awareness Sebagai Impak Google Ads Dan Facebook Ads (Kajian Pelanggan Lazada). Syntax. Idea 2021, 3, 444–464. [Google Scholar] [CrossRef]
- Swensson, B.B. Attitudes towards Digital Traces Exploited by Meta and Google to Generate Targeted Ads. Master’s Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2022. [Google Scholar]
- Giraldo-Romero, Y.-I.; Pérez-de-los-Cobos-Agüero, C.; Muñoz-Leiva, F.; Higueras-Castillo, E.; Liébana-Cabanillas, F. Influence of Regulatory Fit Theory on Persuasion from Google Ads: An Eye Tracking Study. J. Theor. Appl. Electron. Commer. Res. 2021, 16, 1165–1185. [Google Scholar] [CrossRef]
- Junttila, A. Google Ads Search Engine Marketing. Starter’s Guide for Companies. Bachelor Thesis, Savonia University of Applied Sciences, Kuopio, Finland, 2022. [Google Scholar]
- Broockman, D.E.; Green, D.P. Do Online Advertisements Increase Political Candidates’ Name Recognition or Favorability? Evidence from Randomized Field Experiments. Polit. Behav. 2014, 36, 263–289. [Google Scholar] [CrossRef] [Green Version]
- Ghose, A.; Yang, S. Modeling Cross-Category Purchases in Sponsored Search Advertising. SSRN Electron. J. 2011, 2011, 1312864. [Google Scholar] [CrossRef] [Green Version]
- Gupta, A.; Mateen, A. Exploring the Factors Affecting Sponsored Search Ad Performance. Mark. Intell. Plan. 2014, 32, 586–599. [Google Scholar] [CrossRef]
- Al-Khasawneh, M.H. An Exploration of Consumer Response Towards Sponsored Search Advertizing (SSA) from a Consumer Behaviour Perspective. Ph.D. Thesis, Griffith University, Brisbane, Austrialia, 2009. [Google Scholar]
- Jansen, B.J.; Sobel, K.; Zhang, M. The Brand Effect of Key Phrases and Advertisements in Sponsored Search. Int. J. Electron. Commer. 2011, 16, 77–106. [Google Scholar] [CrossRef]
- Lin, C.A.; Kim, T. Predicting User Response to Sponsored Advertising on Social Media via the Technology Acceptance Model. Comput. Human Behav. 2016, 64, 710–718. [Google Scholar] [CrossRef]
- Lobo, A.; Meyer, D.; Chester, Y. Evaluating Consumer Response Associated with Sponsorship of Major Sporting Events in Australia. Sport. Bus. Manag. Int. J. 2014, 4, 52–70. [Google Scholar] [CrossRef]
- Chan, D.X.; Yuan, Y.; Koehler, J.; Kumar, D. Incremental Clicks: The Impact of Search Advertising. J. Advert. Res. 2011, 51, 643–647. [Google Scholar] [CrossRef]
- Dembczynski, K.; Kotlowski, W.; Weiss, D. Predicting Ads’ Click-Through Rate with Decision Rules. In Proceedings of the Workshop on Targeting and Ranking in Online Advertising WWW’08, Beijing, China, 21–25 April 2008; Volume 8, pp. 1–8. [Google Scholar]
- Gordon, M.E.; Lima-Turner, K. De Consumer Attitudes towards A Social Contract Perspective. Int. Mark. Rev. 2013, 14, 362–375. [Google Scholar] [CrossRef]
- Chatterjee, P.; Hoffman, D.L.; Novak, T.P. Modeling the Clickstream: Implications for Web-Based Advertising Efforts. Mark. Sci. 2003, 22, 520–542. [Google Scholar] [CrossRef] [Green Version]
- Tudoran, A.A. Why Do Internet Consumers Block Ads? New Evidence from Consumer Opinion Mining and Sentiment Analysis. Internet Res. 2019, 29, 144–166. [Google Scholar] [CrossRef]
- Hillard, D.; Schroedl, S.; Manavoglu, E.; Raghavan, H.; Leggetter, C. Improving Ad Relevance in Sponsored Search. In Proceedings of the Third ACM International Conference on Web Search and Data Mining, New York, NY, USA, 4–6 February 2010; Volume 27, pp. 361–370. [Google Scholar]
- Jankowski, J.; Kazienko, P.; Wątróbski, J.; Lewandowska, A.; Ziemba, P.; Zioło, M. Fuzzy Multi-Objective Modeling of Effectiveness and User Experience in Online Advertising. Expert Syst. Appl. 2016, 65, 315–331. [Google Scholar] [CrossRef]
- Maniu, A.-I.; Zaharie, M.-M. Advertising Creativity—The Right Balance between Surprise, Medium, and Message Relevance. Procedia Econ. Financ. 2014, 15, 1165–1172. [Google Scholar] [CrossRef] [Green Version]
- Reinartz, W.; Saffert, P. CREATIVITY Creativity in Advertising: When It Works and When It Doesn’t. Harv. Bus. Rev. 2004, 91, 106–111. [Google Scholar]
- Rejón-Guardia, F.; Martínez-López, F.J. Online Advertising Intrusiveness and Consumers’ Avoidance Behaviors. In Handbook of Strategic e-Business Management; Springer: Berlin/Heidelberg, Germany, 2014; ISBN 9783642397479. [Google Scholar]
- Goodrich, K.; Schiller, S.Z.; Galletta, D. Consumer Reactions to Intrusiveness of Online-Video Advertisements Do Length, Informativeness, and Humor Help (or Hinder) Marketing Outcomes? J. Advert. Res. 2015, 55, 37–50. [Google Scholar] [CrossRef]
- Ma, N.; Ispir, M.; Li, Y.; Yang, Y.; Chen, Z.; Cheng, D.Z.; Nie, L.; Barman, K. An Online Multi-Task Learning Framework for Google Feed Ads Auction Models. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, District of Columbia, DC, USA, 14–18 August 2022; pp. 3477–3485. [Google Scholar]
- Al-Khasawneh, M.H. A Development and Empirical Validation of the Consumer Response Towards Sponsored Search Advertising (SSA) Model. Glob. J. Manag. Bus. Res. 2012, 12, 41–53. [Google Scholar]
- Chang, K.C.; Hsu, C.L.; Chen, M.C.; Kuo, N. Te How a Branded Website Creates Customer Purchase Intentions. Total Qual. Manag. Bus. Excell. 2019, 30, 422–446. [Google Scholar] [CrossRef]
- Calçada, M.C. How Millennials Perceive Influencers and Its Impact on Purchase Intentions. Ph.D. Thesis, Universidade Católica Portuguesa, Lisbon, Portugal, 2019. [Google Scholar]
- Khalid, R.; Tehreemyasmeen, T. Moderating Role of Credibility and Ad Liking Between Online Advertisement and Consumer Buying Behavior of University Students of Pakistan. ASEAN Mark. J. 2019, 10, 127–136. [Google Scholar]
- Kelly, L.; Kerr, G.; Drennan, J. Avoidance of Advertising in Social Networking Sites. J. Interact. Advert. 2010, 10, 16–27. [Google Scholar] [CrossRef]
- Watanabe, S.; Hori, T.; Karita, S.; Hayashi, T.; Nishitoba, J.; Unno, Y.; Soplin, N.E.Y.; Heymann, J.; Wiesner, M.; Chen, N.; et al. ESPNet: End-to-End Speech Processing Toolkit. In Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH, Hyderabad, India, 2–6 September 2018. [Google Scholar] [CrossRef] [Green Version]
- Chinomona, E. Modelling the Drivers of Impulsive Buying Behaviour: A Case of South Africa. J. Econ. Behav. Stud. 2019, 11, 27–38. [Google Scholar] [CrossRef]
- Ling, K.C.; Chai, L.T.; Piew, T.H. The Effects of Shopping Orientations, Online Trust and Prior Online Purchase Experience toward Customers’ Online Purchase Intention. Int. Bus. Res. 2010, 3, 63–76. [Google Scholar] [CrossRef] [Green Version]
- Sallam, M.A.A. The Impact of Source Credibility on Saudi Consumer’s Attitude toward Print Advertisement: The Moderating Role of Brand Familiarity. Int. J. Mark. Stud. 2011, 3, 63–77. [Google Scholar] [CrossRef]
- Shekhawat, N.; Chauhan, A.; Muthiah, S.B. Algorithmic Privacy and Gender Bias Issues in Google Ad Settings. In Proceedings of the 10th ACM Conference on Web Science, New York, NY, USA, 27–30 May 2018; pp. 281–285. [Google Scholar]
- Rejón-Guardia, F.; Martínez-López, F.J. An Integrated Review of the Efficacy of Internet Advertising: Concrete Approaches to the Banner Ad Format and the Context of Social Networks. In Handbook of Strategic e-Business Management; Springer: Berlin/Heidelberg, Germany, 2014; ISBN 9783642397479. [Google Scholar]
- Alkunsol, W.H.; Sharabati, A.A.A.; AlSalhi, N.A.; El-Tamimi, H.S. Lean Six Sigma Effect on Jordanian Pharmaceutical Industry’s Performance. Int. J. Lean Six Sigma 2019, 10, 23–43. [Google Scholar] [CrossRef]
- Yilmaz, K. Comparison of Quantitative and Qualitative Research Traditions: Epistemological, Theoretical, and Methodological Differences. Eur. J. Educ. 2013, 48, 311–325. [Google Scholar] [CrossRef]
- Goertzen, M.J. Doing Quantitative Research in Education with SPSS. Libr. Technol. Rep. 2017, 53, 12–18. [Google Scholar] [CrossRef]
- Behrend, T.S.; Sharek, D.J.; Meade, A.W.; Wiebe, E.N. The Viability of Crowdsourcing for Survey Research. Behav. Res. Methods 2011, 43, 800–813. [Google Scholar] [CrossRef]
- Evans, J.R.; Mathur, A. The Value of Online Surveys: A Look Back and a Look Ahead. Internet Res. 2018, 28, 854–887. [Google Scholar] [CrossRef] [Green Version]
- Krosnick, J.A.; Presser, S. Question and Questionnaire Design. In The Palgrave Handbook of Survey Research; Palgrave Macmillan: London, UK, 2018; Volume 9, pp. 439–455. ISBN 9781848552241. [Google Scholar]
- Mercanti-Guérin, M. Consumers’ Perception of the Creativity of Advertisements: Development of a Valid Measurement Scale. Rech. Appl. Mark. (Engl. Ed.) 2008, 23, 97–118. [Google Scholar] [CrossRef]
- Li, W.; Huang, Z. The Research of Influence Factors of Online Behavioral Advertising Avoidance. Am. J. Ind. Bus. Manag. 2016, 6, 947–957. [Google Scholar] [CrossRef]
- Rauniar, R.; Rawski, G.; Yang, J.; Johnson, B. Technology Acceptance Model (TAM) and Social Media Usage: An Empirical Study on Facebook. J. Enterp. Inf. Manag. 2014, 27, 6–30. [Google Scholar] [CrossRef] [Green Version]
- Joshi, A.; Kale, S.; Chandel, S.; Pal, D. Likert Scale: Explored and Explained. Br. J. Appl. Sci. Technol. 2015, 7, 396–403. [Google Scholar] [CrossRef]
- Van Der Eijk, C.; Rose, J. Risky Business: Factor Analysis of Survey Data—Assessing the Probability of Incorrect Dimensionalisation. PLoS ONE 2015, 10, e0118900. [Google Scholar] [CrossRef] [Green Version]
- Hair, J.F.; Sarstedt, M.; Hopkins, L.; Kuppelwieser, V.G. Partial Least Squares Structural Equation Modeling (PLS-SEM): An Emerging Tool in Business Research. Eur. Bus. Rev. 2014, 26, 106–121. [Google Scholar] [CrossRef]
- Sekaran, U.; Bougie, R. Research Methods For Business: A Skill-Building Approach; John and Willey and Sons: Hoboken, NJ, USA, 2016; ISBN 9781119942252. [Google Scholar]
- Field, A. Discovering Statistics Using IBM SPSS Statistics, 4th ed.; SAGE Publications: Thousand Oaks, CA, USA, 2013; ISBN 0761944516. [Google Scholar]
- Samuels, P. Advice on Exploratory Factor Analysis; Centre for Academic Success, Birmingham City University: Birmingham, UK, 2017; Available online: https://www.open-acess.bcu.ac.uk/6076/1/__staff_shares_stoage%20500mb_Lbrary_ID112668_Stats%20Advsory_New%20Statistics%20Workshops_18ExploratoryFactorAnalysis_ExploratoryFactorAnalysis4.pdf (accessed on 11 February 2023).
- Guadagnoli, E.; Velicer, W.F. Relation of Sample Size to the Stability of Component Patterns. Psychol. Bull. 1988, 103, 265–275. [Google Scholar] [CrossRef]
- Green, C.E.; Chen, C.E.; Helms, J.E.; Henze, K.T. Recent Reliability Reporting Practices in Psychological Assessment: Recognizing the People Behind the Data. Psychol. Assess. 2011, 23, 656–669. [Google Scholar] [CrossRef] [Green Version]
- Wong, K.K.K.-K. Partial Least Squares Structural Equation Modeling (PLS-SEM) Techniques Using SmartPLS. Mark. Bull. 2013, 24, 1–32. [Google Scholar]
- Hair, J.F.; Ringle, C.M.; Sarstedt, M. PLS-SEM: Indeed a Silver Bullet. J. Mark. Theory Pract. 2011, 19, 139–152. [Google Scholar] [CrossRef]
- Couchman, P.K.; Fulop, L. Building Trust in Cross-Sector R & D Collaborations: Exploring the Role of Credible Commitments. In Proceedings of the European Group for Organizational Studies (EGOS) 22nd Colloquium Trust within and across Boundaries, Bergen, Norway, 6–8 July 2006; pp. 1–31. [Google Scholar]
- Barclay, D.; Thompson, R.; dan Higgins, C. The Partial Least Squares (PLS) Approach to Causal Modeling: Personal Computer Adoption and Use an Illustration. Technol. Stud. 1995, 2, 285–309. [Google Scholar]
- Neill, J. Writing up a Factor Analysis. Creative Commons Attribution 2.5 Australia. 2008. Available online: https://creativecommons.org/licenses/by/2.5/au/ (accessed on 11 February 2023).
- Kaiser, H.F.; Rice, J.; Little, J.; Mark, I. Educational and Psychological Measurement. Am. Psychol. Assoc. 1974, 34, 111–117. [Google Scholar] [CrossRef]
- Sharabati, A.-A.A. Lean Operations and Competitive Advantage in the Pharmaceutical Industry. Int. J. Serv. Oper. Manag. 2021, 1, 1–23. [Google Scholar] [CrossRef]
- Tabachnick, B.G.; Fidell, L.S.; Ullman, J.B. Using Multivariate Statistics, 6th ed.; Pearson: London, UK, 2013. [Google Scholar]
- Hair, J.F. Multivariate Data Analysis: An Overview. In International Encyclopedia of Statistical Science; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Fornell, C.; Larcker, D.F. Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Yang, B.; Kim, Y.; Yoo, C. The Integrated Mobile Advertising Model: The Effects of Technology- and Emotion-Based Evaluations. J. Bus. Res. 2013, 66, 1345–1352. [Google Scholar] [CrossRef]
- Nyheim, P.; Xu, S.; Zhang, L.; Mattila, A.S. Predictors of Avoidance towards Personalization of Restaurant Smartphone Advertising: A Study from the Millennials’ Perspective. J. Hosp. Tour. Technol. 2015, 6, 145–159. [Google Scholar] [CrossRef]
- Hussain, D.; Lasage, H. Online Video Advertisement Avoidance: Can Interactivity Help? J. Appl. Bus. Res. 2014, 30, 43–49. [Google Scholar] [CrossRef] [Green Version]
- Sasser, S.L.; Koslow, S. The Creative Advertising Development Process: Is Organizational Politics a Recipe for Disaster or a Dysfunctional Antidote? Marketing Creativity View Project. In New Trends in Advertising Research; Edições Sílabo: Lisbon, Portugal, 2008; pp. 103–119. [Google Scholar]
- Smith, R.E.; Yang, X. Toward a General Theory of Creativity in Advertising: Examining the Role of Divergence. Mark. Theory 2004, 4, 31–58. [Google Scholar] [CrossRef] [Green Version]
- Teng, L.; Laroche, M.; Zhu, H. The Effects of Multiple Ads and Multiple Brands on Consumer Attitude and Purchase Behavior. J. Consum. Mark. 2007, 24, 27–35. [Google Scholar] [CrossRef] [Green Version]
- Rajaobelina, L.; Lacroix, C.; St-Onge, A. Does Experiential Advertising Impact Credibility? Int. J. Bank Mark. 2019, 37, 171–191. [Google Scholar] [CrossRef]
Gender | Frequency | Percent | Valid Percent | Cumulative Percent |
---|---|---|---|---|
Male | 162 | 45.3 | 45.3 | 45.3 |
Female | 196 | 54.7 | 54.7 | 100.0 |
Total | 432 | 100.0 | 100.0 | |
Age | Frequency | Percent | Valid Percent | Cumulative Percent |
16 years or under | 2 | 0.6 | 0.6 | 0.6 |
17–24 | 280 | 78.2 | 78.2 | 78.8 |
25–34 | 44 | 12.3 | 12.3 | 91.1 |
35–44 | 6 | 1.7 | 1.7 | 92.7 |
44–54 | 8 | 2.2 | 2.2 | 95.0 |
55 years or above | 18 | 5.0 | 5.0 | 100.0 |
Total | 432 | 100.0 | 100.0 | |
Educational Level | Frequency | Percent | Valid Percent | Cumulative Percent |
High School Student | 34 | 9.5 | 9.5 | 9.5 |
High School Diploma | 32 | 8.9 | 8.9 | 18.4 |
Bachelor’s Degree | 264 | 73.7 | 73.7 | 92.2 |
Master’s Degree | 20 | 5.6 | 5.6 | 97.8 |
PhD | 8 | 2.2 | 2.2 | 100.0 |
Total | 432 | 100.0 | 100.0 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | |||
---|---|---|---|---|---|---|---|---|---|
1 | Credibility | C1 | 0.741 | ||||||
C2 | 0.795 | ||||||||
C3 | 0.814 | ||||||||
C4 | 0.921 | ||||||||
2 | Relevance | R1 | 0.674 | ||||||
R2 | 0.774 | ||||||||
R3 | 0.769 | ||||||||
R4 | 0.851 | ||||||||
3 | Originality | O1 | 0.877 | ||||||
O2 | 0.881 | ||||||||
O3 | 0.863 | ||||||||
O4 | 0.901 | ||||||||
O5 | 0.931 | ||||||||
4 | Avoidance | A1 | 0.578 | ||||||
A2 | 0.914 | ||||||||
A4 | 0.796 | ||||||||
A6 | 0.687 | ||||||||
A7 | 0.814 | ||||||||
5 | Prior Experience | PE1 | 0.841 | ||||||
PE3 | 0.882 | ||||||||
PE5 | 0.934 | ||||||||
PE6 | 0.871 | ||||||||
PE7 | 0.572 | ||||||||
6 | Customer’s Attitude | CA1 | 0.881 | ||||||
CA2 | 0.841 | ||||||||
CA3 | 0.942 | ||||||||
CA4 | 0.742 | ||||||||
7 | Intention to click | ITC1 | 0.912 | ||||||
ITC2 | 0.907 | ||||||||
ITC3 | 0.982 |
Credibility | FL | (AVE) | (CR) | (α) | Mean | Standard Deviation |
---|---|---|---|---|---|---|
C1 | 0.741 | 0.821 | 0.841 | 0.802 | 2.866 | 0.661 |
C2 | 0.795 | |||||
C3 | 0.814 | |||||
C4 | 0.921 | |||||
Relevance | FL | (AVE) | (CR) | (α) | Mean | Standard deviation |
R1 | 0.674 | 0.774 | 0.801 | 0.798 | 3.049 | 0.582 |
R2 | 0.774 | |||||
R3 | 0.769 | |||||
R4 | 0.851 | |||||
Originality | FL | (AVE) | (CR) | (α) | Mean | Standard deviation |
O1 | 0.877 | 0.782 | 0.820 | 0.798 | 3.193 | 0.926 |
O2 | 0.881 | |||||
O3 | 0.863 | |||||
O4 | 0.901 | |||||
O5 | 0.931 | |||||
Avoidance | FL | (AVE) | (CR) | (α) | Mean | Standard deviation |
A1 | 0.578 | 0.776 | 0.869 | 0.847 | 3.912 | 0.725 |
A2 | 0.914 | |||||
A3 | 0.796 | |||||
A4 | 0.687 | |||||
Prior Experience | FL | (AVE) | (CR) | (α) | Mean | Standard deviation |
PE1 | 0.882 | 0.697 | 0.809 | 0.714 | 3.071 | 0.395 |
PE2 | 0.934 | |||||
PE3 | 0.871 | |||||
Consumer’s Attitudes toward | FL | (AVE) | (CR) | (α) | Mean | Standard deviation |
CA1 | 0.881 | 0.887 | 0.932 | 0.907 | 2.714 | 0.807 |
CA2 | 0.841 | |||||
CA3 | 0.942 | |||||
CA4 | 0.742 | |||||
Intention to Click | FL | (AVE) | (CR) | (α) | Mean | Standard deviation |
ITC1 | 0.912 | 0.932 | 0.971 | 0.927 | 2.885 | 0.905 |
ITC2 | 0.907 | |||||
ITC3 | 0.982 | |||||
Kaiser–Meyer–Olkine = 0.887; Sig = 0.002; Bartlett = 178.958; Sig = 0.001 |
R | O | PE | C | CA | ITC | A | |
---|---|---|---|---|---|---|---|
R | 0.879 | ||||||
O | 0.246 | 0.884 | |||||
PE | 0.064 | 0.076 | 0.834 | ||||
C | 0.182 | 0.284 | 0.067 | 0.906 | |||
CA | 0.135 | 0.216 | 0.063 | 0.117 | 0.941 | ||
ITC | 0.190 | 0.393 | 0.053 | 0.178 | 0.122 | 0.965 | |
A | −0.041 | −0.055 | −0.033 | −0.164 | −0.332 | −0.306 | 0.880 |
Hypotheses | Path Coefficients (β) | Z-Value | f2 | p-Value | R2 | Decision |
---|---|---|---|---|---|---|
PE ➔ A | 0.085 | 1.220 | -------- | p > 0.05 =0.222 | 0.129 | Rejected |
O ➔ A | −0.270 | −3.866 | −0.208 Moderate | p < 0.05 =0.000 | Accepted | |
R ➔ A | −0.221 | −3.156 | −0.270 Moderate | p < 0.05 =0.002 | Accepted | |
PE ➔ CA | 0.103 | 1.636 | -------- | p > 0.05 =0.102 | 0.394 | Rejected |
O ➔ CA | 0.222 | 3.520 | 0.171 Moderate | p < 0.05 =0.000 | Accepted | |
R ➔ CA | 0.250 | 3.971 | 0.306 Moderate | p < 0.05 =0.000 | Accepted | |
C ➔ CA | 0.414 | 6.567 | 0.447 Substantial | p < 0.05 =0.000 | Accepted | |
CA ➔ ITC | 0.727 | 14.132 | 0.861 Substantial | p < 0.05 =0.000 | 0.529 | Accepted |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Khasawneh, M.; Sharabati, A.-A.A.; Al-Haddad, S.; Al-Daher, R.; Hammouri, S.; Shaqman, S. Consumer’s Attitude towards Display Google Ads. Future Internet 2023, 15, 145. https://doi.org/10.3390/fi15040145
Al Khasawneh M, Sharabati A-AA, Al-Haddad S, Al-Daher R, Hammouri S, Shaqman S. Consumer’s Attitude towards Display Google Ads. Future Internet. 2023; 15(4):145. https://doi.org/10.3390/fi15040145
Chicago/Turabian StyleAl Khasawneh, Mohammad, Abdel-Aziz Ahmad Sharabati, Shafig Al-Haddad, Rania Al-Daher, Sarah Hammouri, and Sima Shaqman. 2023. "Consumer’s Attitude towards Display Google Ads" Future Internet 15, no. 4: 145. https://doi.org/10.3390/fi15040145
APA StyleAl Khasawneh, M., Sharabati, A. -A. A., Al-Haddad, S., Al-Daher, R., Hammouri, S., & Shaqman, S. (2023). Consumer’s Attitude towards Display Google Ads. Future Internet, 15(4), 145. https://doi.org/10.3390/fi15040145