LoRa Communication Using TVWS Frequencies: Range and Data Rate
Abstract
:1. Introduction
- We study and investigate the maximum range and data rate provided by TVWS-based LoRa under different scenarios such as free space, indoors and outdoors: urban and rural.
- A new path-loss model for TVWS-based LoRa is proposed and compared with conventional path-loss models and other path-loss models in literature for different scenarios.
- The impact of TVWS-based LoRa compared to ISM-based and 2.4 GHz-based LoRa communication is discussed and shows that TVWS is the promising candidate for better and long-distance coverage.
2. LoRa, TVWS, and Related Work
3. LoRa Radio Propagation Model
3.1. Propagation Models
3.2. Proposed LoRa over TVWS—Path-Loss Model (LoRaT-PLM)
4. Communication Range and Data Rate for TVWS-Based LoRa
4.1. Range and Data Rate Analysis
4.2. Uplink Delivery Rate
5. Discussions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- LoRa® and LoRaWAN®: A Technical Overview. December 2019. Available online: https://lora-developers.semtech.com/uploads/documents/files/LoRa_and_LoRaWAN-A_Tech_Overview-Downloadable.pdf (accessed on 15 June 2023).
- Applications and Future of LoRa WAN Technology. 31 July 2022. Available online: https://www.rfpage.com/applications-future-lora-wan-technology/ (accessed on 14 June 2023).
- LoRa Applications. Available online: https://www.semtech.com/lora/lora-applications (accessed on 14 June 2023).
- Azmi, N.; Kamarudin, L.; Mahmuddin, M.; Zakaria, A.; Shakaff, A.; Khatun, S.; Kamarudin, K.; Morshed, M. Interference issues and mitigation method in WSN 2.4 GHz ISM band: A survey. In Proceedings of the 2014 2nd International Conference on Electronic Design (ICED), Penang, Malaysia, 19–21 August 2014; p. 403. [Google Scholar] [CrossRef]
- Lousado, J.P.; Antunes, S. Monitoring and Support for Elderly People Using LoRa Communication Technologies: IoT Concepts and Applications. Future Internet 2020, 12, 206. [Google Scholar] [CrossRef]
- Saeed, R.A.; Mokhtar, R.A.; Chebil, J.; Abdallah, A.H. TVBDs Coexistence by Leverage Sensing and Geo-location Database. In Proceedings of the 2012 International Conference on Computer and Communication Engineering (ICCCE), Kuala Lumpur, Malaysia, 3–5 July 2012; pp. 33–39. [Google Scholar]
- LoRaWAN® Regional Parameters 46 RP002-1.0.4. 2021. Available online: https://lora-alliance.org/wp-content/uploads/2021/05/RP002-1.0.3-FINAL-1.pdf (accessed on 15 June 2023).
- Jorke, P.; Bocker, S.; Liedmann, F.; Wietfeld, C. Urban channel models for smart city IoT-networks based on empirical measurements of LoRa-links at 433 and 868 MHz. In Proceedings of the 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Montreal, QC, Canada, 8–13 October 2017. [Google Scholar] [CrossRef]
- Chaudhari, B.S.; Zennaro, M.; Borkar, S. LPWAN Technologies: Emerging Application Characteristics, Requirements, and Design Considerations. Future Internet 2020, 12, 46. [Google Scholar] [CrossRef] [Green Version]
- Petajajarvi, J.; Mikhaylov, K.; Roivainen, A.; Hanninen, T.; Pettissalo, M. On the coverage of LPWANs: Range evaluation and channel attenuation model for LoRa technology. In Proceedings of the 2015 14th International Conference on ITS Telecommunications (ITST), Copenhagen, Denmark, 2–4 December 2015; pp. 55–59. [Google Scholar] [CrossRef]
- Askhedkar, A.; Chaudhari, B.; Zennaro, M.; Pietrosemoli, E. TV white spaces for low-power wide-area networks. In LPWAN Technologies for IoT and M2M Applications; Chaudhari, B., Zennaro, M., Eds.; Elsevier: Amsterdam, The Netherlands; Academic Press: Cambridge, MA, USA, 2020; pp. 167–179. ISBN 9780128188804. [Google Scholar] [CrossRef]
- Zhang, W.; Yang, J.; Zhang, G.; Yang, L.; Yeo, C.K. TV white space and its applications in future wireless networks and communications: A survey. IET Commun. 2018, 12, 2521–2532. [Google Scholar] [CrossRef]
- LoRa Products Guide. Available online: https://www.semtech.com/uploads/design-support/SEMTECH_LORA_PG_web.pdf (accessed on 15 June 2023).
- Semtech SX1276/77/78/79 Wireless and Sensing Products Datasheet. Available online: https://www.semtech.com/products/wireless-rf/lora-connect/sx1276#documentation (accessed on 14 June 2023).
- Heereman, F.; Joseph, W.; Tanghe, E.; Plets, D.; Verloock, L.; Martens, L. Path loss model and prediction of range, power and throughput for 802.11n in large conference rooms. AEU Int. J. Electron. Commun. 2012, 66, 561–568. [Google Scholar] [CrossRef] [Green Version]
- Janssen, T.; BniLam, N.; Aernouts, M.; Berkvens, R.; Weyn, M. LoRa 2.4 GHz Communication Link and Range. Sensors 2020, 20, 4366. [Google Scholar] [CrossRef] [PubMed]
- Theodore, S. Rappaport, Wireless Communications: Principles and Practice, 2nd ed.; Pearson Education: New York, NY, USA; Prentice Hall: Hoboken, NJ, USA, 2009. [Google Scholar]
- Germani, L.; Mecarelli, V.; Baruffa, G.; Rugini, L.; Frescura, F. An IoT Architecture for Continuous Livestock Monitoring Using LoRa LPWAN. Electronics 2019, 8, 1435. [Google Scholar] [CrossRef] [Green Version]
- El Chall, R.; Lahoud, S.; El Helou, M. LoRaWAN Network: Radio Propagation Models and Performance Evaluation in Various Environments in Lebanon. IEEE Internet Things J. 2019, 6, 2366–2378. [Google Scholar] [CrossRef]
- Recommendation ITU-R P.1238-8. Propagation Data and Prediction Methods for the Planning of Indoor Radio Communication Systems and Radio Local Area Networks in the Frequency Range 300 MHz to 100 GHz. Available online: https://www.itu.int/dms_pubrec/itu-r/rec/p/r-rec-p.1238-8-201507-s!!Pdf-e.pdf (accessed on 8 June 2023).
- Adonias, G.L.; Carvalho, J.N. Assessment of the Dominant Path Model and Field Measurements for NLOS DTV Signal Propagation. In Proceedings of the IEEE Radio and Antenna Days of the Indian Ocean (IEEE RADIO 2017), Cape Town, South Africa, 25–28 September 2017; Volume 321, p. 012004. [Google Scholar] [CrossRef] [Green Version]
- Plets, D.; Joseph, W.; Vanhecke, K.; Tanghe, E.; Martens, L. Simple Indoor Path Loss Prediction Algorithm and Validation in Living Lab Setting. Wirel. Pers. Commun. 2013, 68, 535–552. [Google Scholar] [CrossRef] [Green Version]
- Razali, N.A.M.; Habaebi, M.H.; Zulkurnain, N.F.; Islam, M.R.; Zyoud, A. The distribution of path loss exponent in 3D indoor environment. Int. J. Appl. Eng. Res. 2017, 12, 7154–7161. [Google Scholar]
- Pasolini, G.; Buratti, C.; Feltrin, L.; Zabini, F.; De Castro, C.; Verdone, R.; Andrisano, O. Smart City Pilot Projects Using LoRa and IEEE802.15.4 Technologies. Sensors 2018, 18, 1118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demetri, S.; Zúñiga, M.; Picco, G.P.; Kuipers, F.; Bruzzone, L.; Telkamp, T. Automated estimation of link quality for LoRa: A remote sensing approach. In Proceedings of the 18th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN), Montreal, QC, Canada, 16–18 April 2019. [Google Scholar] [CrossRef]
- Seye, M.R.; Ngom, B.; Gueye, B.; Diallo, M. A Study of LoRa Coverage: Range Evaluation and Channel Attenuation Model. In Proceedings of the 1st International Conference on Smart Cities and Communities (SCCIC), Ouagadougou, Burkina Faso, 24–26 July 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Marini, R.; Mikhaylov, K.; Pasolini, G.; Buratti, C. LoRaWANSim: A Flexible Simulator for LoRaWAN Networks. Sensors 2021, 21, 695. [Google Scholar] [CrossRef] [PubMed]
- Haxhibeqiri, J.; Karaagac, A.; Van den Abeele, F.; Joseph, W.; Moerman, I.; Hoebeke, J. LoRa Indoor Coverage and Performance in an Industrial Environment: Case Study. In Proceedings of the 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Limassol, Cyprus, 12–15 September 2017; pp. 1–8. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Gao, Y. Embedded Antenna Design on LoRa Radio for IoT Applications. In Proceedings of the 12th European Conference on Antennas and Propagation (EuCAP 2018), London, UK, 9–13 April 2018; pp. 1–3. [Google Scholar] [CrossRef]
- Vithanawasam, C.K. Design and Analysis of TVWS Antenna for Rural Wireless Connectivity. Master’s Thesis, Swinburne University of Technology Sarawak Campus, Kuching, Malaysia, 2021. Available online: http://hdl.handle.net/1959.3/459709 (accessed on 23 June 2023).
SF | BW (kHz) | |||||||
---|---|---|---|---|---|---|---|---|
62.5 | 125 | 250 | 500 | |||||
Pr | Rb | Pr | Rb | Pr | Rb | Pr | Rb | |
6 | −123 | 4.688 | −121 | 9.375 | −118 | 18.75 | −112 | 37.5 |
7 | −128 | 2.734 | −125 | 5.469 | −122 | 10.938 | −118 | 21.875 |
8 | −131 | 1. 563 | −128 | 3.125 | −125 | 6.25 | −121 | 12.5 |
9 | −134 | 0.879 | −131 | 1.758 | −128 | 3.516 | −124 | 7.031 |
10 | −135 | 0.488 | −134 | 0.977 | −131 | 1.953 | −127 | 3.906 |
11 | −137 | 0.269 | −136 | 0.537 | −133 | 1.074 | −129 | 2.148 |
12 | −140 | 0.146 | −137 | 0.293 | −134 | 0.586 | −130 | 1.172 |
Parameter | Value |
---|---|
Frequency f | 470 MHz |
Spreading factor SF | 6–12 |
Bandwidth BW | 62.5, 125, 250, 500 kHz |
Coding Rate CR | 4/5 |
Transmission power Pt | 12.5 dBm |
Transmitter antenna gain Gt | 2 dBi |
Transmitter cable losses Lt | 2 dB |
Receiver antenna gain Gr | 2 dBi |
Receiver cable losses Lr | 2 dB |
Transmitter height hb | 24 m |
Receiver height hm | 1 m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Askhedkar, A.R.; Chaudhari, B.S.; Abdelhaq, M.; Alsaqour, R.; Saeed, R.; Zennaro, M. LoRa Communication Using TVWS Frequencies: Range and Data Rate. Future Internet 2023, 15, 270. https://doi.org/10.3390/fi15080270
Askhedkar AR, Chaudhari BS, Abdelhaq M, Alsaqour R, Saeed R, Zennaro M. LoRa Communication Using TVWS Frequencies: Range and Data Rate. Future Internet. 2023; 15(8):270. https://doi.org/10.3390/fi15080270
Chicago/Turabian StyleAskhedkar, Anjali R., Bharat S. Chaudhari, Maha Abdelhaq, Raed Alsaqour, Rashid Saeed, and Marco Zennaro. 2023. "LoRa Communication Using TVWS Frequencies: Range and Data Rate" Future Internet 15, no. 8: 270. https://doi.org/10.3390/fi15080270
APA StyleAskhedkar, A. R., Chaudhari, B. S., Abdelhaq, M., Alsaqour, R., Saeed, R., & Zennaro, M. (2023). LoRa Communication Using TVWS Frequencies: Range and Data Rate. Future Internet, 15(8), 270. https://doi.org/10.3390/fi15080270