A Survey of Scenario Generation for Automated Vehicle Testing and Validation
Abstract
:1. Introduction
2. Terminology
2.1. Operational Design Domain (ODD)
2.2. Description of Scenario
2.3. Scenario Types
3. Scenario Generation Methods
3.1. Non-Adaptive Test Scenario Generation Methods
3.1.1. Knowledge-Based Generation Method
3.1.2. Data-Driven Generation Methods
3.1.3. Scenario Library Generation Method
3.2. Adaptive Test Scenario Generation Methods
3.2.1. Reinforcement-Learning-Based Methods
3.2.2. Importance-Sampling-Based Method
3.2.3. Imitation-Learning-Based Method
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- National Highway Traffic Safety Administration. 2015 Motor Vehicle Crashes: Overview. Traffic Saf. Facts Res. Note 2016, 2016, 1–9. [Google Scholar]
- European Commission. 2018 Road Safety Statistics: What Is Behind the Figures? European Commission: Brussels, Belgium, 2018. [Google Scholar]
- Ding, W.; Xu, C.; Arief, M.; Lin, H.; Li, B.; Zhao, D. A survey on safety-critical driving scenario generation—A methodological perspective. IEEE Trans. Intell. Transp. Syst. 2023, 24, 6971–6988. [Google Scholar] [CrossRef]
- Koopman, P.; Wagner, M. Autonomous vehicle safety: An interdisciplinary challenge. IEEE Intell. Transp. Syst. Mag. 2017, 9, 90–96. [Google Scholar] [CrossRef]
- Kalra, N.; Paddock, S.M. Driving to safety: How many miles of driving would it take to demonstrate autonomous vehicle reliability? Transp. Res. Part A Policy Pract. 2016, 94, 182–193. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, J.; Guo, X.; Meng, F.; Liu, T. Functional testing scenario library generation framework for connected and automated vehicles. IEEE Trans. Intell. Transp. Syst. 2023, 24, 9712–9724. [Google Scholar] [CrossRef]
- SAE International. Taxonomy and definitions for terms related to driving automation systems for on-road motor vehicles. SAE Int. 2018, 4970, 1–5. [Google Scholar]
- On-Road Automated Driving (Orad) Committee. Taxonomy & Definitions for Operational Design Domain (ODD) for Driving Automation Systems. 2021. Available online: https://www.sae.org/standards/content/j3259/ (accessed on 15 October 2024).
- Koopman, P.; Fratrik, F. How many operational design domains, objects, and events? In Proceedings of the Safe AI 2019: AAAI Workshop on Artificial Intelligence Safety, Honolulu, HI, USA, 27–28 January 2019. [Google Scholar]
- Czarnecki, K. Operational design domain for automated driving systems. In Taxonomy of Basic Terms; Waterloo Intelligent Systems Engineering (WISE) Lab, University of Waterloo: Waterloo, ON, Canada, 2018. [Google Scholar]
- Thorn, E.; Kimmel, S.C.; Chaka, M.; Hamilton, B.A. A Framework for Automated Driving System Testable Cases and Scenarios; Technical Report; United States Department of Transportation, National Highway Traffic Safety Administration: Washington, DC, USA, 2018. [Google Scholar]
- Zhang, Y.; Sun, B.; Li, Y.; Zhao, S.; Zhu, X.; Ma, W.; Ma, F.; Wu, L. Research on the Physics–Intelligence Hybrid Theory Based Dynamic Scenario Library Generation for Automated Vehicles. Sensors 2022, 22, 8391. [Google Scholar] [CrossRef]
- PEGASUS Project. Scenario Description and Knowledge-Based Scenario Generation. Available online: https://www.pegasusprojekt.de/files/tmpl/Pegasus-Abschlussveranstaltung/05_Scenario_Description_and_Knowledge-Based_Scenario_Generation.pdf (accessed on 12 June 2024).
- Ma, Y.; Jiang, W.; Zhang, L.; Chen, J.; Wang, H.; Lv, C.; Wang, X.; Xiong, L. Evolving testing scenario generation method and intelligence evaluation framework for automated vehicles. arXiv 2023, arXiv:2306.07142. [Google Scholar]
- Schelter, S.; Lange, D.; Schmidt, P.; Celikel, M.; Biessmann, F.; Grafberger, A. Automating large-scale data quality verification. Proc. VLDB Endow. 2018, 11, 1781–1794. [Google Scholar] [CrossRef]
- So, J.J.; Park, I.; Wee, J.; Park, S.; Yun, I. Generating traffic safety test scenarios for automated vehicles using a big data technique. KSCE J. Civ. Eng. 2019, 23, 2702–2712. [Google Scholar] [CrossRef]
- Sagiroglu, S.; Sinanc, D. Big data: A review. In Proceedings of the 2013 International Conference on Collaboration Technologies and Systems (CTS), San Diego, CA, USA, 20–24 May 2013; pp. 42–47. [Google Scholar]
- Rana, A.; Malhi, A. Building safer autonomous agents by leveraging risky driving behavior knowledge. In Proceedings of the 2021 International Conference on Communications, Computing, Cybersecurity, and Informatics (CCCI), Virtual Event, 3–5 March 2021; pp. 1–6. [Google Scholar]
- Puterman, M.L. Markov decision processes. In Handbooks in Operations Research and Management Science; Elsevier: Amsterdam, The Netherlands, 1990; Volume 2, pp. 331–434. [Google Scholar]
- Arulkumaran, K.; Deisenroth, M.P.; Brundage, M.; Bharath, A.A. Deep reinforcement learning: A brief survey. IEEE Signal Process. Mag. 2017, 34, 26–38. [Google Scholar] [CrossRef]
- Arief, M.; Glynn, P.; Zhao, D. An accelerated approach to safely and efficiently test pre-production autonomous vehicles on public streets. In Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, USA, 4–7 November 2018; pp. 2006–2011. [Google Scholar]
- Zhao, D.; Peng, H.; Bao, S.; Nobukawa, K.; LeBlanc, D.J.; Pan, C.S. Accelerated evaluation of automated vehicles using extracted naturalistic driving data. In Proceedings of the 24th International Symposium of Vehicles on Road and Tracks, Gothenburg, Sweden, 17–21 August 2015. [Google Scholar]
- Zhao, D.; Lam, H.; Peng, H.; Bao, S.; LeBlanc, D.J.; Nobukawa, K.; Pan, C.S. Accelerated evaluation of automated vehicles safety in lane-change scenarios based on importance sampling techniques. IEEE Trans. Intell. Transp. Syst. 2016, 18, 595–607. [Google Scholar] [CrossRef] [PubMed]
- Glynn, P.W.; Iglehart, D.L. Importance sampling for stochastic simulations. Manag. Sci. 1989, 35, 1367–1392. [Google Scholar] [CrossRef]
- Tan, S.; Wong, K.; Wang, S.; Manivasagam, S.; Ren, M.; Urtasun, R. Scenegen: Learning to generate realistic traffic scenes. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 19–25 June 2021; pp. 892–901. [Google Scholar]
- Shi, X.; Chen, Z.; Wang, H.; Yeung, D.-Y.; Wong, W.-K.; Woo, W.-C. Convolutional LSTM network: A machine learning approach for precipitation nowcasting. Adv. Neural Inf. Process. Syst. 2015, 28, 802–810. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Yegnanarayana, B. Artificial Neural Networks; PHI Learning Pvt. Ltd.: Delhi, India, 2009. [Google Scholar]
- O’Shea, K. An Introduction to Convolutional Neural Networks. arXiv 2015, arXiv:1511.08458. [Google Scholar]
- Liu, H.; Zhang, L.; Hari, S.K.S.; Zhao, J. Safety-Critical Scenario Generation via Reinforcement Learning Based Editing. In Proceedings of the 2024 IEEE International Conference on Robotics and Automation (ICRA), Yokohama, Japan, 13–17 May 2024; pp. 14405–14412. [Google Scholar]
- Kaelbling, L.P.; Littman, M.L.; Moore, A.W. Reinforcement learning: A survey. J. Artif. Intell. Res. 1996, 4, 237–285. [Google Scholar] [CrossRef]
- Doersch, C. Tutorial on variational autoencoders. arXiv 2016, arXiv:1606.05908. [Google Scholar]
- Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; Yu, P.S. A comprehensive survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 4–24. [Google Scholar] [CrossRef]
- Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal policy optimization algorithms. arXiv 2017, arXiv:1707.06347. [Google Scholar]
- Feng, S.; Feng, Y.; Yu, C.; Zhang, Y.; Liu, H.X. Testing scenario library generation for connected and automated vehicles, part I: Methodology. IEEE Trans. Intell. Transp. Syst. 2020, 22, 1573–1582. [Google Scholar] [CrossRef]
- Feng, S.; Feng, Y.; Sun, H.; Bao, S.; Zhang, Y.; Liu, H.X. Testing scenario library generation for connected and automated vehicles, part II: Case studies. IEEE Trans. Intell. Transp. Syst. 2020, 22, 5635–5647. [Google Scholar] [CrossRef]
- Feng, S.; Feng, Y.; Sun, H.; Zhang, Y.; Liu, H.X. Testing scenario library generation for connected and automated vehicles: An adaptive framework. IEEE Trans. Intell. Transp. Syst. 2020, 23, 1213–1222. [Google Scholar] [CrossRef]
- Haklay, M.; Weber, P. Openstreetmap: User-generated street maps. IEEE Pervasive Comput. 2008, 7, 12–18. [Google Scholar] [CrossRef]
- Monahan, G.E. State of the art—A survey of partially observable Markov decision processes: Theory, models, and algorithms. Manag. Sci. 1982, 28, 1–16. [Google Scholar] [CrossRef]
- Kuutti, S.; Bowden, R.; Jin, Y.; Barber, P.; Fallah, S. A survey of deep learning applications to autonomous vehicle control. IEEE Trans. Intell. Transp. Syst. 2020, 22, 712–733. [Google Scholar] [CrossRef]
- Jin, Y. Does level-k behavior imply level-k thinking? Exp. Econ. 2021, 24, 330–353. [Google Scholar] [CrossRef]
- Crawford, V.P.; Iriberri, N. Level-k auctions: Can a nonequilibrium model of strategic thinking explain the winner’s curse and overbidding in private-value auctions? Econometrica 2007, 75, 1721–1770. [Google Scholar] [CrossRef]
- Fujimoto, S.; Hoof, H.; Meger, D. Addressing function approximation error in actor-critic methods. In Proceedings of the International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 1587–1596. [Google Scholar]
- Ge, J.; Xu, H.; Zhang, J.; Zhang, Y.; Yao, D.; Li, L. Heterogeneous driver modeling and corner scenarios sampling for automated vehicles testing. J. Adv. Transp. 2022, 2022, 8655514. [Google Scholar] [CrossRef]
- Wei, Z.; Huang, H.; Zhang, G.; Zhou, R.; Luo, X.; Li, S.; Zhou, H. Interactive Critical Scenario Generation for Autonomous Vehicles Testing Based on In-depth Crash Data Using Reinforcement Learning. IEEE Trans. Intell. Veh. 2024. [Google Scholar] [CrossRef]
- Sun, H.; Feng, S.; Yan, X.; Liu, H.X. Corner case generation and analysis for safety assessment of autonomous vehicles. Transp. Res. Rec. 2021, 2675, 587–600. [Google Scholar] [CrossRef]
- Roderick, M.; MacGlashan, J.; Tellex, S. Implementing the deep q-network. arXiv 2017, arXiv:1711.07478. [Google Scholar]
- Abdi, H.; Williams, L.J. Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 433–459. [Google Scholar] [CrossRef]
- Krishna, K.; Murty, M.N. Genetic K-means algorithm. IEEE Trans. Syst. Man Cybern. Part B 1999, 29, 433–439. [Google Scholar] [CrossRef]
- Khan, K.; Rehman, S.U.; Aziz, K.; Fong, S.; Sarasvady, S. DBSCAN: Past, present and future. In Proceedings of the the Fifth International Conference on the Applications of Digital Information and Web Technologies (ICADIWT 2014), Bangalore, India, 17–19 February 2014; pp. 232–238. [Google Scholar]
- Chen, B.; Chen, X.; Wu, Q.; Li, L. Adversarial evaluation of autonomous vehicles in lane-change scenarios. IEEE Trans. Intell. Transp. Syst. 2021, 23, 10333–10342. [Google Scholar] [CrossRef]
- Tokdar, S.T.; Kass, R.E. Importance sampling: A review. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 54–60. [Google Scholar] [CrossRef]
- Feng, S.; Yan, X.; Sun, H.; Feng, Y.; Liu, H.X. Intelligent driving intelligence test for autonomous vehicles with naturalistic and adversarial environment. Nat. Commun. 2021, 12, 748. [Google Scholar] [CrossRef]
- Hussein, A.; Gaber, M.M.; Elyan, E.; Jayne, C. Imitation learning: A survey of learning methods. ACM Comput. Surv. (CSUR) 2017, 50, 21. [Google Scholar]
- Jia, L.; Yang, D.; Ren, Y.; Qian, C.; Feng, Q.; Sun, B.; Wang, Z. A dynamic test scenario generation method for autonomous vehicles based on conditional generative adversarial imitation learning. Accid. Anal. Prev. 2024, 194, 107279. [Google Scholar] [CrossRef]
- Ho, J.; Ermon, S. Generative adversarial imitation learning. In Advances in Neural Information Processing Systems 29; Curran Associates Inc.: Red Hook, NY, USA, 2016. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Ma, J.; Lai, E.M.-K. A Survey of Scenario Generation for Automated Vehicle Testing and Validation. Future Internet 2024, 16, 480. https://doi.org/10.3390/fi16120480
Wang Z, Ma J, Lai EM-K. A Survey of Scenario Generation for Automated Vehicle Testing and Validation. Future Internet. 2024; 16(12):480. https://doi.org/10.3390/fi16120480
Chicago/Turabian StyleWang, Ziyu, Jing Ma, and Edmund M-K Lai. 2024. "A Survey of Scenario Generation for Automated Vehicle Testing and Validation" Future Internet 16, no. 12: 480. https://doi.org/10.3390/fi16120480
APA StyleWang, Z., Ma, J., & Lai, E. M.-K. (2024). A Survey of Scenario Generation for Automated Vehicle Testing and Validation. Future Internet, 16(12), 480. https://doi.org/10.3390/fi16120480