Median Absolute Deviation for BGP Anomaly Detection
Abstract
:1. Introduction
- The design and introduction of a resource-efficient median absolute deviation (MAD) method for detecting network anomalies, which significantly lowers computational demands and that could work in tandem with machine learning and deep learning models.
- The implementation of MAD’s statistical approach to reduce reliance on extensive historical data, thereby enhancing the adaptability of cybersecurity systems to new threats.
- The comprehensive analysis of various anomaly types with MAD, demonstrating its broad applicability and versatility in addressing a spectrum of network challenges.
1.1. Related Work
1.2. Theoretical Framework
- OPEN Message: This is the first message sent after establishing a TCP connection between two BGP peers. It is used to initiate the BGP session and includes critical information such as the AS number and the BGP version.
- KEEPALIVE Message: Sent periodically to sustain the connection, these messages confirm the active status of the link between BGP peers.
- NOTIFICATION Message: Used to indicate errors or terminate a BGP session, detailing the reasons for session closure or errors encountered.
- UPDATE Message: Perhaps the most significant, these messages perform three key functions: announcing new routes, withdrawing previously advertised routes, and modifying existing routes with updated parameters. Additionally, UPDATE messages can adjust route attributes to adapt to changing network conditions or policies.
2. Materials and Methods
2.1. Methodology
2.1.1. BGP Anomaly Definition
2.1.2. Data Processing: Collection and Preprocessing
2.1.3. Median Absolute Deviation (MAD)
3. Results
- True Positives (TP): When the identified anomalies (highlighted in pink) coincide with the critical periods of each anomaly event (marked in green), visually this represent accurately detected anomalies.
- False Positives (FP): These are the anomalies detected that do not overlap with the green regions, indicating inaccurately detected anomalies.
- True Negatives (TN): Although not explicitly visualized, true negatives can be understood as the portions of the graph not highlighted (the “white” areas), representing normal events correctly identified as normal.
- False Negatives (FN): These are events within the green regions not highlighted in pink, indicating missed anomalies.
3.1. Performance Evaluation
3.2. Comparative Analysis with Deep Learning Techniques
4. Discussion
5. Conclusions and Future Work
5.1. Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al-Musawi, B.; Branch, P.; Armitage, G. BGP Anomaly Detection Techniques: A Survey. IEEE Commun. Surv. Tutor. 2017, 19, 377–396. [Google Scholar] [CrossRef]
- Rekhter, Y.; Li, T.; Hares, S. A Border Gateway Protocol 4 (BGP-4). Internet Requests for Comments, 2006. Available online: http://www.rfc-editor.org/rfc/rfc4271.txt (accessed on 10 January 2024).
- Shi, X.; Xiang, Y.; Wang, Z.; Yin, X.; Wu, J. Detecting Prefix Hijackings in the Internet with Argus. In Proceedings of the 2012 ACM Conference on Internet Measurement Conference—IMC ’12, Boston, MA, USA, 14–16 November 2012; pp. 15–28. [Google Scholar] [CrossRef]
- Li, Z.; Rios, A.L.G.; Trajkovic, L. Machine Learning for Detecting Anomalies and Intrusions in Communication Networks. IEEE J. Sel. Areas Commun. 2021, 39, 2254–2264. [Google Scholar] [CrossRef]
- Ding, Q.; Li, Z.; Batta, P.; Trajkovic, L. Detecting BGP Anomalies Using Machine Learning Techniques. In Proceedings of the 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), IEEE, Budapest, Hungary, 9–12 October 2016. [Google Scholar] [CrossRef]
- Cosovic, M.; Obradovic, S.; Trajkovic, L. Performance Evaluation of BGP Anomaly Classifiers. In Proceedings of the 2015 Third International Conference on Digital Information, Networking, and Wireless Communications (DINWC), Moscow, Russia, 3–5 February 2015. [Google Scholar] [CrossRef]
- Cosovic, M.; Obradovic, S.; Trajkovic, L. Classifying Anomalous Events in BGP Datasets. In Proceedings of the 2016 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), IEEE, Vancouver, BC, Canada, 15–18 May 2016. [Google Scholar] [CrossRef]
- Peng, S.; Chen, Y.; Shu, X.; Shuai, W.; Fang, S.; Ruan, Z.; Xuan, Q. MAD-MulW: A Multi-Window Anomaly Detection Framework for BGP Security Events. arXiv 2023, arXiv:2312.11225. [Google Scholar]
- Li, Z.; Rios, A.L.G.; Trajkovic, L. Detecting Internet Worms, Ransomware, and Blackouts Using Recurrent Neural Networks. In Proceedings of the 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Toronto, ON, Canada, 11–14 October 2020. [Google Scholar] [CrossRef]
- Dai, X.; Wang, N.; Wang, W. Application of machine learning in BGP anomaly detection. J. Phys. Conf. Ser. 2019, 1176, 032015. [Google Scholar] [CrossRef]
- HackerOne. The 2021 Hackers Report. 2021. Available online: https://www.hackerone.com/resources/reporting/the-2021-hacker-report (accessed on 8 April 2024).
- Khraisat, A.; Gondal, I.; Vamplew, P.; Kamruzzaman, J. Survey of intrusion detection systems: Techniques, datasets and challenges. Cybersecurity 2019, 2, 20. [Google Scholar] [CrossRef]
- Miller, J.; Miller, J. Statistics and Chemometrics for Analytical Chemistry, 4th ed.; Pearson/Prentice Hall: Harlow, UK, 2000. [Google Scholar]
- Chen, M.; Xu, M.; Li, Q.; Yang, Y. Measurement of large-scale BGP events: Definition, detection, and analysis. Comput. Netw. 2016, 110, 31–45. [Google Scholar] [CrossRef]
- Deshpande, S.; Thottan, M.; Ho, T.K.; Sikdar, B. An Online Mechanism for BGP Instability Detection and Analysis. IEEE Trans. Comput. 2009, 58, 1470–1484. [Google Scholar] [CrossRef]
- Testart, C.; Richter, P.; King, A.; Dainotti, A.; Clark, D. Profiling BGP Serial Hijackers: Capturing Persistent Misbehavior in the Global Routing Table. In Proceedings of the Internet Measurement Conference, New York, NY, USA, 21–23 October 2019; pp. 420–434. [Google Scholar] [CrossRef]
- Moriano, P.; Hill, R.; Camp, L.J. Using bursty announcements for detecting BGP routing anomalies. Comput. Netw. 2021, 188, 107835. [Google Scholar] [CrossRef]
- Labovitz, C.; Malan, G.R.; Jahanian, F. Internet routing instability. IEEE/ACM Trans. Netw. 1998, 6, 515–528. [Google Scholar] [CrossRef]
- Arai, T.; Nakano, K.; Chakraborty, B. Selection of Effective Features for BGP Anomaly Detection. In Proceedings of the 2019 IEEE 10th International Conference on Awareness Science and Technology (iCAST), Morioka, Japan, 23–25 October 2019. [Google Scholar] [CrossRef]
- Mitchell, J. Autonomous System (AS) Reservation for Private Use. RFC 6996, Internet Engineering Task Force, 2013. Available online: https://www.rfc-editor.org/info/rfc6996 (accessed on 19 April 2024).
- Fonseca, P.; Mota, E.S.; Bennesby, R.; Passito, A. BGP Dataset Generation and Feature Extraction for Anomaly Detection. In Proceedings of the 2019 IEEE Symposium on Computers and Communications (ISCC), IEEE, Barcelona, Spain, 29 June–3 July 2019; pp. 1–6. [Google Scholar] [CrossRef]
- BGPmon. Massive Route Leak Cause Internet Slowdown. 2015. Available online: https://www.bgpmon.net/massive-route-leak-cause-internet-slowdown/ (accessed on 15 February 2024).
- Besanger, Y.; Eremia, M.; Voropai, N. Major Grid Blackouts: Analysis, Classification, and Prevention. In Handbook of Electrical Power System Dynamics; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 2013; Chapter 13; pp. 789–863. [Google Scholar] [CrossRef]
- Reseaux IP Europeens Network Coordination Center. RIPE Network Coordination Centre, 2015. Available online: http://www.ripe.net/ (accessed on 8 February 2024).
- Blunk, L.; Karir, M.; Labovitz, C. RFC 6396: Multi-threaded Routing Toolkit (MRT) Routing Information Export Format. Internet Engineering Task Force, 2011. RFC 6396 (Standards Track). Available online: http://tools.ietf.org/html/rfc6396 (accessed on 19 April 2024).
- Internet Engineering Task Force (IETF). Charter of the IETF Secure Inter-Domain Routing Working Group. 2015. Available online: http://tools.ietf.org/wg/sidr/charters (accessed on 6 December 2015).
- Center for Applied Internet Data Analysis (CAIDA). PyBGPStream API Documentation. 2023. Available online: https://bgpstream.caida.org/docs/api/pybgpstream/pybgpstream.html (accessed on 10 April 2023).
- Leys, C.; Ley, C.; Klein, O.; Bernard, P.; Licata, L. Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median. J. Exp. Soc. Psychol. 2013, 49, 764–766. [Google Scholar] [CrossRef]
- Howell, D.C. Median Absolute Deviation. In Encyclopedia of Statistics in Behavioral Science; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2005. [Google Scholar] [CrossRef]
- Hautamaki, V.; Karkkainen, I.; Franti, P. Outlier detection using k-nearest neighbour graph. In Proceedings of the 17th International Conference on Pattern Recognition, 2004, ICPR 2004, IEEE, Cambridge, UK, 26 August 2004; Volume 3, pp. 430–433. [Google Scholar]
- Zhao, H.; Wang, Y.; Duan, J.; Huang, C.; Cao, D.; Tong, Y.; Xu, B.; Bai, J.; Tong, J.; Zhang, Q. Multivariate time-series anomaly detection via graph attention network. In Proceedings of the 2020 IEEE International Conference on Data Mining (ICDM), IEEE, Sorrento, Italy, 17–20 November 2020; pp. 841–850. [Google Scholar]
- Zong, B.; Song, Q.; Min, M.R.; Cheng, W.; Lumezanu, C.; Cho, D.; Chen, H. Deep Autoencoding Gaussian Mixture Model for Unsupervised Anomaly Detection. In Proceedings of the International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018. [Google Scholar]
- Retana, A. Using BGP over QUIC. Internet-draft, Internet Engineering Task Force. Available online: https://datatracker.ietf.org/doc/draft-retana-idr-bgp-quic/04/ (accessed on 19 April 2024).
Anomaly Event | Category | Occurrence (UTC) |
---|---|---|
Code Red 1 v2 | Indirect Anomaly | 2001-07-19 13:20:00–2001-07-20 00:00:00 |
Slammer | Indirect Anomaly | 2003-01-25 05:31:00–2003-01-25 19:59:00 |
Nimda | Indirect Anomaly | 2001-09-18 13:19:00–2001-09-19 10:59:00 |
Moscow Blackout | Link Failure | 2005-05-25 04:40:00–2005-05-25 10:33:00 |
TMnet | Direct Unintended Anomaly | 2015-06-12 08:43:00–2015-06-12 11:53:00 |
Anomaly Event | Route Collector | Total | Extraction Dates (UTC) |
---|---|---|---|
Code Red 1 v2 | RRC04 | 1439 | 2001-07-18 19:06:00–2001-07-21 19:00:00 |
Slammer | RRC04 | 960 | 2003-01-24 19:00:00–2003-01-26 18:57:00 |
Nimda | RRC04 | 1738 | 2001-09-17 19:00:00–2001-09-21 09:51:00 |
Moscow Blackout | RRC04 | 1440 | 2005-05-24 19:00:00–2005-05-27 18:57:00 |
TMnet | RRC04 | 480 | 2015-06-12 00:00:00–2015-06-13 00:00:00 |
Feature Name | Category |
---|---|
Number of announcements | Volume |
Number of withdrawals | Volume |
Anomaly Event | Accuracy (%) | Precision (%) |
---|---|---|
TMnet Misconfiguration | 96.1 | 95.9 |
CodeRed 1 v2 Worm | 95.04 | 94.9 |
Moscow Blackout | 96.1 | 87.8 |
Slammer Worm | 88.5 | 100 |
Nimda Worm | 80.07 | 97.8 |
Anomaly Event | RNN (%) | MTAD (%) | DAGMM (%) | MAD-MulW (%) | MAD (%) |
---|---|---|---|---|---|
Acc./Pre. | Acc./Pre. | Acc./Pre. | Acc./Pre. | Acc./Pre. | |
CodeRed 1 v2 Worm | 85.2/51.6 | 88.9/66.1 | 94.9/65.5 | 97.8/96.5 | 95.04/94.9 |
Nimda Worm | 65.7/58.7 | 69.7/66.2 | 67.4/69.4 | 86.7/86.2 | 80.07/97.8 |
Slammer Worm | 83.06/65.5 | 83.6/69.5 | 83.1/38.2 | 98.1/98.1 | 88.5/100 |
Moscow Blackout | 91.9/60.7 | 98.2/80.9 | 97.9/53.8 | 99.3/99.6 | 96.1/87.8 |
TMnet Misconfiguration | 91.7/60.4 | 97.1/70.7 | 96.9/45.4 | 99.2/99.6 | 96.1/95.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romo-Chavero, M.A.; Cantoral-Ceballos, J.A.; Pérez-Díaz, J.A.; Martinez-Cagnazzo, C. Median Absolute Deviation for BGP Anomaly Detection. Future Internet 2024, 16, 146. https://doi.org/10.3390/fi16050146
Romo-Chavero MA, Cantoral-Ceballos JA, Pérez-Díaz JA, Martinez-Cagnazzo C. Median Absolute Deviation for BGP Anomaly Detection. Future Internet. 2024; 16(5):146. https://doi.org/10.3390/fi16050146
Chicago/Turabian StyleRomo-Chavero, Maria Andrea, Jose Antonio Cantoral-Ceballos, Jesus Arturo Pérez-Díaz, and Carlos Martinez-Cagnazzo. 2024. "Median Absolute Deviation for BGP Anomaly Detection" Future Internet 16, no. 5: 146. https://doi.org/10.3390/fi16050146
APA StyleRomo-Chavero, M. A., Cantoral-Ceballos, J. A., Pérez-Díaz, J. A., & Martinez-Cagnazzo, C. (2024). Median Absolute Deviation for BGP Anomaly Detection. Future Internet, 16(5), 146. https://doi.org/10.3390/fi16050146