Reversible Data Hiding in Encrypted 3D Mesh Models Based on Multi-Group Partition and Closest Pair Prediction
Abstract
:1. Introduction
- (1)
- The MGP technique classifies more vertices as usable, and can adaptively choose different parameters for different models to find the optimal grouping strategy.
- (2)
- The CPP technique chooses the closest reference vertex to predict the current usable vertex to improve the prediction accuracy and only pay a little cost of redundancy.
2. Proposed Scheme
2.1. On Content Owner Side
2.1.1. Preprocessing
2.1.2. Multi-Group Partition
2.1.3. Closest Pair Prediction
2.1.4. 3D Mesh Model Encryption and Uploading
2.2. On Cloud Server Side
2.3. On Third-Party Side
2.3.1. Data Extraction
D Mesh Model Recovery
3. Experimental Results
3.1. Performance of Our Proposed Scheme
3.2. Embedding Rate Comparisons
3.3. Reversibility, Security, and Complexity
3.4. Over Performance Comparison
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Davis, R. The data encryption standard in perspective. IEEE Commun. Soc. Mag. 1978, 16, 5–9. [Google Scholar] [CrossRef]
- Ni, Z.; Shi, Y.-Q.; Ansari, N.; Su, W. Reversible data hiding. IEEE Trans. Circuits Syst. Video Technol. 2006, 16, 354–362. [Google Scholar]
- Celik, M.U.; Sharma, G.; Tekalp, A.M.; Saber, E. Reversible data hiding. In Proceedings of the International conference on image processing, Rochester, NY, USA, 22–25 September 2002; Volume 2, p. II. [Google Scholar]
- Peng, F.; Li, X.; Yang, B. Improved PVO-based reversible data hiding. Digit. Signal Process. 2014, 25, 255–265. [Google Scholar] [CrossRef]
- Zhang, X. Reversible data hiding in encrypted image. IEEE Signal Process. Lett. 2011, 18, 255–258. [Google Scholar] [CrossRef]
- Qin, C.; Zhang, X. Effective reversible data hiding in encrypted image with privacy protection for image content. J. Vis. Commun. Image Represent. 2015, 31, 154–164. [Google Scholar] [CrossRef]
- Hong, W.; Chen, T.-S.; Wu, H.-Y. An improved reversible data hiding in encrypted images using side match. IEEE Signal Process. Lett. 2012, 19, 199–202. [Google Scholar] [CrossRef]
- Zhang, X. Separable reversible data hiding in encrypted image. IEEE Trans. Inf. Forensics Secur. 2011, 7, 826–832. [Google Scholar] [CrossRef]
- Qian, Z.; Zhang, X. Reversible data hiding in encrypted images with distributed source encoding. IEEE Trans. Circuits Syst. Video Technol. 2015, 26, 636–646. [Google Scholar] [CrossRef]
- Wu, X.; Sun, W. High-capacity reversible data hiding in encrypted images by prediction error. Signal Process. 2014, 104, 387–400. [Google Scholar] [CrossRef]
- Wang, X.; Chang, C.-C.; Lin, C.-C.; Chang, C.-C. Reversal of pixel rotation: A reversible data hiding system towards cybersecurity in encrypted images. J. Vis. Commun. Image Represent. 2022, 82, 103421. [Google Scholar] [CrossRef]
- Xiong, L.; Dong, D. Reversible data hiding in encrypted images with somewhat homomorphic encryption based on sorting block-level prediction-error expansion. J. Inf. Secur. Appl. 2019, 47, 78–85. [Google Scholar] [CrossRef]
- Xiong, L.; Dong, D.; Xia, Z.; Chen, X. High-capacity reversible data hiding for encrypted multimedia data with somewhat homomorphic encryption. IEEE Access 2018, 6, 60635–60644. [Google Scholar] [CrossRef]
- Ke, Y.; Zhang, M.-Q.; Liu, J.; Su, T.-T.; Yang, X.-Y. Fully homomorphic encryption encapsulated difference expansion for reversible data hiding in encrypted domain. IEEE Trans. Circuits Syst. Video Technol. 2020, 30, 2353–2365. [Google Scholar] [CrossRef]
- Huang, F.; Huang, J.; Shi, Y.-Q. New framework for reversible data hiding in encrypted domain. IEEE Trans. Inf. Forensics Secur. 2016, 11, 2777–2789. [Google Scholar] [CrossRef]
- Ge, H.; Chen, Y.; Qian, Z.; Wang, J. A high capacity multi-level approach for reversible data hiding in encrypted images. IEEE Trans. Circuits Syst. Video Technol. 2018, 29, 2285–2295. [Google Scholar] [CrossRef]
- Liu, Z.-L.; Pun, C.-M. Reversible data-hiding in encrypted images by redundant space transfer. Inf. Sci. 2018, 433, 188–203. [Google Scholar] [CrossRef]
- Wang, X.; Chang, C.-C.; Lin, C.-C. Reversible data hiding in encrypted images with block-based adaptive MSB encoding. Inf. Sci. 2021, 567, 375–394. [Google Scholar] [CrossRef]
- Ma, K.; Zhang, W.; Zhao, X.; Yu, N.; Li, F. Reversible data hiding in encrypted images by reserving room before encryption. IEEE Trans. Inf. Forensics Secur. 2013, 8, 553–562. [Google Scholar] [CrossRef]
- Cao, X.; Du, L.; Wei, X.; Meng, D.; Guo, X. High capacity reversible data hiding in encrypted images by patch-level sparse representation. IEEE Trans. Cybern. 2015, 46, 1132–1143. [Google Scholar] [CrossRef]
- Yi, S.; Zhou, Y. Separable and reversible data hiding in encrypted images using parametric binary tree labeling. IEEE Trans. Multimed. 2018, 21, 51–64. [Google Scholar] [CrossRef]
- Yin, Z.; Xiang, Y.; Zhang, X. Reversible data hiding in encrypted images based on multi-MSB prediction and Huffman coding. IEEE Trans. Multimed. 2019, 22, 874–884. [Google Scholar] [CrossRef]
- Mohammadi, A.; Nakhkash, M.; Akhaee, M.A. A high-capacity reversible data hiding in encrypted images employing local difference predictor. IEEE Trans. Circuits Syst. Video Technol. 2020, 30, 2366–2376. [Google Scholar] [CrossRef]
- Puteaux, P.; Puech, W. A recursive reversible data hiding in encrypted images method with a very high payload. IEEE Trans. Multimed. 2020, 23, 636–650. [Google Scholar] [CrossRef]
- Wang, X.; Chang, C.-C.; Lin, C.-C.; Chang, C.-C. On the multi-level embedding of crypto-image reversible data hiding. J. Vis. Commun. Image Represent. 2022, 87, 103556. [Google Scholar] [CrossRef]
- Jiang, R.; Zhou, H.; Zhang, W.; Yu, N. Reversible data hiding in encrypted three-dimensional mesh models. IEEE Trans. Multimed. 2017, 20, 55–67. [Google Scholar] [CrossRef]
- Shah, M.; Zhang, W.; Hu, H.; Zhou, H.; Mahmood, T. Homomorphic encryption-based reversible data hiding for 3D mesh models. Arab. J. Sci. Eng. 2018, 43, 8145–8157. [Google Scholar] [CrossRef]
- Van Rensburg, B.J.; Puteaux, P.; Puech, W.; Pedeboy, J.-P. Homomorphic two tier reversible data hiding in encrypted 3d objects. In Proceedings of the 2021 IEEE International Conference on Image Processing (ICIP), Virtual, 19–22 September 2021; pp. 3068–3072. [Google Scholar]
- Tsai, Y.-Y. Separable reversible data hiding for encrypted three-dimensional models based on spatial subdivision and space encoding. IEEE Trans. Multimed. 2020, 23, 2286–2296. [Google Scholar] [CrossRef]
- Xu, N.; Tang, J.; Luo, B.; Yin, Z. Separable reversible data hiding based on integer mapping and MSB prediction for encrypted 3D mesh models. Cogn. Comput. 2022, 14, 1172–1181. [Google Scholar] [CrossRef]
- Yin, Z.; Xu, N.; Wang, F.; Cheng, L.; Luo, B. Separable reversible data hiding based on integer mapping and multi-MSB prediction for encrypted 3D mesh models. In Proceedings of the Pattern Recognition and Computer Vision: 4th Chinese Conference, PRCV 2021, Beijing, China, 29 October–1 November 2021; Proceedings, Part II 4. pp. 336–348. [Google Scholar]
- Lyu, W.-L.; Cheng, L.; Yin, Z. High-capacity reversible data hiding in encrypted 3D mesh models based on multi-MSB prediction. Signal Process. 2022, 201, 108686. [Google Scholar] [CrossRef]
- Qu, L.; Lu, H.; Chen, P.; Amirpour, H.; Timmerer, C. Ring Co-XOR encryption based reversible data hiding for 3D mesh model. Signal Process. 2024, 217, 109357. [Google Scholar] [CrossRef]
- Shilane, P.; Min, P.; Kazhdan, M.; Funkhouser, T. The Princeton Shape Benchmark. In Proceedings of the Proceedings Shape Modeling Applications, Genova, Italy, 7–9 June 2004; pp. 167–178. [Google Scholar]
- Dubuisson, M.-P.; Jain, A.K. A modified Hausdorff distance for object matching. In Proceedings of the 12th International Conference on Pattern Recognition, Jerusalem, Israel, 9–13 October 1994; Volume 1, pp. 566–568. [Google Scholar]
Symbol | Definition | Symbol | Definition |
---|---|---|---|
/ | Vertex set/vertex | / | Face set/face |
Three-dimensional coordinate | / | Number of vertex/face | |
Index of vertex/face | Number of preserving valid bits | ||
Integer vertex | Recovered vertex | ||
/ | Vertex group/each group | Number of vertices in each group | |
Vertex in each group | Usable vertex | ||
Reference vertex | Reference vertex set | ||
Number of reference vertices | Index of | ||
Distance between and | Closest reference vertex | ||
Closest distance | Maximum length of three-dimensional closest distance | ||
Bits used to record | Recovery information sequence | ||
Length of binary bits | / | Model encryption/data hiding key | |
Encrypted | Embedding rate |
3D Models | Number of Faces | Number of Vertices | Total Embeddable Bits | Vacated Bits | (bpv) | |
---|---|---|---|---|---|---|
Dog | 3230 | 1618 | 77,664 | 32,382 | 45,186 | 27.93 |
Face | 3604 | 1884 | 90,432 | 39,735 | 50,601 | 26.86 |
Spaceship | 9528 | 5986 | 287,328 | 101,049 | 186,183 | 31.10 |
Car | 11,230 | 5911 | 283,728 | 169,176 | 114,456 | 19.36 |
3D Models | [32] | The Proposed Scheme | Increment |
---|---|---|---|
Dog | 24.22 | 27.93 | 3.71 |
Face | 23.05 | 26.86 | 3.81 |
Spaceship | 28.99 | 31.10 | 2.11 |
Car | 16.06 | 19.36 | 3.30 |
3D Models | Number of Faces | Number of Vertices | Hausdorff Distance1 | Hausdorff Distance2 | Hausdorff Distance3 | Run Time (s) | |
---|---|---|---|---|---|---|---|
Dog | 3230 | 1618 | 2 | 0 | 18.57 | 18.67 | 2.03 |
3 | 0 | 18.45 | 18.73 | 3.50 | |||
4 | 0 | 18.61 | 18.52 | 4.69 | |||
Face | 3604 | 1884 | 2 | 0 | 15.98 | 15.95 | 2.14 |
3 | 0 | 15.81 | 16.03 | 3.71 | |||
4 | 0 | 15.92 | 15.85 | 5.26 | |||
Spaceship | 9528 | 5986 | 2 | 0 | 36.66 | 36.90 | 5.86 |
3 | 0 | 36.85 | 36.71 | 11.20 | |||
4 | 0 | 36.97 | 36.82 | 16.64 | |||
Car | 11,230 | 5911 | 2 | 0 | 33.71 | 33.57 | 6.54 |
3 | 0 | 33.77 | 33.69 | 12.51 | |||
4 | 0 | 33.58 | 33.62 | 18.48 |
Shah et al. [27] | Rensburg et al. [28] | Tsai [29] | Xu et al. [30] | Yin et al. [31] | Lyu et al. [32] | Qu et al. [33] | Proposed | |
---|---|---|---|---|---|---|---|---|
Encryption technique | Homomorphic | Homomorphic | XOR | XOR | XOR | XOR | RCXOR | XOR |
Error-free in model recovery | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Error-free in data extraction | Yes | Yes | No | Yes | Yes | Yes | Yes | Yes |
Time complexity | O(f(n)) | O(f(n)) | O(n) | O(n) | O(n) | O(n) | O(n2) | O(n) |
Embedding capacity | Low (<10 bpv) | Medium (10–20 bpv) | Low (<10 bpv) | Low (<10 bpv) | Medium (10–20 bpv) | High (20–30 bpv) | High (20–30 bpv) | Very High (>30 bpv) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Liu, J.-C.; Chang, C.-C.; Chang, C.-C. Reversible Data Hiding in Encrypted 3D Mesh Models Based on Multi-Group Partition and Closest Pair Prediction. Future Internet 2024, 16, 210. https://doi.org/10.3390/fi16060210
Wang X, Liu J-C, Chang C-C, Chang C-C. Reversible Data Hiding in Encrypted 3D Mesh Models Based on Multi-Group Partition and Closest Pair Prediction. Future Internet. 2024; 16(6):210. https://doi.org/10.3390/fi16060210
Chicago/Turabian StyleWang, Xu, Jui-Chuan Liu, Ching-Chun Chang, and Chin-Chen Chang. 2024. "Reversible Data Hiding in Encrypted 3D Mesh Models Based on Multi-Group Partition and Closest Pair Prediction" Future Internet 16, no. 6: 210. https://doi.org/10.3390/fi16060210
APA StyleWang, X., Liu, J. -C., Chang, C. -C., & Chang, C. -C. (2024). Reversible Data Hiding in Encrypted 3D Mesh Models Based on Multi-Group Partition and Closest Pair Prediction. Future Internet, 16(6), 210. https://doi.org/10.3390/fi16060210