Exploring In-Network Computing with Information-Centric Networking: Review and Research Opportunities
Abstract
:1. Introduction
2. In-Network Computing: What and Why
2.1. Enabling Technologies
- In-Network Analytics: Data-intensive tasks such as data aggregation and machine learning.
- In-Network Caching: Temporary storage of information within network elements to enable quick data retrieval.
- In-Network Security: Implementation of security mechanisms, such as DDoS mitigation and firewalls.
- In-Network Coordination: Offloading coordination tasks, such as consensus protocols, to network elements to enhance distributed operations.
- Technology-Specific Applications: Offloading specific tasks, such as load balancing and resource allocation, tailored to particular technologies like NFV.
2.2. Representative Use Cases
2.2.1. XR and Holographic Communications
2.2.2. DTNs
3. Information-Centric Networking
3.1. Why ICN for INC
3.2. Named Data Networking: Basics
3.2.1. Node Architecture
- The Content Store (CS) is a cache that temporarily stores Data packets passing through the node. If an Interest requests a content available in the CS, the node can respond directly, without forwarding the Interest further, reducing network load.
- The Pending Interest Table (PIT) tracks pending interests that the node has forwarded but has not yet been satisfied. When a Data packet arrives, the PIT ensures that it is sent back to all downstream consumers who requested it and then removes the corresponding entry.
- The Forwarding Information Base (FIB) stores name-based forwarding rules. It is used to direct Interests to the appropriate next hops, similar to a routing table in IP networks.
3.2.2. Forwarding Fabric
4. In-Network Computing via ICN
4.1. Service Naming and Messages
4.2. Reactive Executor Selection Strategies
4.2.1. Distributed Approaches
4.2.2. Centralized Approaches
4.3. Proactive Executor Discovery
4.4. Compute Reuse
4.5. Security
5. Open Challenges and Research Perspectives
5.1. Line-Speed Executors
5.2. Optimal Service Placement
5.3. Service Function Chaining
5.4. Collaborative Caching
5.5. Semantic Routing
5.6. Security and Privacy
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
3C | Communication, caching and computing |
ACL | Access control list |
AI | Artificial intelligence |
API | Application programming interface |
CFN | Compute first networking |
CR | Cognitive radio |
CS | Content store |
CPU | Central processing unit |
DDoS | Distributed denial of service |
DT | Digital twin |
DTN | Digital twin network |
FIB | Forwarding information base |
FPGA | Field-programmable gate array |
GPU | Graphics processing unit |
ICN | Information-centric networking |
ICedge | Information-centric edge |
IETF | Internet engineering task force |
INC | In-network computing |
IRS | Intelligent reflecting surfaces |
IRTF | Internet research task force |
IoT | Internet of Things |
IP | Internet protocol |
MEC | Multi-access edge computing |
NACK | Negative acknowledgment |
NCN | Named computation networking |
NDN | Named data networking |
NFaaS | Named function as a service |
NFN | Named function networking |
NFV | Network function virtualization |
NIC | Network interface card |
PIT | Pending interest table |
QoS | Quality of service |
RIB | Routing information base |
RICE | Remote invocation in named function networking |
SDN | Software-defined networking |
SFC | Service Function Chaining |
SSL | Secure socket layer |
SVS | State vector synchronization |
TCP | Transmission control protocol |
TLV | Type–length–value |
TLS | Transport layer security |
URL | Uniform resource locator |
VLC | Visible light communications |
VM | Virtual machine |
XR | Extended reality |
References
- Wang, C.X.; You, X.; Gao, X.; Zhu, X.; Li, Z.; Zhang, C.; Wang, H.; Huang, Y.; Chen, Y.; Haas, H.; et al. On the road to 6G: Visions, requirements, key technologies, and testbeds. IEEE Commun. Surv. Tutor. 2023, 25, 905–974. [Google Scholar] [CrossRef]
- Giordani, M.; Polese, M.; Mezzavilla, M.; Rangan, S.; Zorzi, M. Toward 6G networks: Use cases and technologies. IEEE Commun. Mag. 2020, 58, 55–61. [Google Scholar] [CrossRef]
- Zhang, X.; Debroy, S. Resource management in mobile edge computing: A comprehensive survey. ACM Comput. Surv. 2023, 55, 1–37. [Google Scholar] [CrossRef]
- Amadeo, M.; Ruggeri, G.; Campolo, C.; Molinaro, A. IoT services allocation at the edge via named data networking: From optimal bounds to practical design. IEEE Trans. Netw. Serv. Manag. 2019, 16, 661–674. [Google Scholar] [CrossRef]
- Zheng, C.; Tang, H.; Zang, M.; Hong, X.; Feng, A.; Tassiulas, L.; Zilberman, N. DINC: Toward distributed in-network computing. Proc. ACM Netw. 2023, 1, 1–25. [Google Scholar] [CrossRef]
- Silva, R.; Corujo, D.; Quevedo, J.; Aguiar, R. In-network computing—challenges and opportunities. Internet Technol. Lett. 2024, 7, e487. [Google Scholar] [CrossRef]
- Hlaing, H.H.; Asaeda, H. ShieldDINC: Privacy-Preserving Distributed In-Network Computations with Efficient Homomorphic Encryption. In Proceedings of the IEEE 49th Conference on Local Computer Networks (LCN), Caen, France, 8–10 October 2024; pp. 1–6. [Google Scholar]
- Nour, B.; Mastorakis, S.; Mtibaa, A. Compute-less networking: Perspectives, challenges, and opportunities. IEEE Netw. 2020, 34, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Hurali, L.C.M.; Patil, A.P. Application areas of information-centric networking: State-of-the-art and challenges. IEEE Access 2022, 10, 122431–122446. [Google Scholar] [CrossRef]
- Xylomenos, G.; Ververidis, C.N.; Siris, V.A.; Fotiou, N.; Tsilopoulos, C.; Vasilakos, X.; Katsaros, K.V.; Polyzos, G.C. A survey of information-centric networking research. IEEE Commun. Surv. Tutor. 2013, 16, 1024–1049. [Google Scholar] [CrossRef]
- Chen, Q.; Xie, R.; Yu, F.R.; Liu, J.; Huang, T.; Liu, Y. Transport control strategies in named data networking: A survey. IEEE Commun. Surv. Tutor. 2016, 18, 2052–2083. [Google Scholar] [CrossRef]
- Saxena, D.; Raychoudhury, V.; Suri, N.; Becker, C.; Cao, J. Named data networking: A survey. Comput. Sci. Rev. 2016, 19, 15–55. [Google Scholar] [CrossRef]
- Tourani, R.; Misra, S.; Mick, T.; Panwar, G. Security, privacy, and access control in information-centric networking: A survey. IEEE Commun. Surv. Tutor. 2017, 20, 566–600. [Google Scholar] [CrossRef]
- Tariq, A.; Rehman, R.A.; Kim, B.S. Forwarding strategies in NDN-based wireless networks: A survey. IEEE Commun. Surv. Tutor. 2019, 22, 68–95. [Google Scholar] [CrossRef]
- Khelifi, H.; Luo, S.; Nour, B.; Moungla, H.; Faheem, Y.; Hussain, R.; Ksentini, A. Named data networking in vehicular ad hoc networks: State-of-the-art and challenges. IEEE Commun. Surv. Tutor. 2019, 22, 320–351. [Google Scholar] [CrossRef]
- Serhane, O.; Yahyaoui, K.; Nour, B.; Moungla, H. A survey of ICN content naming and in-network caching in 5G and beyond networks. IEEE Internet Things J. 2020, 8, 4081–4104. [Google Scholar] [CrossRef]
- Chen, C.; Wang, C.; Qiu, T.; Atiquzzaman, M.; Wu, D.O. Caching in vehicular named data networking: Architecture, schemes and future directions. IEEE Commun. Surv. Tutor. 2020, 22, 2378–2407. [Google Scholar] [CrossRef]
- Nour, B.; Khelifi, H.; Hussain, R.; Mastorakis, S.; Moungla, H. Access control mechanisms in named data networks: A comprehensive survey. Acm Comput. Surv. (cSuR) 2021, 54, 1–35. [Google Scholar] [CrossRef]
- Kianpisheh, S.; Taleb, T. A survey on in-network computing: Programmable data plane and technology specific applications. IEEE Commun. Surv. Tutor. 2022, 25, 701–761. [Google Scholar] [CrossRef]
- Karim, F.A.; Aman, A.H.M.; Hassan, R.; Nisar, K.; Uddin, M. Named data networking: A survey on routing strategies. IEEE Access 2022, 10, 90254–90270. [Google Scholar] [CrossRef]
- Zheng, C.; Hong, X.; Ding, D.; Vargaftik, S.; Ben-Itzhak, Y.; Zilberman, N. In-network machine learning using programmable network devices: A survey. IEEE Commun. Surv. Tutor. 2023, 26, 1171–1200. [Google Scholar] [CrossRef]
- Pruthvi, C.; Vimala, H.; Shreyas, J. A systematic survey on content caching in ICN and ICN-IoT: Challenges, approaches and strategies. Comput. Netw. 2023, 233, 109896. [Google Scholar]
- Kfoury, E.F.; Choueiri, S.; Mazloum, A.; AlSabeh, A.; Gomez, J.; Crichigno, J. A comprehensive survey on smartnics: Architectures, development models, applications, and research directions. IEEE Access 2024, 12, 107297–107336. [Google Scholar] [CrossRef]
- Alhawas, A.; Belghith, A. Software-Defined Named Data Networking in Literature: A Review. Future Internet 2024, 16, 258. [Google Scholar] [CrossRef]
- Nickel, M.; Göhringer, D. A Survey on Architectures, Hardware Acceleration and Challenges for In-Network Computing. ACM Trans. Reconfig. Technol. Syst. 2024, 18, 1–34. [Google Scholar] [CrossRef]
- Zhu, H.; Jiang, W.; Hong, Q.; Guo, Z. When In-Network Computing Meets Distributed Machine Learning. IEEE Netw. 2024, 38, 238–246. [Google Scholar] [CrossRef]
- Tennenhouse, D.L.; Wetherall, D.J. Towards an active network architecture. ACM SIGCOMM Comput. Commun. Rev. 1996, 26, 5–17. [Google Scholar] [CrossRef]
- Legedza, U.; Wetherall, D.; Guttag, J. Improving the performance of distributed applications using active networks. In Proceedings of the IEEE INFOCOM’98, San Francisco, CA, USA, 29 March–2 April 1998; Volume 2, pp. 590–599. [Google Scholar]
- Bouras, C.; Kollia, A.; Papazois, A. SDN & NFV in 5G: Advancements and challenges. In Proceedings of the 20th Conference on Innovations in Clouds, Internet and Networks (ICIN), Paris, France, 7–9 March 2017; pp. 107–111. [Google Scholar]
- Zhang, L.; Afanasyev, A.; Burke, J.; Jacobson, V.; Claffy, K.; Crowley, P.; Papadopoulos, C.; Wang, L.; Zhang, B. Named data networking. ACM SIGCOMM Comput. Commun. Rev. 2014, 44, 66–73. [Google Scholar] [CrossRef]
- Amadeo, M.; Campolo, C.; Ruggeri, G.; Molinaro, A.; Iera, A. SDN-managed provisioning of named computing services in edge infrastructures. IEEE Trans. Netw. Serv. Manag. 2019, 16, 1464–1478. [Google Scholar] [CrossRef]
- Al-Hammadi, I.; Li, M.; Islam, S.M.; Al-Mosharea, E. Collaborative computation offloading for scheduling emergency tasks in SDN-based mobile edge computing networks. Comput. Netw. 2024, 238, 110101. [Google Scholar] [CrossRef]
- Shih, Y.Y.; Lin, H.P.; Pang, A.C.; Chuang, C.C.; Chou, C.T. An NFV-based service framework for IoT applications in edge computing environments. IEEE Trans. Netw. Serv. Manag. 2019, 16, 1419–1434. [Google Scholar] [CrossRef]
- Karrakchou, O.; Samaan, N.; Karmouch, A. Endn: An enhanced ndn architecture with a p4-programmabie data plane. In Proceedings of the 7th ACM Conference on Information-Centric Networking, Virtual, 29 September–1 October 2020; pp. 1–11. [Google Scholar]
- Zhou, Y.; Liu, L.; Wang, L.; Hui, N.; Cui, X.; Wu, J.; Peng, Y.; Qi, Y.; Xing, C. Service-aware 6G: An intelligent and open network based on the convergence of communication, computing and caching. Digit. Commun. Netw. 2020, 6, 253–260. [Google Scholar] [CrossRef]
- Li, Y.; HE, J.; Geng, L.; Liu, P.; Cui, Y. Framework of Compute First Networking (CFN). Internet-Draft Draft-li-Rtgwg-cfn-Framework-00, Internet Engineering Task Force. 2019. Work in Progress. Available online: https://datatracker.ietf.org/doc/draft-li-rtgwg-cfn-framework/ (accessed on 8 January 2024).
- Clemm, A.; Vega, M.T.; Ravuri, H.K.; Wauters, T.; De Turck, F. Toward truly immersive holographic-type communication: Challenges and solutions. IEEE Commun. Mag. 2020, 58, 93–99. [Google Scholar] [CrossRef]
- Cardenas-Robledo, L.A.; Hernández-Uribe, Ó.; Reta, C.; Cantoral-Ceballos, J.A. Extended reality applications in industry 4.0.–A systematic literature review. Telemat. Inform. 2022, 73, 101863. [Google Scholar] [CrossRef]
- Strinati, E.C.; Barbarossa, S.; Gonzalez-Jimenez, J.L.; Ktenas, D.; Cassiau, N.; Maret, L.; Dehos, C. 6G: The next frontier: From holographic messaging to artificial intelligence using subterahertz and visible light communication. IEEE Veh. Technol. Mag. 2019, 14, 42–50. [Google Scholar] [CrossRef]
- Akyildiz, I.F.; Guo, H. Holographic-type communication: A new challenge for the next decade. ITU J. Future Evol. Technol. 2022, 3, 421–442. [Google Scholar] [CrossRef]
- Petkova, R.; Bozhilov, I.; Manolova, A.; Tonchev, K.; Poulkov, V. On the Way to Holographic-Type Communications: Perspectives and Enabling Technologies. IEEE Access 2024, 12, 59236–59259. [Google Scholar] [CrossRef]
- Hou, W.; Bai, B.; Lyu, L. Evaluation Model of Holographic Communication Experience in the 6G Era Based on Light Field Display. Appl. Sci. 2023, 13, 12381. [Google Scholar] [CrossRef]
- Guo, Q.; Tang, F.; Rodrigues, T.K.; Kato, N. Five disruptive technologies in 6G to support digital twin networks. IEEE Wirel. Commun. 2023, 31, 149–155. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, K.; Zhang, Y. Digital twin networks: A survey. IEEE Internet Things J. 2021, 8, 13789–13804. [Google Scholar] [CrossRef]
- Yigit, Y.; Ahmadi, H.; Yurdakul, G.; Canberk, B.; Hoang, T.; Duong, T.Q. Digi-infrastructure: Digital twin-enabled traffic shaping with low-latency for 6G smart cities. IEEE Commun. Stand. Mag. 2024, 8, 28–34. [Google Scholar] [CrossRef]
- Okegbile, S.D.; Cai, J.; Niyato, D.; Yi, C. Human digital twin for personalized healthcare: Vision, architecture and future directions. IEEE Netw. 2022, 37, 262–269. [Google Scholar] [CrossRef]
- Amadeo, M.; Marche, C.; Ruggeri, G.; Ranjbaran, S.; Nitti, M. Composing Digital Twins for Internet of Everything Applications: A User-Centric Perspective. In Proceedings of the IEEE International Mediterranean Conference on Communications and Networking (MeditCom), Madrid, Spain, 8–11 July 2024; pp. 73–78. [Google Scholar]
- Mastorakis, S.; Mtibaa, A.; Lee, J.; Misra, S. Icedge: When edge computing meets information-centric networking. IEEE Internet Things J. 2020, 7, 4203–4217. [Google Scholar] [CrossRef]
- Jacobson, V.; Smetters, D.K.; Thornton, J.D.; Plass, M.F.; Briggs, N.H.; Braynard, R.L. Networking named content. In Proceedings of the 5th International Conference on Emerging Networking Experiments and Technologies, Rome, Italy, 1–4 December 2009; pp. 1–12. [Google Scholar]
- Amadeo, M.; Campolo, C.; Lia, G.; Molinaro, A.; Ruggeri, G. In-network placement of reusable computing tasks in an SDN-based network edge. IEEE Trans. Mob. Comput. 2023, 23, 1456–1471. [Google Scholar] [CrossRef]
- Shah, M.S.M.; Leau, Y.B.; Anbar, M.; Bin-Salem, A.A. Security and integrity attacks in named data networking: A survey. IEEE Access 2023, 11, 7984–8004. [Google Scholar] [CrossRef]
- Jiang, X.; Bi, J.; Wang, Y. What benefits does NDN have in supporting mobility. In Proceedings of the IEEE Symposium on Computers and Communications (ISCC), Madeira, Portugal, 23–26 June 2014; pp. 1–6. [Google Scholar]
- Augé, J.; Carofiglio, G.; Grassi, G.; Muscariello, L.; Pau, G.; Zeng, X. Map-me: Managing anchor-less producer mobility in content-centric networks. IEEE Trans. Netw. Serv. Manag. 2018, 15, 596–610. [Google Scholar] [CrossRef]
- Wang, X.; Cai, S. Edge-assisted NDN-based IoT framework with provider and consumer mobility support. IEEE Trans. Netw. Sci. Eng. 2022, 9, 1713–1725. [Google Scholar] [CrossRef]
- Wang, L.; Lane, A.; Serban, C.; Elwell, J.; Afanasyev, A.; Zhang, L. Investigating the Synergy between Routing and Forwarding Strategy in NDN Networks. In Proceedings of the 10th ACM Conference on Information-Centric Networking, Reykjavik, Iceland, 8–10 October 2023; pp. 67–77. [Google Scholar]
- Compagno, A.; Conti, M.; Ghali, C.; Tsudik, G. To NACK or not to NACK? negative acknowledgments in information-centric networking. In Proceedings of the IEEE 24th International Conference on Computer Communication and Networks (ICCCN), Las Vegas, NV, USA, 3–6 August 2015; pp. 1–10. [Google Scholar]
- Yi, C.; Abraham, J.; Afanasyev, A.; Wang, L.; Zhang, B.; Zhang, L. On the role of routing in named data networking. In Proceedings of the 1st ACM Conference on Information-Centric Networking, Paris, France, 24–26 September 2014; pp. 27–36. [Google Scholar]
- Tschudin, C.; Sifalakis, M. Named functions and cached computations. In Proceedings of the IEEE CCNC, Las Vegas, NV, USA, 10–13 January 2014; pp. 851–857. [Google Scholar]
- Scherb, C.; Faludi, B.; Tschudin, C. Execution state management in named function networking. In Proceedings of the IFIP Networking Conference (IFIP Networking) and Workshops, Stockholm, Sweden, 12–16 June 2017; pp. 1–6. [Google Scholar]
- Amadeo, M.; Campolo, C.; Molinaro, A.; Ruggeri, G. IoT data processing at the edge with named data networking. In Proceedings of the European Wireless, Catania, Italy, 2–4 May 2018; VDE: Berlin, Germany, 2018; pp. 1–6. [Google Scholar]
- Pirmagomedov, R.; Srikanteswara, S.; Moltchanov, D.; Arrobo, G.; Zhang, Y.; Himayat, N.; Koucheryavy, Y. Augmented computing at the edge using named data networking. In Proceedings of the IEEE Globecom Workshops (GC Wkshps), Virtual, 7–11 December 2020; pp. 1–6. [Google Scholar]
- Król, M.; Psaras, I. NFaaS: Named function as a service. In Proceedings of the 4th ACM Conference on Information-Centric Networking, Berlin, Germany, 26–28 September 2017; pp. 134–144. [Google Scholar]
- Król, M.; Habak, K.; Oran, D.; Kutscher, D.; Psaras, I. Rice: Remote method invocation in icn. In Proceedings of the 5th ACM Conference on Information-Centric Networking, Boston, MA, USA, 21–23 September 2018; pp. 1–11. [Google Scholar]
- Ye, Y.; Qiao, Y.; Lee, B.; Murray, N. PIoT: Programmable IoT using information centric networking. In Proceedings of the IEEE/IFIP Network Operations and Management Symposium, Istanbul, Turkey, 25–29 April 2016; pp. 825–829. [Google Scholar]
- Scherb, C.; Grewe, D.; Wagner, M.; Tschudin, C. Resolution strategies for networking the IoT at the edge via named functions. In Proceedings of the IEEE CCNC, Las Vegas, NV, USA, 12–15 January 2018; pp. 1–6. [Google Scholar]
- Amadeo, M.; Campolo, C.; Molinaro, A. NDNe: Enhancing named data networking to support cloudification at the edge. IEEE Commun. Lett. 2016, 20, 2264–2267. [Google Scholar] [CrossRef]
- Kondo, D.; Ansquer, T.; Tanigawa, Y.; Tode, H. Resource Breadcrumbs: Discovering Edge Computing Resources Over Named Data Networking. IEEE Trans. Netw. Serv. Manag. 2024, 21, 3305–3316. [Google Scholar] [CrossRef]
- Ambalavanan, U.; Grewe, D.; Nayak, N.; Liu, L.; Mohan, N.; Ott, J. DICer: Distributed coordination for in-network computations. In Proceedings of the 9th ACM Conference on Information-Centric Networking, Osaka, Japan, 19–21 September 2022; pp. 45–55. [Google Scholar]
- Marxer, C.; Tschudin, C. Result Provenance in Named Function Networking. In Proceedings of the 7th ACM Conference on Information-Centric Networking, Virtual, 29 September–1 October 2020; pp. 24–29. [Google Scholar]
- Xing, J.; Qiu, Y.; Hsu, K.F.; Sui, S.; Manaa, K.; Shabtai, O.; Piasetzky, Y.; Kadosh, M.; Krishnamurthy, A.; Ng, T.E.; et al. Unleashing SmartNIC packet processing performance in P4. In Proceedings of the ACM SIGCOMM 2023 Conference, New York, NY, USA, 10–14 September 2023; pp. 1028–1042. [Google Scholar]
- Liang, B.; Tian, J.; Zhu, Y. A Named In-Network Computing Service Deployment Scheme for NDN-Enabled Software Router. In Proceedings of the 5th International Conference on Hot Information-Centric Networking (HotICN), Guangzhou, China, 24–26 November 2022; pp. 25–29. [Google Scholar]
- Karlos, G.; Bal, H.; Wang, L. NetCL: A Unified Programming Framework for In-Network Computing. In Proceedings of the International Conference for High Performance Computing, Networking, Storage, and Analysis, Atlanta, GA, USA, 17–22 November 2024; pp. 1–20. [Google Scholar]
- Malazi, H.T.; Chaudhry, S.R.; Kazmi, A.; Palade, A.; Cabrera, C.; White, G.; Clarke, S. Dynamic service placement in multi-access edge computing: A systematic literature review. IEEE Access 2022, 10, 32639–32688. [Google Scholar] [CrossRef]
- Serrano, S.; Sahbudin, M.A.B.; Chaouch, C.; Scarpa, M. A new fingerprint definition for effective song recognition. Pattern Recognit. Lett. 2022, 160, 135–141. [Google Scholar] [CrossRef]
- Barrak, S.E.; Lyhyaoui, A.; Gonnouni, A.E.; Puliafito, A.; Serrano, S. Application of MVDR and MUSIC spectrum sensing techniques with implementation of node’s prototype for cognitive radio ad hoc networks. In Proceedings of the 2017 International Conference on Smart Digital Environment, Rabat, Morocco, 21–23 July 2017; pp. 101–106. [Google Scholar]
- Boukerche, A.; Coutinho, R.W.; Loureiro, A.A. Information-centric cognitive radio networks for content distribution in smart cities. IEEE Netw. 2019, 33, 146–151. [Google Scholar] [CrossRef]
- Krishnendu, S.; Bharath, B.; Bhatia, V.; Nebhen, J.; Dobrovolny, M.; Ratnarajah, T. Wireless edge caching and content popularity prediction using machine learning. IEEE Consum. Electron. Mag. 2022, 13, 32–41. [Google Scholar]
- Hantouti, H.; Benamar, N.; Taleb, T. Service function chaining in 5G & beyond networks: Challenges and open research issues. IEEE Netw. 2020, 34, 320–327. [Google Scholar]
- Liu, L.; Peng, Y.; Bahrami, M.; Xie, L.; Ito, A.; Mnatsakanyan, S.; Qu, G.; Ye, Z.; Guo, H. ICN-FC: An information-centric networking based framework for efficient functional chaining. In Proceedings of the IEEE International Conference on Communications (ICC), Paris, France, 21–25 May 2017; pp. 1–7. [Google Scholar]
- Feng, B.; Tian, A.; Yu, S.; Li, J.; Zhou, H.; Zhang, H. Efficient cache consistency management for transient IoT data in content-centric networking. IEEE Internet Things J. 2022, 9, 12931–12944. [Google Scholar] [CrossRef]
- Chan, K.; Ko, B.; Mastorakis, S.; Afanasyev, A.; Zhang, L. Fuzzy Interest forwarding. In Proceedings of the 13th Asian Internet Engineering Conference, Bangkok, Thailand, 20–22 November 2017; pp. 31–37. [Google Scholar]
- Sundarakantham, K.; Sivasankar, E. A hybrid deep learning framework for privacy preservation in edge computing. Comput. Secur. 2023, 129, 103209. [Google Scholar]
Reference | Year | Main Topic | Focus |
---|---|---|---|
[10] | 2013 | ICN | Comparison of distinct ICN architectures |
[11] | 2016 | ICN | Transport-layer approaches |
[12] | 2016 | ICN | NDN routing, caching, forwarding and mobility |
[13] | 2017 | ICN | In-network security and privacy |
[14] | 2019 | ICN | Forwarding strategies in wireless networks |
[15] | 2019 | ICN | NDN in vehicular networks |
[16] | 2020 | ICN | Naming and caching in 5G and beyond networks |
[17] | 2020 | ICN | Caching in vehicular NDN |
[18] | 2021 | ICN | Access control mechanisms in NDN |
[19] | 2022 | INC | Programmable data planes and applications |
[20] | 2022 | ICN | NDN routing |
[21] | 2023 | INC | In-network ML |
[22] | 2023 | ICN | In-network caching strategies |
[23] | 2024 | INC | Smart NICs |
[24] | 2024 | ICN | Software-defined NDN |
[25] | 2024 | INC | Enabling technologies and architectures |
[26] | 2024 | INC | In-network ML |
Technology | Main Features | Contributions to INC |
---|---|---|
SDN |
|
|
NFV |
|
|
ICN |
|
|
Programmable switches, smart NICs, FPGAs |
|
|
Approach | Ref. | Name Format | Key Features |
---|---|---|---|
NFN | [58,59] | Names represent data and functions with -expressions. The postfix name component /NFN denotes the computation request. |
|
NCN | [4,60] | Hierarchical names identify both data and functions. The tag /NCN is used as a delimiter between the two name parts. |
|
ICedge | [48,61] | Hierarchical names with meaningful prefixes for data and services. |
|
NFaas | [62] | Names include the main prefix /exec/ for execution requests. Application requirements are carried as name components. |
|
RICE | [63] | Functions named hierarchically or via -expressions. Thunk names identify ongoing computations. |
|
Reference | Approach | Domain | Main Features |
---|---|---|---|
[65] | Distributed, Reactive | IoT | Three resolution strategies (EdgeFox, FaX, (FoP)aX) for stationary and mobile networks with focus on reducing redundant computations. |
[60] | Distributed, Reactive | IoT | Identifies in-network executor as the closest node to the data source; minimizes data retrieval latency but may overburden nodes with limited resources. |
[4] | Distributed, Reactive | IoT | Selects best on-path executor by calculating execution cost considering data retrieval time and processing latency. |
[66] | Distributed, Reactive | Personal Services | Broadcasts over the wireless channel enhanced Interest packets with task attributes; providers in the neighborhood compute weighted cost metrics; random deferral time ensures the best provider responds first. |
[61] | Centralized, Reactive | IoT | Executor selection managed by a delegated node; polls edge nodes for availability, computation time, and cost; selects the node with the best offer within a decision interval. |
[31] | Centralized, Reactive | 5G services | SDN controller orchestrates executor selection based on global network knowledge; minimizes service provisioning time by evaluating the overall service provisioning latency. |
[48] | Distributed, Proactive | IoT | Periodic resource discovery mechanism where nodes share utilization information with neighbors. Update intervals range from 15 to 60 s, with messages flooded within a hop-count scope. |
[67] | Distributed, Proactive | IoT | Introduces resource breadcrumbs for proactive resource discovery, allowing edge nodes to distribute resource availability information. Updates occur only when significant resource changes happen, reducing overhead. |
[62] | Distributed, Proactive | 5G services | Nodes proactively advertise locally available function name prefixes via routing protocols, enabling Interests to be forwarded directly to appropriate executors. Decisions of what functions host are based on service popularity and requirements. |
[68] | Distributed, Proactive | 5G services | Leverages periodic and event-triggered updates on function availability and resource utilization thus nodes group into synchronization clusters. Executor selection leverages neighborhood knowledge before forwarding requests outside the group. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amadeo, M.; Ruggeri, G. Exploring In-Network Computing with Information-Centric Networking: Review and Research Opportunities. Future Internet 2025, 17, 42. https://doi.org/10.3390/fi17010042
Amadeo M, Ruggeri G. Exploring In-Network Computing with Information-Centric Networking: Review and Research Opportunities. Future Internet. 2025; 17(1):42. https://doi.org/10.3390/fi17010042
Chicago/Turabian StyleAmadeo, Marica, and Giuseppe Ruggeri. 2025. "Exploring In-Network Computing with Information-Centric Networking: Review and Research Opportunities" Future Internet 17, no. 1: 42. https://doi.org/10.3390/fi17010042
APA StyleAmadeo, M., & Ruggeri, G. (2025). Exploring In-Network Computing with Information-Centric Networking: Review and Research Opportunities. Future Internet, 17(1), 42. https://doi.org/10.3390/fi17010042