Enhancing Human–Agent Interaction via Artificial Agents That Speculate About the Future
Abstract
:1. Introduction
Overview
2. Background
2.1. Theoretical Work
2.2. Experimental Work
3. Materials and Methods
3.1. Approach
3.1.1. Avatar Speech System
3.1.2. Game Environment
3.2. Experiment and Data Collection
3.3. Data Analysis
4. Results
4.1. Utterance Counts
4.2. Interruption Frequency
4.3. Other Analysis Results
5. Discussion
5.1. Summary of Results
5.2. Implications
5.2.1. Design Implications for Artificial Conversational Agents
5.2.2. Design Implications for HRI/HAI Gameplay
5.2.3. Physical vs. Virtual Interaction in HRI
5.3. Limitations
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Byrne, R.M.J. The Rational Imagination: How People Create Alternatives to Reality; MIT Press: Cambridge, MA, USA, 2007. [Google Scholar]
- Atance, C.M.; O’Neill, D.K. The emergence of episodic future thinking in humans. Learn. Motiv. 2005, 36, 126–144. [Google Scholar] [CrossRef]
- Li, H.H.; Curtis, C.E. Neural population dynamics of human working memory. Curr. Biol. 2023, 33, 3775–3784. [Google Scholar] [CrossRef] [PubMed]
- Abrams, A.M.; der Pütten, A.M.R.V. I–C–E Framework: Concepts for Group Dynamics Research in Human-Robot Interaction: Revisiting Theory from Social Psychology on Ingroup Identification (I), Cohesion (C) and Entitativity (E). Int. J. Soc. Robot. 2020, 12, 1213–1229. [Google Scholar] [CrossRef]
- Kantharaju, R.B.; Pelachaud, C. Social Signals of Cohesion in Multi-party Interactions. In Proceedings of the 21st ACM International Conference on Intelligent Virtual Agents, Virtual, 14–17 September 2021; pp. 9–16. [Google Scholar] [CrossRef]
- Pineda, J.A. Is Social Cohesion a Different Mechanism of Evolution? In The Social Impulse: The Evolution and Neuroscience of What Brings Us Together; Springer International Publishing: Cham, Switzerland, 2021; pp. 43–51. [Google Scholar] [CrossRef]
- Bennett, C.C.; Lee, M. Would People Mumble Rap to Alexa? In Proceedings of the 5th International Conference on Conversational User Interfaces (CUI), Eindhoven, The Netherlands, 19–21 July 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Lim, V.; Rooksby, M.; Cross, E.S. Social robots on a global stage: Establishing a role for culture during human–robot interaction. Int. J. Soc. Robot. 2021, 13, 1307–1333. [Google Scholar] [CrossRef]
- Marge, M.; Espy-Wilson, C.; Ward, N.G.; Alwan, A.; Artzi, Y.; Bansal, M.; Blankenship, G.; Chai, J.; Daumé, H.; Dey, D.; et al. Spoken language interaction with robots: Recommendations for future research. Comput. Speech Lang. 2022, 71, 101255. [Google Scholar] [CrossRef]
- Lallée, S.; Hamann, K.; Steinwender, J.; Warneken, F.; Martienz, U.; Barron-Gonzales, H.; Pattacini, U.; Gori, I.; Petit, M.; Metta, G.; et al. Cooperative human robot interaction systems: IV. Communication of shared plans with Naïve humans using gaze and speech. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Tokyo, Japan, 3–7 November 2013; pp. 129–136. [Google Scholar] [CrossRef]
- Talamadupula, K.; Briggs, G.; Chakraborti, T.; Scheutz, M.; Kambhampati, S. Coordination in human-robot teams using mental modeling and plan recognition. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Chicago, IL, USA, 14–18 September 2014; pp. 2957–2962. [Google Scholar] [CrossRef]
- Hoffman, G. Anticipation in human-robot interaction. In Proceedings of the AAAI Spring Symposium Series, Palo Alto, CA, USA, 22–24 March 2010. [Google Scholar]
- Briggs, G.; Scheutz, M. The pragmatic social robot: Toward socially-sensitive utterance generation in human-robot interactions. In Proceedings of the AAAI Fall Symposium Series, Arlington, VA, USA, 17–19 November 2016. [Google Scholar]
- Castellucci, G.A.; Kovach, C.K.; Howard, M.A., III; Greenlee, J.D.; Long, M.A. A speech planning network for interactive language use. Nature 2022, 602, 117–122. [Google Scholar] [CrossRef]
- Postma, A.; Kolk, H.; Povel, D.J. Speech planning and execution in stutterers. J. Fluen. Disord. 1990, 15, 49–59. [Google Scholar] [CrossRef]
- Borthwick, S. Communication impairment in patients following stroke. Nurs. Stand. 2012, 26, 35. [Google Scholar] [CrossRef]
- Irfan, B.; Hellou, M.; Belpaeme, T. Coffee with a hint of data: Towards using data-driven approaches in personalised long-term interactions. Front. Robot. AI 2021, 8, 676814. [Google Scholar] [CrossRef]
- Rastogi, A.; Hakkani-Tür, D.; Heck, L. Scalable multi-domain dialogue state tracking. In Proceedings of the IEEE Automatic Speech Recognition and Understanding Workshop (ASRU), Okinawa, Japan, 16–20 December 2017; pp. 561–568. [Google Scholar] [CrossRef]
- Lim, J.; Whang, T.; Lee, D.; Lim, H. Adaptive Multi-Domain Dialogue State Tracking on Spoken Conversations. IEEE/ACM Trans. Audio Speech Lang. Process. 2023, 32, 727–732. [Google Scholar] [CrossRef]
- Bae, Y.H.; Bennett, C.C. Real-Time Multimodal Turn-taking Prediction to Enhance Cooperative Dialogue during Human-Agent Interaction. In Proceedings of the 32nd IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), Busan, Republic of Korea, 28–31 August 2023; pp. 2037–2044. [Google Scholar] [CrossRef]
- Skantze, G. Turn-taking in conversational systems and human-robot interaction: A review. Comput. Speech Lang. 2021, 67, 101178. [Google Scholar] [CrossRef]
- Bennett, C.C. Findings from Studies on English-Based Conversational AI Agents (including ChatGPT) Are Not Universal. In Proceedings of the 6th ACM Conference on Conversational User Interfaces (CUI), Luxembourg, 8–10 July 2024; pp. 1–5. [Google Scholar] [CrossRef]
- Irfan., B.; Kuoppamäki, S.M.; Skantze, G. Between reality and delusion: Challenges of applying large language models to companion robots for open-domain dialogues with older adults. ResearchSquare PrePrint 2023. [Google Scholar] [CrossRef]
- Nordberg, O.E.; Guribye, F. Conversations with the News: Co-speculation into Conversational Interactions with News Content. In Proceedings of the 5th International Conference on Conversational User Interfaces (CUI), Eindhoven, The Netherlands, 19–21 July 2023; pp. 1–11. [Google Scholar] [CrossRef]
- Lee, M.; Noortman, R.; Zaga, C.; Starke, A.; Huisman, G.; Andersen, K. Conversational futures: Emancipating conversational interactions for futures worth wanting. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (CHI), Yokohama, Japan, 8–13 May 2021; pp. 1–13. [Google Scholar] [CrossRef]
- Aylett, M.P.; Cowan, B.R.; Clark, L. Siri, echo and performance: You have to suffer darling. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (CHI), Glasgow, UK, 4–9 May 2019; pp. 1–10. [Google Scholar] [CrossRef]
- Williams, T.; Szafir, D.; Chakraborti, T.; Ben Amor, H. Virtual, augmented, and mixed reality for human-robot interaction. In Proceedings of the Companion of the 2018 ACM/IEEE International Conference on Human-Robot Interaction (HRI), Chicago, IL, USA, 5–8 March 2018; pp. 403–404. [Google Scholar] [CrossRef]
- Suzuki, R.; Karim, A.; Xia, T.; Hedayati, H.; Marquardt, N. Augmented reality and robotics: A survey and taxonomy for AR-enhanced human-robot interaction and robotic interfaces. In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems (CHI), New Orleans, LA, USA, 29 April–5 May 2022; pp. 1–33. [Google Scholar] [CrossRef]
- Völkel, S.T.; Schneegass, C.; Eiband, M.; Buschek, D. What is” intelligent” in intelligent user interfaces? a meta-analysis of 25 years of IUI. In Proceedings of the 25th International Conference on Intelligent User Interfaces (IUI), Cagliari, Italy, 17–20 March 2020; pp. 477–487. [Google Scholar] [CrossRef]
- Brooks, R.A. Elephants don’t play chess. Robot. Auton. Syst. 1990, 6, 3–15. [Google Scholar] [CrossRef]
- Pezzulo, G. Anticipation and future-oriented capabilities in natural and artificial cognition. In 50 Years of Artificial Intelligence: Essays Dedicated to the 50th Anniversary of Artificial Intelligence; Springer: Berlin/Heidelberg, Germany, 2007; pp. 257–270. [Google Scholar]
- Chater, N. How could we make a social robot? A virtual bargaining approach. Philos. Trans. R. Soc. A 2023, 381, 20220040. [Google Scholar] [CrossRef] [PubMed]
- Sagar, M.; Henderson, A.M.E.; Takac, M.; Morrison, S.; Knott, A.; Moser, A.; Yeh, W.-T.; Pages, N.; Jawed, K. Deconstructing and reconstructing turn-taking in caregiver-infant interactions: A platform for embodied models of early cooperation. J. R. Soc. N. Z. 2023, 53, 148–168. [Google Scholar] [CrossRef]
- Knott, A.; Sagar, M.; Takac, M. The ethics of interaction with neurorobotic agents: A case study with BabyX. AI Ethics 2022, 2, 115–128. [Google Scholar] [CrossRef]
- Gross, S.; Krenn, B. A communicative perspective on human–robot collaboration in industry: Mapping communicative modes on collaborative scenarios. Int. J. Soc. Robot. 2024, 16, 1315–1332. [Google Scholar] [CrossRef]
- Anastasopoulou, I.; van Lieshout, P.; Cheyne, D.O.; Johnson, B.W. Speech Kinematics and Coordination Measured With an MEG-Compatible Speech Tracking System. Front. Neurol. 2022, 13, 828237. [Google Scholar] [CrossRef]
- Martins, G.S.; Santos, L.; Dias, J. User-adaptive interaction in social robots: A survey focusing on non-physical interaction. Int. J. Soc. Robot. 2019, 11, 185–205. [Google Scholar] [CrossRef]
- Williams, T.; Thames, D.; Novakoff, J.; Scheutz, M. Thank you for sharing that interesting fact! Effects of capability and context on indirect speech act use in task-based human-robot dialogue. In Proceedings of the ACM/IEEE International Conference on Human-Robot Interaction (HRI), Chicago, IL, USA, 5–8 March 2018; pp. 298–306. [Google Scholar] [CrossRef]
- Law, T.; Scheutz, M. Trust: Recent concepts and evaluations in human-robot interaction. In Trust in Human-Robot Interaction; Academic Press: Cambridge, MA, USA, 2021; pp. 27–57. [Google Scholar] [CrossRef]
- St. Clair, A.; Mataric, M. How robot verbal feedback can improve team performance in human-robot task collaborations. In Proceedings of the ACM/IEEE International Conference on Human-Robot Interaction (HRI), Portland, OR, USA, 2–5 March 2015; pp. 213–220. [Google Scholar] [CrossRef]
- Grover, T.; Rowan, K.; Suh, J.; McDuff, D.; Czerwinski, M. Design and evaluation of intelligent agent prototypes for assistance with focus and productivity at work. In Proceedings of the 25th International Conference on Intelligent User Interfaces (IUI), Cagliari Italy, 17–20 March 2020; pp. 390–400. [Google Scholar] [CrossRef]
- Kraus, M.; Wagner, N.; Minker, W. Effects of proactive dialogue strategies on human-computer trust. In Proceedings of the 28th ACM conference on User Modeling, Adaptation and Personalization, Genoa, Italy, 14–17 July 2020; pp. 107–116. [Google Scholar] [CrossRef]
- Xie, L.; Liu, C.; Li, D. Proactivity or passivity? An investigation of the effect of service robots’ proactive behaviour on customer co-creation intention. Int. J. Hosp. Manag. 2022, 106, 103271. [Google Scholar] [CrossRef]
- Tian, L.; Oviatt, S. A taxonomy of social errors in human-robot interaction. ACM Trans. Hum. Robot Interact. (THRI) 2021, 10, 1–32. [Google Scholar] [CrossRef]
- Marge, M.; Rudnicky, A.I. Miscommunication detection and recovery in situated human–robot dialogue. ACM Trans. Interact. Intell. Syst. (TiiS) 2019, 9, 1–40. [Google Scholar] [CrossRef]
- Honig, S.; Oron-Gilad, T. Understanding and resolving failures in human-robot interaction: Literature review and model development. Front. Psychol. 2018, 9, 861. [Google Scholar] [CrossRef] [PubMed]
- Mok, B.K.J.; Yang, S.; Sirkin, D.; Ju, W. A place for every tool and every tool in its place: Performing collaborative tasks with interactive robotic drawers. In Proceedings of the 24th IEEE international symposium on robot and human interactive communication (RO-MAN), Kobe, Japan, 31 August–4 September 2015; pp. 700–706. [Google Scholar] [CrossRef]
- Das, D.; Banerjee, S.; Chernova, S. Explainable AI for robot failures: Generating explanations that improve user assistance in fault recovery. In Proceedings of the ACM/IEEE International Conference on Human-Robot Interaction (HRI), Boulder, CO, USA, 8–11 March 2021; pp. 351–360. [Google Scholar] [CrossRef]
- Bennett, C.C.; Weiss, B. Purposeful failures as a form of culturally-appropriate intelligent disobedience during human-robot social interaction. In Proceedings of the International Conference on Autonomous Agents and Multiagent Systems (AAMAS): Best & Visionary Papers, Virtual, 9–13 May 2022; pp. 84–90. [Google Scholar] [CrossRef]
- Newman, B.A.; Biswas, A.; Ahuja, S.; Girdhar, S.; Kitani, K.K.; Admoni, H. Examining the effects of anticipatory robot assistance on human decision making. In Proceedings of the International Conference on Social Robotics, (ICSR), Golden, CO, USA, 14–18 November 2020; pp. 590–603. [Google Scholar] [CrossRef]
- Nikolaidis, S.; Kwon, M.; Forlizzi, J.; Srinivasa, S. Planning with verbal communication for human-robot collaboration. ACM Trans. Hum. Robot Interact. (THRI) 2018, 7, 1–21. [Google Scholar] [CrossRef]
- Ali, M.R.; Van Orden, K.; Parkhurst, K.; Liu, S.; Nguyen, V.D.; Duberstein, P.; Hoque, M.E. Aging and engaging: A social conversational skills training program for older adults. In Proceedings of the 23rd International Conference on Intelligent User Interfaces (IUI), Tokyo, Japan, 7–11 March 2018; pp. 55–66. [Google Scholar] [CrossRef]
- Saponaro, G.; Salvi, G.; Bernardino, A. Robot anticipation of human intentions through continuous gesture recognition. In Proceedings of the International Conference on Collaboration Technologies and Systems (CTS), San Diego, CA, USA, 20–24 May 2013; pp. 218–225. [Google Scholar] [CrossRef]
- Ondáš, S.; Juhár, J.; Kiktová, E.; Zimmermann, J. Anticipation in speech-based human-machine interfaces. In Proceedings of the 9th IEEE International Conference on Cognitive Infocommunications (CogInfoCom), Budapest, Hungary, 22–24 August 2018; pp. 000117–000122. [Google Scholar] [CrossRef]
- Tellex, S.; Gopalan, N.; Kress-Gazit, H.; Matuszek, C. Robots that use language. Annu. Rev. Control Robot. Auton. Syst. 2020, 3, 25–55. [Google Scholar] [CrossRef]
- Schydlo, P.; Rakovic, M.; Jamone, L.; Santos-Victor, J. Anticipation in human-robot cooperation: A recurrent neural network approach for multiple action sequences prediction. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Brisbane, QLD, Australia, 21–25 May 2018; pp. 5909–5914. [Google Scholar] [CrossRef]
- Bennett, C.C.; Bae, Y.H.; Yoon, J.H.; Chae, Y.; Yoon, E.; Lee, S.; Ryu, U.; Kim, S.Y.; Weiss, B. Effects of cross-cultural language differences on social cognition during human-agent interaction in cooperative game environments. Comput. Speech Lang. 2023, 81, 101521. [Google Scholar] [CrossRef]
- Bennett, C.C.; Weiss, B.; Suh, J.; Yoon, E.; Jeong, J.; Chae, Y. Exploring data-driven components of socially intelligent AI through cooperative game paradigms. Multimodal Technol. Interact. 2022, 6, 16. [Google Scholar] [CrossRef]
- Hutto, C.; Gilbert, E. Vader: A parsimonious rule-based model for sentiment analysis of social media text. Proc. Int. AAAI Conf. Web Soc. Media 2014, 8, 216–225. [Google Scholar] [CrossRef]
- Park, H.M.; Kim, C.H.; Kim, J.H. Generating a Korean sentiment lexicon through sentiment score propagation. KIPS Trans. Softw. Data Eng. 2020, 9, 53–60. [Google Scholar] [CrossRef]
- Bennett, C.C.; Kim, S.Y.; Weiss, B.; Bae, Y.H.; Yoon, J.H.; Chae, Y.; Yoon, E.; Ryu, U.; Cho, H.; Shin, Y. Cognitive shifts in bilingual speakers affect speech interactions with artificial agents. Int. J. Hum. Comput. Interact. 2024, 40, 7100–7111. [Google Scholar] [CrossRef]
- Bartneck, C.; Kulić, D.; Croft, E.; Zoghbi, S. Measurement instruments for the anthropomorphism, animacy, likeability, perceived intelligence, and perceived safety of robots. Int. J. Soc. Robot. 2009, 1, 71–81. [Google Scholar] [CrossRef]
- Biocca, F.; Harms, C.; Gregg, J. The networked minds measure of social presence: Pilot test of the factor structure and concurrent validity. In Proceedings of the 4th Annual International Workshop on Presence, Philadelphia, PA, USA, 21–23 May 2001; pp. 1–9. [Google Scholar]
- Oh, C.S.; Bailenson, J.N.; Welch, G.F. A systematic review of social presence: Definition, antecedents, and implications. Front. Robot. AI 2018, 5, 114. [Google Scholar] [CrossRef] [PubMed]
- Yum, J.O. The impact of Confucianism on interpersonal relationships and communication patterns in East Asia. Commun. Monogr. 1988, 55, 374–388. [Google Scholar] [CrossRef]
- Ornelas, M.L.; Smith, G.B.; Mansouri, M. Redefining culture in cultural robotics. AI Soc. 2023, 38, 777–788. [Google Scholar] [CrossRef]
- Sabanovic, S.; Bennett, C.C.; Lee, H.R. Towards culturally robust robots: A critical social perspective on robotics and culture. In Proceedings of the 9th ACM/IEEE International Conference on Human-Robot Interaction Workshop on Culture-Aware Robotics (CARs), Bielefeld, Germany, 3–6 March 2014. [Google Scholar]
- Clark, L.; Pantidi, N.; Cooney, O.; Doyle, P.; Garaialde, D.; Edwards, J.; Spillane, B.; Gilmartin, E.; Murad, C.; Munteanu, C.; et al. What makes a good conversation? Challenges in designing truly conversational agents. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (CHI), Glasgow, UK, 4–9 May 2019; pp. 1–12. [Google Scholar] [CrossRef]
- Edquist, H.; Goodridge, P.; Haskel, J. The Internet of Things and economic growth in a panel of countries. Econ. Innov. New Technol. 2021, 30, 262–283. [Google Scholar] [CrossRef]
- Stanojevic, C.; Bennett, C.C.; Sabanovic, S.; Collins, S.; Baugus, K.; Henkel, Z.; Piatt, J.A. Conceptualizing socially-assistive robots as a digital therapeutic tool in healthcare. Front. Digit. Health 2023, 5, 1208350. [Google Scholar] [CrossRef]
- Xu, W.; Dainoff, M.J.; Ge, L.; Gao, Z. Transitioning to human interaction with AI systems: New challenges and opportunities for HCI professionals to enable human-centered AI. Int. J. Hum.–Comput. Interact. 2023, 39, 494–518. [Google Scholar] [CrossRef]
- Doncieux, S.; Chatila, R.; Straube, S.; Kirchner, F. Human-centered AI and robotics. AI Perspect. 2022, 4, 1. [Google Scholar] [CrossRef]
- Leite, I.; Pereira, A.; Mascarenhas, S.; Martinho, C.; Prada, R.; Paiva, A. The influence of empathy in human–robot relations. Int. J. Hum. Comput. Stud. 2013, 71, 250–260. [Google Scholar] [CrossRef]
- Häring, M.; Kuchenbrandt, D.; André, E. Would you like to play with me? How robots’ group membership and task features influence human-robot interaction. In Proceedings of the ACM/IEEE International Conference on Human-Robot Interaction (HRI), Bielefeld, Germany, 3–6 March 2014; pp. 9–16. [Google Scholar] [CrossRef]
- Correia, F.; Alves-Oliveira, P.; Maia, N.; Ribeiro, T.; Petisca, S.; Melo, F.S.; Paiva, A. Just follow the suit! Trust in human-robot interactions during card game playing. In Proceedings of the IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), New York, NY, USA, 26–31 August 2016; pp. 507–512. [Google Scholar] [CrossRef]
- Rato, D.; Correia, F.; Pereira, A.; Prada, R. Robots in games. Int. J. Soc. Robot. 2023, 15, 37–57. [Google Scholar] [CrossRef]
- Sánchez, P.C.; Bennett, C.C. Facial expression recognition via transfer learning in cooperative game paradigms for enhanced social AI. J. Multimodal User Interfaces 2023, 17, 187–201. [Google Scholar] [CrossRef]
- Ulmer, J.; Braun, S.; Cheng, C.T.; Dowey, S.; Wollert, J. Human-centered gamification framework for manufacturing systems. Procedia CIRP 2020, 93, 670–675. [Google Scholar] [CrossRef]
- Oliveira, R.; Arriaga, P.; Santos, F.P.; Mascarenhas, S.; Paiva, A. Towards prosocial design: A scoping review of the use of robots and virtual agents to trigger prosocial behaviour. Comput. Hum. Behav. 2021, 114, 106547. [Google Scholar] [CrossRef]
- Zamfirescu-Pereira, J.D.; Sirkin, D.; Goedicke, D.; Ray, L.C.; Friedman, N.; Mandel, I.; Martelaro, N.; Ju, W. Fake it to make it: Exploratory prototyping in HRI. In Proceedings of the ACM/IEEE International Conference on Human-Robot Interaction (HRI), Boulder, CO, USA, 8–11 March 2021; pp. 19–28. [Google Scholar] [CrossRef]
- McMillan, D.; Jaber, R.; Cowan, B.R.; Fischer, J.E.; Irfan, B.; Cumbal, R.; Zargham, N.; Lee, M. Human-Robot Conversational Interaction (HRCI). In Proceedings of the ACM/IEEE International Conference on Human-Robot Interaction (HRI), Stockholm Sweden, 13–16 March 2023; pp. 923–925. [Google Scholar] [CrossRef]
- Ruijten, P.A.; Midden, C.J.; Ham, J. Ambiguous agents: The influence of consistency of an artificial agent’s social cues on emotion recognition, recall, and persuasiveness. Int. J. Hum. Comput. Interact. 2016, 32, 734–744. [Google Scholar] [CrossRef]
- Ghazali, A.S.; Ham, J.; Barakova, E.; Markopoulos, P. The influence of social cues in persuasive social robots on psychological reactance and compliance. Comput. Hum. Behav. 2018, 87, 58–65. [Google Scholar] [CrossRef]
- Bartneck, C.; Soucy, M.; Fleuret, K.; Sandoval, E.B. The robot engine -Making the unity 3D game engine work for HRI. In Proceedings of the IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), Kobe, Japan, 31 August–4 September 2015; pp. 431–437. [Google Scholar] [CrossRef]
- Villa, S.; Mayer, S. Cobity: A Plug-And-Play Toolbox to Deliver Haptics in Virtual Reality. In Proceedings of the Mensch und Computer, Darmstadt, Germany, 4–7 September 2022; pp. 78–84. [Google Scholar] [CrossRef]
- Kraft, M.; Rickert, M. How to teach your robot in 5 minutes: Applying UX paradigms to human-robot-interaction. In Proceedings of the IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), Lisbon, Portugal, 28 August–1 September 2017; pp. 942–949. [Google Scholar] [CrossRef]
- Butters, D.; Jonasson, E.T.; Pawar, V.M. Exploring effects of information filtering with a VR interface for multi-robot supervision. Front. Robot. AI 2021, 8, 692180. [Google Scholar] [CrossRef]
- Walker, M.; Phung, T.; Chakraborti, T.; Williams, T.; Szafir, D. Virtual, augmented, and mixed reality for human-robot interaction: A survey and virtual design element taxonomy. ACM Trans. Hum. Robot. Interact. (THRI) 2023, 12, 1–39. [Google Scholar] [CrossRef]
- Prattico, F.G.; Lamberti, F. Mixed-reality robotic games: Design guidelines for effective entertainment with consumer robots. IEEE Consum. Electron. Mag. 2020, 10, 6–16. [Google Scholar] [CrossRef]
- Groechel, T.; Shi, Z.; Pakkar, R.; Matarić, M.J. Using socially expressive mixed reality arms for enhancing low-expressivity robots. In Proceedings of the IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), New Delhi, India, 14–18 October 2019; pp. 1–8. [Google Scholar] [CrossRef]
- Holz, T.; Dragone, M.; O’Hare, G.M. Where robots and virtual agents meet. Int. J. Soc. Robot. 2009, 1, 83–93. [Google Scholar] [CrossRef]
- Al Moubayed, S.; Beskow, J.; Skantze, G.; Granström, B. Furhat: A back-projected human-like robot head for multiparty human-machine interaction. Cogn. Behav. Syst. 2012, 114–130. [Google Scholar] [CrossRef]
- Agarwal, P.; Al Moubayed, S.; Alspach, A.; Kim, J.; Carter, E.J.; Lehman, J.F.; Yamane, K. Imitating human movement with teleoperated robotic head. In Proceedings of the IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), New York, NY, USA, 26–31 August 2016; pp. 630–637. [Google Scholar] [CrossRef]
- Blasi, D.E.; Henrich, J.; Adamou, E.; Kemmerer, D.; Majid, A. Over-reliance on English hinders cognitive science. Trends Cogn. Sci. 2022, 26, 1153–1170. [Google Scholar] [CrossRef] [PubMed]
- Bennett, C.C.; Sabanovic, S. Deriving minimal features for human-like facial expressions in robotic faces. Int. J. Soc. Robot. 2014, 6, 367–381. [Google Scholar] [CrossRef]
- Deng, E.; Mutlu, B.; Mataric, M.J. Embodiment in socially interactive robots. Found. Trend Robot. 2019, 7, 251–356. [Google Scholar] [CrossRef]
- Choi, H.; Crump, C.; Duriez, C.; Elmquist, A.; Hager, G.; Han, D.; Hearl, F.; Hodgins, J.; Jain, A.; Leve, F.; et al. On the use of simulation in robotics: Opportunities, challenges, and suggestions for moving forward. Proc. Natl. Acad. Sci. USA 2021, 118, e1907856118. [Google Scholar] [CrossRef] [PubMed]
- Ter Stal, S.; Broekhuis, M.; van Velsen, L.; Hermens, H.; Tabak, M. Embodied conversational agent appearance for health assessment of older adults: Explorative study. JMIR Hum. Factors 2020, 7, e19987. [Google Scholar] [CrossRef]
- Loveys, K.; Sebaratnam, G.; Sagar, M.; Broadbent, E. The effect of design features on relationship quality with embodied conversational agents: A systematic review. Int. J. Soc. Robot. 2020, 12, 1293–1312. [Google Scholar] [CrossRef]
Control (std) | H1 (std) | p-Value | Sign. | |
---|---|---|---|---|
English | ||||
Human | 122.66 (54.8) | 169.9 (79.29) | 0.15390 | |
Avatar | 99.44 (18.02) | 135 (34.37) | 0.01250 | * |
Avatar-planned | NA | 32.8 (8.92) | - | |
Avatar-self generated | 79.33 (10.93) | 80.5 (20.24) | 0.87640 | |
Avatar-ASR | 20.11 (11.24) | 21.7 (13.63) | 0.78640 | |
Korean | ||||
Human | 35.1 (18.46) | 96.8 (52.35) | 0.00480 | ** |
Avatar | 32.6 (17.68) | 119 (23.88) | 0.00000 | *** |
Avatar-planned | NA | 48 (15.28) | - | |
Avatar-self generated | 30.8 (16.87) | 66.2 (10.05) | 0.00002 | *** |
Avatar-ASR | 1.8 (1.48) | 4.8 (4.05) | 0.04990 | * |
Control (std) | H1 (std) | p-Value | Sign. | |
---|---|---|---|---|
Condition | ||||
English | 2.96% (3.30) | 3.70% (2.10) | 0.40280 | |
Korean | 0.76% (1.29) | 5.16% (3.89) | 0.00010 | *** |
Overall | 1.80% (2.77) | 4.43% (3.21) | 0.00850 | ** |
Speaker | ||||
Avatar—English | 4.20% (3.09) | 4.56% (1.78) | 0.65420 | |
Human—English | 1.68% (1.33) | 2.85% (2.25) | 0.05250 | |
Avatar—Korean | 0.90% (1.57) | 8.09% (3.40) | 0.00010 | *** |
Human—Korean | 0.64% (0.90) | 2.23% (1.73) | 0.00080 | *** |
Control | H1 | p-Value | Sign. | |
---|---|---|---|---|
Godspeed | 3.44 | 3.22 | 0.16100 | |
NM Self | 3.20 | 3.07 | 0.27000 | |
NM Other | 3.31 | 3.09 | 0.20200 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bennett, C.C.; Bae, Y.-H.; Yoon, J.-H.; Kim, S.Y.; Weiss, B. Enhancing Human–Agent Interaction via Artificial Agents That Speculate About the Future. Future Internet 2025, 17, 52. https://doi.org/10.3390/fi17020052
Bennett CC, Bae Y-H, Yoon J-H, Kim SY, Weiss B. Enhancing Human–Agent Interaction via Artificial Agents That Speculate About the Future. Future Internet. 2025; 17(2):52. https://doi.org/10.3390/fi17020052
Chicago/Turabian StyleBennett, Casey C., Young-Ho Bae, Jun-Hyung Yoon, Say Young Kim, and Benjamin Weiss. 2025. "Enhancing Human–Agent Interaction via Artificial Agents That Speculate About the Future" Future Internet 17, no. 2: 52. https://doi.org/10.3390/fi17020052
APA StyleBennett, C. C., Bae, Y.-H., Yoon, J.-H., Kim, S. Y., & Weiss, B. (2025). Enhancing Human–Agent Interaction via Artificial Agents That Speculate About the Future. Future Internet, 17(2), 52. https://doi.org/10.3390/fi17020052