Real-World Mobility and Environmental Data for the Assessment of In-Vehicle Battery Capacity Fade
Abstract
:1. Introduction
2. Background Information and Methodology
2.1. TEMA Platform
2.2. Battery Aging Models
2.3. Reference Vehicles, Battery Architectures, and Recharge Strategies
2.4. Ambient Temperature
3. Results
3.1. Mobility Patterns in Different EU Geographic Regions
3.2. Capacity Fade Results in Real-World Use Conditions
3.3. Capacity Fade Results: Effect on Warm Environmental Temperature
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
BEV | Battery Electric Vehicle |
BoL | Beginning of Life |
BMS | Battery Management System |
EoL | End of Life |
EVE IWG | Electric Vehicles and Environment Informal Working Group |
GMT | Greenwich Mean Time |
GPS | Global Positioning System |
GRPE | Working Party on Pollution and Energy |
HVAC | Heating, Ventilation and Air Conditioning |
LiFePO4 | Lithium-Iron-Phosphate |
Li-ion | Lithium-ion |
LMO | Lithium Manganese Oxide |
NCM | Nickel Cobalt Manganese Oxide |
PHEV | Plug-in Hybrid Electric Vehicle |
SOC | State of Charge |
TEMA | Transport tEchnology and Mobility Assessment |
WP.29 | UN’s World Forum for Harmonization of Vehicle Regulations |
References
- European Commission. COM 293 Final, Europe on Move. Sustainable Mobility for Europe: Safe, Connected and Clean 2018. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:0e8b694e-59b5-11e8-ab41-01aa75ed71a1.0003.02/DOC_3&format=PDF (accessed on 16 January 2020).
- Miller, P. Automotive Lithium-Ion Batteries—State of the art and future developments in lithium-ion battery packs for passenger car applications. Johns. Matthey Technol. Rev. 2015, 59, 4–13. [Google Scholar] [CrossRef]
- de Gennaro, M.; Paffumi, E.; Martini, G.; Giallonardo, A.; Pedroso, S. A case study to predict the capacity fade of the battery of electrified vehicles in real-world use conditions. Case Stud. Transp. Policy 2020, 8, 517–534. [Google Scholar] [CrossRef]
- UNECE EVE IWG, ECE/TRANS/WP.29/2014/81—(GRPE). Proposal for an Electric Vehicle Regulatory Reference Guide. Working Party on Pollution and Energy. World Forum for Harmonization of Vehicle Regulations. 2014. Available online: www.unece.org/trans/main/wp29/wp29 (accessed on 4 January 2019).
- Vetter, J.; Novak, P.; Wagner, M.R.; Veit, C.; Moller, K.C.; Besenhard, J.O.; Winter, M.; Wohlfahrt-Mehrens, M.; Vogler, C.; Hammouche, A. Ageing mechanisms in lithium-ion batteries. J. Power Sources 2005, 147, 269–281. [Google Scholar] [CrossRef]
- Barré, A.; Deguilhem, B.; Grolleau, S.; Gérard, M. A review on lithium-ion battery ageing mechanisms and estimations for automotive applications. J. Power Sources 2013, 241, 680–689. [Google Scholar] [CrossRef] [Green Version]
- Abraham, D.P.; Reynolds, E.M.; Sammann, E.; Jansen, A.N.; Dees, D.W. Aging characteristics of high-power lithium-ion cells with LiNi0.8Co0.15Al0.05O2 and Li4/3Ti5/3O4 electrodes. Electrochim. Acta 2005, 51, 502–510. [Google Scholar] [CrossRef]
- Zhang, Q.; White, R.E. Capacity fade analysis of a lithium ion cell. J. Power Sources 2008, 179, 793–798. [Google Scholar] [CrossRef]
- Murphy, J.L.; Winnick, J.; Kohl, P.A. Studies on the cycle life of commercial lithium ion batteries during rapid charge—Discharge cycling. J. Power Sources 2001, 102, 294–301. [Google Scholar]
- Wang, J.; Liu, P.; Hicks-Garner, J.; Sherman, E.; Soukiazian, S.; Verbrugge, M.; Tataria, H.; Musser, J.; Finamore, P. Cycle-life model for graphite-LiFePO4 cells. J. Power Sources 2011, 196, 3942–3948. [Google Scholar] [CrossRef]
- Sarasketa-Zabala, E.; Laresgoiti, I.A.; Rivas, M.; Villareal, I.; Blanco, F. Validation of the methodologies for lithium-ion batteries lifetime prognosis. In Proceedings of the Electric Vehicle Symposium 27th (EVS27), Barcelona, Spain, 17–20 November 2013. [Google Scholar]
- Sarasketa-Zabala, E.; Gandiaga, I.; Rodriguez-Martinez, L.M.; Villareal, I. Calendar ageing analysis of a LiFePO4/graphite cell with dynamic model validations: Towards realistic lifetime predictions. J. Power Sources 2014, 272, 45–57. [Google Scholar] [CrossRef]
- Sarasketa-Zabala, E.; Gandiaga, I.; Martinez-Laserna, E.; Rodriguez-Martinez, L.M. Cycle ageing analysis of a LiFePO4/graphite cell with dynamic model validations: Towards realistic lifetime predictions. J. Power Sources 2015, 275, 573–587. [Google Scholar] [CrossRef]
- Wang, J.; Purewal, J.; Liu, P.; Hicks-Garner, J.; Soukazian, S.; Sherman, E.; Sorenson, A.; Vu, L.; Tataria, H.; Verbrugge, M.W. Degradation of lithium ion batteries employing graphite negatives and nickelecobaltemanganese oxide þ spinel manganese oxide positives: Part 1, aging mechanisms and life estimation. J. Power Sources 2014, 269, 937–948. [Google Scholar] [CrossRef]
- Purewal, J.; Wang, J.; Graetz, J.; Soukazian, S.; Tataria, H.; Verbrugge, M.W. Degradation of lithium ion batteries employing graphite negatives and nickelecobaltemanganese oxide þ spinel manganese oxide positives: Part 2, chemicalemechanical degradation model. J. Power Sources 2014, 272, 1154–1161. [Google Scholar] [CrossRef]
- Cordoba-Arenas, A.; Onori, S.; Guezennec, Y.; Rizzoni, G. Capacity and power fade cycle-life model for plug-in hybrid electric vehicle lithium-ion battery cells containing blended spinel and layered-oxide positive electrodes. J. Power Sources 2015, 278, 473–483. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Coignard, J.; Zeng, T.; Zhang, C.; Saxena, S. Quantifying electric vehicle battery degradation from driving vs. vehicle-to-grid services. J. Power Sources 2016, 332, 193–203. [Google Scholar] [CrossRef] [Green Version]
- de Gennaro, M.; Paffumi, E.; Martini, G. Big Data for Supporting Low-Carbon Road Transport Policies in Europe: Applications, Challenges and Opportunities. Big Data Res. 2016, 6, 11–25. [Google Scholar] [CrossRef]
- Paffumi, E.; Martini, G. Capacity fade of Lithium-ion automotive batteries using real-world driving behaviour. In Proceedings of the 33rd World Electric Vehicle Symposium & Exposition (EVS33), Portland, OR, USA, 14–17 June 2020. [Google Scholar] [CrossRef]
- Paffumi, E.; de Gennaro, M.; Martini, G. European-wide study on big data for supporting road transport policy. Case Stud. Transp. Policy 2018, 6, 785–802. [Google Scholar] [CrossRef]
- Octo Telematics Italia, S.r.l. 2013. Available online: www.octotelematics.it (accessed on 14 December 2014).
- Be-Mobile, Traffic and Mobility. 2016. Available online: http://www.be-mobile-international.com/ (accessed on 13 March 2021).
- Universalis. 2016. Available online: http://www.universalis.be/ (accessed on 14 May 2019).
- UN ECE, Working Party on Pollution and Energy (GRPE). Available online: http://www.unece.org/trans/main/wp29/meeting_docs_grpe.html (accessed on 12 March 2021).
- Paffumi, E.; de Gennaro, M.; Scholz, H.; Masera, G. Assessment of the potential of electric vehicles and charging strategies to meet urban mobility requirements. Transp. Transp. Sci. 2015, 11, 22–60. [Google Scholar] [CrossRef]
- de Gennaro, M.; Paffumi, E.; Scholz, H.; Martini, G. GIS-driven analysis of e-mobility in urban areas: An evaluation of the impact on the electric energy grid. Appl. Energy 2014, 124, 94–116. [Google Scholar] [CrossRef]
- Chaouachi, A.; Bompard, E.; Fulli, G.; Masera, M.; De Gennaro, M.; Paffumi, E. Assessment framework for EV and PV synergies in emerging distribution systems. Renew. Sustain. Energy Rev. 2016, 55, 719–728. [Google Scholar] [CrossRef]
- Paffumi, E.; de Gennaro, M.; Martini, G. Innovative technologies for smart cities: Towards customer driven infrastructure design for large scale deployment of electric vehicles and Vehicle-to-Grid applications. Transp. Res. Procedia 2014, 14, 4505–4514. [Google Scholar] [CrossRef]
- de Gennaro, M.; Paffumi, E.; Martini, G. Customer-driven design of the recharge infrastructure and Vehicle-to-Grid in urban areas: A large-scale application for electric vehicles deployment. Energy 2015, 82, 294–311. [Google Scholar] [CrossRef]
- Martini, G.; Paffumi, E.; de Gennaro, M.; Mellios, G. European type-approval test procedure for evaporative emission from passenger cars against real-world mobility data from two Italian provinces. Sci. Total. Environ. 2014, 478, 506–520. [Google Scholar] [CrossRef]
- de Gennaro, M.; Paffumi, E.; Martini, G. Data-driven analysis of the effectiveness of evaporative emissions control systems of passenger cars in real-world use condition. Atmos. Environ. 2016, 129, 277–293. [Google Scholar] [CrossRef]
- Paffumi, E.; de Gennaro, M.; Martini, G. Alternative utility factor versus the SAE J2841 standard method for PHEV and BEV applications. Transp. Policy 2018, 68, 80–97. [Google Scholar] [CrossRef]
- Paffumi, E.; de Gennaro, M.; Martini, G. Big data for assessing travel behaviour in Europe: Initiating a continental scale pilot for supporting the next generation of policy makers. In Proceedings of the 7th Transport Research Arena, Vienna, Austria, 16–19 April 2018. [Google Scholar]
- Loiselle-Lapointe, A.; Pedroso, S.; de Gennaro, M.; Paffumi, E.; Christenson, M.; Safoutin, M. Impacts of Mileage Accumulation and Fast Charging on EV Range and Energy Usage. In Proceedings of the EVS 31& EVTec, Kobe, Japan, 30 September–3 October 2018. [Google Scholar]
- Smith, K.; Earleywine, M.; Wood, E.; Pesaran, A. Battery Wear from Disparate Duty-Cycles: Opportunities for Electric-Drive Vehicle Battery Health Management. In Proceedings of the American Control Conference, Montreal, Canada, 27–29 June 2012. [Google Scholar]
- Marano, V.; Onori, S.; Guezennec, Y.; Rizzoni, G.; Madella, N. Lithium-ion Batteries Life Estimation for Plug-in Hybrid Electric Vehicles. In Proceedings of the IEEE Vehicle Power and Propulsion Conference, Dearborn, MI, USA, 7–10 September 2009. [Google Scholar]
- US EPA. Green Vehicle Guide. 2012. Available online: https://www.epa.gov/greenvehicles (accessed on 12 January 2018).
- de Gennaro, M.; Paffumi, E.; Martini, G.; Manfredi, U.; Vianelli, S.; Ortenzi, F.; Genovese, A. Experimental Test Campaign on a Battery Electric Vehicle: Laboratory Test Results (Part 1). SAE Int. J. Altern. Powertrains 2015, 4, 100–114. [Google Scholar] [CrossRef]
- Paffumi, E.; de Gennaro, M.; Martini, G.; Manfredi, U.; Vianelli, S.; Ortenzi, F.; Genovese, A. Experimental Test Campaign on a Battery Electric Vehicle: On-Road Test Results (Part 2). SAE Int. J. Altern. Powertrains 2015, 4, 277–292. [Google Scholar] [CrossRef]
- World Temperatures—Weather Around the World.2017. Available online: https://www.timeanddate.com/weather/ (accessed on 12 March 2021).
- Gyan, P. Battery ageing tests and modelling under calendar, cycling and mixed conditions. In Proceedings of the 2nd International Conference Automotive Battery Management Systems, Potsdam, Germany, 19–21 September 2016; Available online: https://battery-safety-summit.iqpc.de/battery-ageing-tests-and-modelling-under-calendar (accessed on 22 November 2018).
- Grolleau, S. Cycling Aging of Lithium-ion Batteries, EIGSI, MAT4BAT Summer School, Ra Rochelle, EIGSI, France. 2015. Available online: http://mat4bat.eu/wp-content/uploads/2014/03/Cycling-Aging-of-Lithium-Ion-batteries_Grolleau_EIGSI.pdf (accessed on 22 November 2018).
- Argue, C. What can 6000 Electric Vehicles Tell us about EV Battery Health? 2019. Available online: https://www.geotab.com/ (accessed on 14 October 2020).
No. of Days [#] | No. of Vehicles [#] | Records [·106] | Trips [·106] | Total Trips Lengths [km·106] | No. of Trip per Day (Mean) [#] | Trip Length [km] (Mean) | Daily Driven Distance (Mean) [km] | Private Vehicles Share | Commercial Vehicles Share | Analyzed Sample (% of Registered Vehicles in the Province Area) | |
---|---|---|---|---|---|---|---|---|---|---|---|
Modena province | 31 | 16,263 | 16.00 | 1.9 | 14.98 | 6.6 | 7.8 | 51.9 | 91.6% | 8.4% | 3.68% |
Florence province | 31 | 12,478 | 32.01 | 2.6 | 20.66 | 6.4 | 8.0 | 51.3 | 90.9% | 9.1% | 1.82% |
Amsterdam province | 7 | 197,756 | 466.28 | 1.1 | 19.86 | 1.9 | 19.7 | 37.2 | 83.2% | 16.8% | 17.17% |
Brussels province | 14 | 96,802 | 277.05 | 1.1 | 11.21 | 7.9 | 7.7 | 55.2 | 91.2% | 8.8% | 16.26% |
Paris province | 7 | 171,220 | 963.27 | 2.3 | 38.39 | 4.2 | 17.0 | 71.7 | 99.1% | 0.9% | 2.43% |
Luxemb. province | 7 | 14,090 | 24.33 | 0.08 | 1.0 | 2.5 | 11.9 | 30.1 | 92.0% | 8.0% | 17.63% |
TOTAL | 508,609 | 1.78 × 103 | 9.08 | 106.1 |
Capacity Fade | Power Fade | |||||
---|---|---|---|---|---|---|
Model # | Calendar | Cycle | Model # | Calendar | Cycle | |
LiFePO4 | Model 1 | Sarasketa-Zabala et al. (2013/14) [11,12] | Wang et al. (2011), [10] | Model 1 | Sarasketa-Zabala et al. (2013), [11] | |
Model 2 | Sarasketa-Zabala et al. (2013), [3,11] | |||||
Model 3 | Sarasketa-Zabala et al. (2015), [13] | |||||
NCM + spinel Mn | Model 4 | Wang et al. (2014), [14,15] | - | - | ||
NCM–LMO | Model 5 | Wang et al. (2014), [14,15] | Cordoba-Arenas et al. (2014), [16] | Model 2 | - | Cordoba-Arenas et al. (2015), [16] |
Vehicle Type | Battery Size [Wh] | Battery Shape and Cells Type | Usable Energy at BoL [Wh] | Usable Energy at EoL [Wh] | Reserve [% of Battery Capacity] | Energy Consumption [Wh/km] | |
---|---|---|---|---|---|---|---|
PHEV-1 | Large-sized vehicle | 16,000 | T-shaped pouch cells | 12,000 | 9600 | 25% | 205 |
PHEV-2 | Medium-sized vehicle | 8800 | Parallelepiped Prismatic cell | 6600 | 5280 | 25% | 160 |
PHEV-3 | Large-sized vehicle | 12,000 | Parallelepiped Prismatic cell | 9000 | 7200 | 25% | 194 |
BEV-1 | Medium-sized vehicle | 24,000 | Parallelepiped pouch cells | 18,000 | 14,400 | 15% | 210 |
BEV-2 | Large-sized vehicle | 85,000 | Flat cylindrical cells | 63,750 | 51,000 | 15% | 235 |
Strategy ID–Name | Recharge Constraints | Power [kW] | Recharge Model Inputs |
---|---|---|---|
1–Long-Stop Random AC | parking ≥ 120 min and random parameter ≥ 0.6 | 2 | parking duration and random parameter |
2–Short-Stop Random DC | parking ≥ 20 min and random parameter ≥ 0.6 | 40 | parking duration and random parameter |
3–Night AC | parking ≥ 4 h and parking between 10 p.m. and 7 a.m. | 2 | parking duration and night recharge window |
Average Trip Distance [km] | Average Trip Duration [min] | Average Parking Duration [h] | Average Trip Speed [km/h] | ||
---|---|---|---|---|---|
Private Vehicles | Province of Modena | 7.69 | 11.63 | 4.07 | 28.92 |
Province of Florence | 7.85 | 13.0 | 4.33 | 26.13 | |
Province of Amsterdam | 19.68 | 14.32 | 1.14 | 78.75 | |
Province of Brussels | 7.75 | 9.13 | 1.45 | 51.98 | |
Province of Paris | 16.97 | 20.05 | 1.18 | 44.87 | |
Province of Luxembourg | 11.88 | 13.99 | 1.703 | 54.491 |
EoL @ 80% Capacity Fade Li-Ion NCM-LMO (2015) Years Driving to Set Threshold | 0–500 km/month | 500–1000 km/month | 1000–1500 km/month | 1500–2000 km/month | 2000+ km/month | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Years to EoL | Years to 100,000 km | Years to 160,000 km | Years to EoL | Years to 100,000 km | Years to 160,000 km | Years to EoL | Years to 100,000 km | Years to 160,000 km | Years to EoL | Years to 100,000 km | Years to 160,000 km | Years to EoL | Years to 100,000 km | Years to 160,000 km | |||
Recharge Strategy #1 | PHEV-1 | Modena Prov. | 16.5 | ≥20 | ≥20 | 14.6 | 14.2 | ≥20 | |||||||||
Amsterdam Prov. | 19.0 | ≥20 | ≥20 | 16.4 | 14.2 | ≥20 | |||||||||||
Brussels Prov. | 18.9 | ≥20 | ≥20 | 16.1 | 15.0 | ≥20 | |||||||||||
Luxembourg Prov. | 18.0 | ≥20 | ≥20 | 15.8 | 13.2 | ≥20 | |||||||||||
Paris Prov. | 16.1 | ≥20 | ≥20 | 14.5 | 13.5 | ≥20 | |||||||||||
BEV-1 | Modena Prov. | 9.7 | ≥20 | ≥20 | 8.6 | 12.8 | ≥20 | 8.2 | 7.9 | 12.6 | |||||||
Amsterdam Prov. | 11.1 | ≥20 | ≥20 | 9.7 | 13.9 | ≥20 | 9.0 | 7.5 | 12.0 | ||||||||
Brussels Prov. | 11.1 | ≥20 | ≥20 | 9.5 | 14.3 | ≥20 | |||||||||||
Luxembourg Prov. | 10.6 | ≥20 | ≥20 | 9.4 | 13.2 | ≥20 | 8.8 | 7.4 | 11.9 | ||||||||
Paris Prov. | 9.5 | ≥20 | ≥20 | 8.6 | 12.9 | ≥20 | 8.1 | 7.5 | 12.0 | 8.1 | 5.2 | 9.5 | |||||
BEV-2 | Modena Prov. | 12.1 | ≥20 | ≥20 | 12.7 | 11.2 | 17.9 | 13.6 | 6.9 | 11.0 | 14.7 | 5 | 8.1 | 16.1 | 3.9 | 6.3 | |
Amsterdam Prov. | 13.9 | ≥20 | ≥20 | 13.7 | 11.6 | 18.6 | 13.7 | 7.2 | 11.5 | 14.3 | 5.2 | 8.3 | 15.7 | 4.0 | 6.4 | ||
Brussels Prov. | 13.4 | ≥20 | ≥20 | 13.4 | 13.2 | ≥20 | 14.1 | 7.5 | 12.0 | ||||||||
Luxembourg Prov. | 13.4 | ≥20 | ≥20 | 13.4 | 11.6 | 18.5 | 13.6 | 7.1 | 11.4 | 14.2 | 5.1 | 8.2 | 14.7 | 4.1 | 6.6 | ||
Paris Prov. | 12.0 | ≥20 | ≥20 | 12.0 | 11.2 | 17.9 | 12.1 | 7.0 | 11.3 | 12.8 | 5.1 | 8.1 | 14.1 | 3.8 | 6.1 | ||
Recharge Strategy #2 | BEV-1 | Modena Prov. | 9.3 | ≥20 | ≥20 | 7.9 | 11.7 | 18.7 | 7.1 | 7.1 | 11.4 | 6.6 | 5.1 | 8.1 | 6.2 | 3.7 | 6 |
Amsterdam Prov. | 11.0 | ≥20 | ≥20 | 9.2 | 13.3 | ≥20 | 8.1 | 7.4 | 11.8 | 7.5 | 5.2 | 8.3 | 7.0 | 4.0 | 6.5 | ||
Brussels Prov. | 11.0 | ≥20 | ≥20 | 8.9 | 13.2 | ≥20 | 7.9 | 7.1 | 11.4 | 7.4 | 5.1 | 8.2 | |||||
Luxembourg Prov. | 10.5 | ≥20 | ≥20 | 8.8 | 12.2 | 19.5 | 7.8 | 6.9 | 11.1 | 7.2 | 4.9 | 7.8 | 6.6 | 3.5 | 5.6 | ||
Paris Prov. | 9.3 | ≥20 | ≥20 | 8.0 | 12.0 | 19.2 | 7.2 | 7.0 | 11.2 | 6.7 | 4.9 | 7.9 | 6.3 | 3.7 | 5.9 | ||
BEV-2 | Modena Prov. | 11.6 | ≥20 | ≥20 | 11.4 | 11 | 17.7 | 11.3 | 6.8 | 10.8 | 11.2 | 4.8 | 7.7 | 11.2 | 3.4 | 5.4 | |
Amsterdam Prov. | 13.7 | ≥20 | ≥20 | 13.2 | 11.7 | 18.8 | 13.0 | 7.0 | 11.2 | 12.8 | 4.9 | 7.9 | 12.7 | 3.5 | 5.7 | ||
Brussels Prov. | 13.2 | ≥20 | ≥20 | 12.8 | 12.8 | ≥20 | 12.7 | 6.9 | 11.0 | 13.1 | 4.8 | 7.7 | 13.2 | 3.7 | 5.9 | ||
Luxembourg Prov. | 13.2 | ≥20 | ≥20 | 12.8 | 11.7 | 18.6 | 12.6 | 7.0 | 11.2 | 12.5 | 4.9 | 7.9 | 12.5 | 3.4 | 5.5 | ||
Paris Prov. | 11.8 | ≥20 | ≥20 | 11.5 | 11.3 | 18.0 | 11.4 | 6.8 | 10.9 | 11.3 | 4.8 | 7.7 | 11.4 | 3.0 | 4.8 | ||
Recharge Strategy #3 | PHEV-1 | Modena Prov. | 16.1 | ≥20 | ≥20 | 14.4 | 12.3 | 19.8 | 13.7 | 7.7 | 12.3 | ||||||
Amsterdam Prov. | 19.0 | ≥20 | ≥20 | ||||||||||||||
Brussels Prov. | 18.8 | ≥20 | ≥20 | 16.1 | 14.9 | ≥20 | |||||||||||
Luxembourg Prov. | 17.8 | ≥20 | ≥20 | ||||||||||||||
Paris Prov. | 16.1 | ≥20 | ≥20 | 14.4 | 13.6 | ≥20 | |||||||||||
BEV-1 | Modena Prov. | 9.6 | ≥20 | ≥20 | 8.5 | 11.7 | 18.7 | 8.2 | 7.2 | 11.5 | 8 | 5.2 | 8.4 | ||||
Amsterdam Prov. | 11.1 | ≥20 | ≥20 | 9.6 | 14.3 | ≥20 | |||||||||||
Brussels Prov. | 11.0 | ≥20 | ≥20 | 9.6 | 15.2 | ≥20 | |||||||||||
Luxembourg Prov. | 10.4 | ≥20 | ≥20 | 9.3 | 13.7 | ≥20 | |||||||||||
Paris Prov. | 9.4 | ≥20 | ≥20 | 8.6 | 13.9 | ≥20 | |||||||||||
BEV-2 | Modena Prov. | 12.1 | ≥20 | ≥20 | 12.7 | 11.1 | 17.7 | 13.7 | 6.8 | 10.9 | 14.8 | 4.9 | 7.9 | 16 | 4 | 6.4 | |
Amsterdam Prov. | 13.9 | ≥20 | ≥20 | 13.6 | 11.7 | 18.7 | 13.4 | 7.4 | 11.8 | ||||||||
Brussels Prov. | 13.2 | ≥20 | ≥20 | 13.0 | 14.6 | ≥20 | |||||||||||
Luxembourg Prov. | 13.4 | ≥20 | ≥20 | 13.1 | 11.5 | 18.4 | 13.0 | 6.7 | 10.7 | 12.7 | 5.0 | 8.1 | 12.4 | 3.5 | 5.6 | ||
Paris Prov. | 12.0 | ≥20 | ≥20 | 11.8 | 11.1 | 17.8 | 11.7 | 7.4 | 11.8 | 13.0 | 5.0 | 8.1 |
EoL @ 80% Capacity Fade Li-Ion NCM-LMO (2015) Years Driving to Set Threshold Warm Environment Temperature (Lisbon 2017) | Fleet Share | 0–500 km/Month | 500–1000 km/Month | 1000–1500 km/Month | 1500–2000 km/Month | 2000+ km/Month | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Years to EoL | Years to 100,000 km | Years to 160,000 km | Years to EoL | Years to 100,000 km | Years to 160,000 km | Years to EoL | Years to 100,000 km | Years to 160,000 km | Years to EoL | Years to 100,000 km | Years to 160,000 km | Years to EoL | Years to 100,000 km | Years to 160,000 km | ||||
Recharge Strategy #1 | Modena Prov. | BEV-1 | 9.9% | 7.0 | ≥20 | ≥20 | 6.3 | 13.2 | ≥20 | - | - | - | ||||||
BEV-2 | 46.4% | 8.5 | ≥20 | ≥20 | 9.2 | 11.3 | 18.0 | 9.9 | 7.0 | 11.3 | 10.8 | 5.2 | 8.3 | 11.9 | 4.1 | 6.5 | ||
Recharge Strategy #2 | Modena Prov. | BEV-1 | 19.9% | 6.5 | ≥20 | ≥20 | 5.6 | 12.0 | 19.2 | 5.0 | 7.2 | 11.6 | 4.7 | 5.2 | 8.4 | 4.3 | 3.8 | 6.0 |
BEV-2 | 75.0% | 8.1 | ≥20 | ≥20 | 8.0 | 11.1 | 17.7 | 7.9 | 6.8 | 10.8 | 7.9 | 4.9 | 7.8 | 7.9 | 3.5 | 5.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paffumi, E.; Martini, G. Real-World Mobility and Environmental Data for the Assessment of In-Vehicle Battery Capacity Fade. World Electr. Veh. J. 2021, 12, 48. https://doi.org/10.3390/wevj12010048
Paffumi E, Martini G. Real-World Mobility and Environmental Data for the Assessment of In-Vehicle Battery Capacity Fade. World Electric Vehicle Journal. 2021; 12(1):48. https://doi.org/10.3390/wevj12010048
Chicago/Turabian StylePaffumi, Elena, and Giorgio Martini. 2021. "Real-World Mobility and Environmental Data for the Assessment of In-Vehicle Battery Capacity Fade" World Electric Vehicle Journal 12, no. 1: 48. https://doi.org/10.3390/wevj12010048
APA StylePaffumi, E., & Martini, G. (2021). Real-World Mobility and Environmental Data for the Assessment of In-Vehicle Battery Capacity Fade. World Electric Vehicle Journal, 12(1), 48. https://doi.org/10.3390/wevj12010048