Analysis and Prediction of Electromobility and Energy Supply by the Example of Stuttgart
Abstract
:1. Introduction
- (1).
- We investigate the effect of electric vehicle charging in terms of four key categories: market share forecasting, energy demand, charging profiles, and electrical distribution network.
- (2).
- The paper used a comprehensive perspective, consisting of three modeling tools (energy system model, travel demand model and distribution network model) to assess the evolution of the future impact of electric vehicles in urban areas. By standardizing the modeling process, these models with different input parameters work separately but contribute to precisely predefined scenarios.
2. Prediction of Vehicle Number and Charging Points for an Exemplary Local Area until 2030
3. Energy Demand in the Stuttgart Region
- “KLIM”: reduction of 95% global greenhouse gas (GHG) emissions until 2050 (compared with 1990) and rapid implementation of electromobility (27% xEV in 2030);
- “KLIMPLUS”: a falling demand for mobility in individual motorized transport due to increasing demand in public transport and rail traffic;
- “KLIMPLUS-LOW”: identical general conditions with “KLIMPLUS”, but a significantly delayed expansion of electromobility (10% xEV in 2030).
4. Examination of Network Effects in the City Stuttgart Based on the Travel Demand Model MobiTopp including Electric Vehicles
5. Analysis and Prognosis on Network Load in the City of Stuttgart
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kasten, P.; Bracker, J.; Haller, M. Assessing the Status of Electrification of Road Transport Passenger Vehicles and Potential Future Implications for the Environment and European Energy System; Institute for Applied Ecology: Berlin, Germany, 2016; Available online: https://www.oeko.de/fileadmin/oekodoc/Assessing-the-status-of-electrification-of-the-road-transport-passenger-vehicles.pdf (accessed on 9 May 2021).
- Clement-Nyns, K.; Haesen, E.; Driesen, J. The Impact of Charging Plug-In Hybrid Electric Vehicles on a Residential Distribution Grid. IEEE Trans. Power Syst. 2010, 25, 371–380. [Google Scholar] [CrossRef] [Green Version]
- Shafiee, S.; Fotuhi-Firuzabad, M.; Rastegar, M. Investigating the Impacts of Plug-in Hybrid Electric Vehicles on Power Distribution Systems. IEEE Trans. Smart Grid 2013, 4, 1351–1360. [Google Scholar] [CrossRef]
- European Automobile Manufacturers’ Association (ACEA)“Passenger Car Registrations: +0.1% in 2018; −8.4% in December”. Available online: https://www.acea.be/press-releases/article/passenger-car-registrations-0.1-in-2018-8.4-in-december (accessed on 28 January 2019).
- Živčák, J.; Kádárová, J.; Puškár, M.; Kočišová, M.; Lachvajderová, L. Expected Impacts of the Massive Increase in Electric Vehicles in Slovakia. Appl. Sci. 2020, 10, 8945. [Google Scholar] [CrossRef]
- Energy.gov. Summary Report on EVs at Scale and the U.S. Electric Power System. Available online: https://www.energy.gov/eere/vehicles/downloads/summary-report-evs-scale-and-us-electric-power-system-2019 (accessed on 11 May 2021).
- Capros, P.; De Vita, A.; Tasios, N. EU Energy, Transport and GHG Emissions Trends to 2050: Reference Scenario 2013; National Technical University of Athens: Luxembourg, 2013. [Google Scholar]
- Wu, X.; Feng, Q.; Bai, C. A novel fast-charging stations locational planning model for electric bus transit system. Energy 2021, 224, 120106. [Google Scholar] [CrossRef]
- Göhler, G.; Schmaus, C.; Klingler, A. Netzbelastungen und Netzdienstleistungen durch Elektrofahrzeuge, Institut für Arbeitswissenschaft und Technologiemanagement IAT 2019. Available online: https://elib.uni-stuttgart.de/bitstream/11682/10624/3/2019_G%c3%b6hler_Netzbelastungen_und_Netzdienstleistungen_durch%20Elektrofahrzeuge.pdf (accessed on 22 April 2021).
- Jiang, Z.; Tian, H.; Beshir, M.J.; Vohra, S.; Mazloomzadeh, A. Analysis of electric vehicle charging impact on the electric power grid: Based on smart grid regional demonstration project-Los Angeles. In Proceedings of the 2016 IEEE PES Transmission & Distribution Conference and Exposition-Latin America (PES T&D-LA), Morelia, Mexico, 20–24 September 2016; Institute of Electrical and Electronics Engineers (IEEE): New York, NY, USA, 2016; pp. 1–5. [Google Scholar]
- Wussow, J.; Modica, G.; Engel, B. Grid-Oriented Charging of Electric Vehicles as Approach for Increasing Penetration in Residential Areas. In Proceedings of the International ETG-Congress 2019, Esslingen, Germany, 8–9 May 2019. [Google Scholar]
- Wörner, R.; Blesl, M.; Jochem, P. Prognosen einer elektromobilen Offensive im urbanen Raum am Beispiel des Großraums Stuttgart-Konsequenzen und Handlungsoptionen. In Proceedings of the 11 Internationale Energiewirtschaftstagung (IEWT 2019), Wien, Austria, 13–15 February 2019. [Google Scholar]
- Wörner, R.; Blesl, M.; Jochem, P. Prediction on future electric vehicle market shares in urban areas and related consequences for energy delivery & grid stability-investigation of Stuttgart. In Proceedings of the 32nd International Electric Vehicle Symposium, Lyon, Frankreich, 19–22 May 2019. [Google Scholar]
- Wörner, R.; Blesl, M.; Jochem, P. Elektromobilität im urbanen Raum-Analysen und Prognosen im Spannungsfeld von Elektromobilität und Energieversorgung am Fallbeispiel Stuttgart, Stuttgart 2019. Available online: https://pudi.lubw.de/detailseite/-/publication/10118-Elektromobilit%C3%A4t_im_urbanen_Raum_-_Analysen_und_Prognosen_im_Spannungsfeld_von_Elektromobilit%C3%A4t_und_.pdf (accessed on 9 April 2021).
- Schmitz, M. Aktuelle Entwicklungen im ÖPNV: Vor Welchen Herausforderungen Stellt Die Elektromobilität Verkehrsunternehmen? Welche Maßnahmen Müssen Ergriffen werden? 2019. Available online: https://www.vbg.de/SharedDocs/Medien-Center/DE/Faltblatt/Branchen/OePNV_und_Bahnen/branchenforum_2019_Vortrag_MSchmitz.pdf?__blob=publicationFile&v=4 (accessed on 1 April 2021).
- Regulation (EU) 2019/631 of the European Parlament and of the Councill of 17 April 2019 setting CO2 Emission Performance Standards for New Passenger Cars and for New Light Commercial Vehicles, and Repealing Regulations (EC) No 443/2009 and (EU) No 510/2011. 2019. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32019R0631&from=EN (accessed on 4 April 2021).
- Regulation (EU) 2017/0293 of the European Parliament and of the Council of Setting Emission Performance Standards for new Passenger Cars and for New Light Commercial Vehicles as part of the Union’s Integrated Approach to Reduce CO2 Emissions from Light-Duty Vehicles; Council of the European Union: Brussels, Belgium, 2019; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CONSIL:ST_5091_2019_EXT_1&from=EN (accessed on 5 April 2021).
- Kraftfahrt-Bundesamt (KBA)Fahrzeugzulassungen (FZ): Bestand an Kraftfahrzeugen nach Umwelt-Merkmalen; Kraftfahrt-Bundesamt: Flensburg, Germany, 2018.
- Verkehr in Kilometern der Deutschen Kraftfahrzeuge: Gesamtfahrleistung und Durchschnittliche Fahrleistung Nach Fahrzeugarten in 2018. Available online: https://www.kba.de/DE/Statistik/Kraftverkehr/VerkehrKilometer/verkehr_in_kilometern_node.html (accessed on 28 January 2019).
- BCG The Boston Consulting Group the Electric Car Tipping Point. 2018. Available online: https://www.bcg.com/de-de/publications/2018/electric-car-tipping-point.aspx (accessed on 1 April 2021).
- Jörg, A.; Balzer, C.; Joe dicke, A.; Schbla, U.; Willbrand, K.; Rommerskirchen, S.; Anders, G.N.; Verkehrsökonom, A.A.M.M.S.; Ehrenteaut, O.; Lisa Krämer, V. PKW-Szenarien bis 2040: Fakten, Trends und Perspektiven für Auto-Mobilität; Pringer Gabler Springer Fachmedien: Hamburg, Germany, 2014. [Google Scholar]
- Hacker, F.; Blank, R. eMobil 2050: Szenarien Zum Möglichen Beitrag Des Elektrischen Verkehrs Zum Langfristigen Klimaschutz. 2014. Available online: https://www.oeko.de/publikationen/p-details/emobil-2050-szenarien-zum-moeglichen-beitrag-des-elektrischen-verkehrs-zum-langfristigen-klimaschut (accessed on 17 April 2021).
- Nationale Plattform Elektromobilität (NPE)Fortschrittsbericht 2018-Markthochlaufphase. 2018. Available online: https://www.acatech.de/publikation/fortschrittsbericht-2018-markthochlaufphase/#:~:text=Mit%20dem%20vorliegenden%20Bericht%20zieht,Entwicklung%20bis%20zum%20Jahr%202025. (accessed on 22 April 2021).
- FGH e.V.Metastudie Forschungsüberblick Netzintegration Elektromobilität. 2018. Available online: https://www.vde.com/resource/blob/1790048/d86a2bb62b27caa2345ff810c4d9c816/e-mobilitaet-downloadstudie-data.pdf (accessed on 3 April 2021).
- Nationale Plattform ElektromobilitätLadeinfrastruktur für Elektrofahrzeuge in Deutschland: Statusbericht und Handlungsempfehlungen 2015. AG 3-Ladeinfrastruktur und Netzintegration. 2015. Available online: https://www.bdew.de/media/documents/20151127_Statusbericht-LIS.pdf (accessed on 1 May 2021).
- Bundesministerium für Verkehr und Digitale InfrastrukturVierter Aufruf zur Antragseinreichung vom 19.08.2019 gemäß der Förderrichtlinie Ladeinfrastruktur für Elektrofahrzeuge in Deutschland des Bundesministeriums für Verkehr und Digitale Infrastruktur vom 13.02.2017. 2019. Available online: https://www.bmvi.de/SharedDocs/DE/Anlage/G/vierter-aufruf-antragseinreichung-foerderrichtlinie-ladeinfrastruktur-e-fahrzeuge.html (accessed on 21 April 2021).
- ETSAP und IEA, Energy Technology Systems Analysis Programme (ETSAP)Contributing to the Kyoto Protocol: Summary of Annex VII (1999–2002). 2002. Available online: https://iea-etsap.org/reports/annex7.html (accessed on 2 April 2021).
- Loulou, R.; Lehtilä, A.; Kanudia, A.; Remme, U.; Goldstein, G. Documentation for the TIMES Model Part II. Energy Technol. Syst. Anal. Programme (ETSAP). 2016. Available online: https://iea-etsap.org/docs/Documentation_for_the_TIMES_Model-Part-II_July-2016.pdf (accessed on 5 April 2021).
- Remme, U. Zukünftige Rolle Erneuerbarer Energien in Deutschland: Sensitivitätsanalysen Mit Einem Linearen Optimierungsmodell. Ph.D. Thesis, University of Stuttgart, Stuttgart, Germany, 2006. [Google Scholar] [CrossRef]
- Fraunhofer-Institut für Bauphysik Entwurf Masterplan 100% Klimaschutz der Landeshauptstadt Stuttgart. 2017. Available online: https://www.stuttgart.de/medien/ibs/Entwurf-Masterplan-100-Klimaschutz.pdf (accessed on 5 April 2021).
- Mallig, N.; Kagerbauer, M.; Vortisch, P. mobiTopp-A Modular Agent-based Travel Demand Modelling Framework. Procedia Comput. Sci. 2013, 19, 854–859. [Google Scholar] [CrossRef] [Green Version]
- Weiss, C.; Heilig, M.; Mallig, N. Assessing the effects of a growing electric vehicle fleet using a microscopic travel demand model. Eur. J. Transp. Infrastruct. Res. EJTIR 2017, 17, 3. [Google Scholar]
- Zimmerman, R.; Murillo-Sánchez, C.; Thomas, R. MATPOWER: Steady-State Operations, Planning and Analysis Tools for Power Systems Research and Education. IEEE Trans. Power Syst. 2011, 26, 12–19. [Google Scholar] [CrossRef] [Green Version]
- Infas Institut für Angewandte Sozialwissenschaft GmbH, Deutsches Zentrum für Luft-Und Raumfahrt e.V. Mobilität in Deutschland 2008: Ergebnisbericht. Struktur-Aufkommen-Emissionen-Trends, Bonn und Berlin. 2010. Available online: http://www.mobilitaet-in-deutschland.de/mid2008-publikationen.html (accessed on 4 February 2019).
- Liebhart, J. Simulation Akteursspezifischer, Zeitlich Hochaufgelöster Mobilitätsganglinien zur Analyse des Einflusses von Elektromobilität auf Energiesystemmodelle; Institut für Energiewirtschaft und Rationelle Energieanwendung Universität Stuttgart: Stuttgart, Germany, 2017. [Google Scholar]
Vehicle Categories | 2020 | 2025 | 2030 |
---|---|---|---|
passenger car | 100% (95 g/km) | −15% (81 g/km) | −37.5% (59 g/km) |
light-duty vehicles | 100% (147 g/km) | −15% (125 g/km) | −31% (101 g/km) |
heavy-duty vehicles | - | −15% | −30% |
Cost Items | Smart Charging Box | AC Charging Station | DC Charging Station |
---|---|---|---|
charging station | 1 | 2 | 1 |
typical charging power [kW] | 3.7 | 15.7 | 50 |
assumption service life of charging station [a] | 10 | 10 | 10 |
assumption service life grid connection [a] | 40 | 40 | 40 |
investment costs station [€] | 1700 | 5500 | 20,000 |
investment costs [€/kW] | 459 | 350 | 400 |
grid connection costs [€] | 0 | 2000 | 5000 |
grid connection costs [€/kW] | 0 | 127 | 100 |
current costs [€/a] | 500 | 750 | 1500 |
current costs [€/(a·kW)] | 135 | 48 | 30 |
lifetime weighted investment costs total [€/kW] | 459 | 381 | 425 |
Power | Distribution | Number of Charging Stations | Investment, € |
---|---|---|---|
3.7 kW | 2% | 738 | 1.3 million |
11–22 kW | 72% | 26,585 | 79.8 million |
≥50 kW | 26% | 9600 | 204.0 million |
total | - | - | 285.0 million |
Technical Characteristics | Small (A/B Segment) | Medium (C/D Segment) | Large Cars (E Segment) |
---|---|---|---|
Distribution of BEV to segments | 20% | 55% | 25% |
Range [km] | 250 | 350 | 550 |
Consumption [kWh/100 km] | 12 | 17 | 23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wörner, R.; Morozova, I.; Cao, D.; Schneider, D.; Neuburger, M.; Mayer, D.; Körner, C.; Kagerbauer, M.; Kostorz, N.; Blesl, M.; et al. Analysis and Prediction of Electromobility and Energy Supply by the Example of Stuttgart. World Electr. Veh. J. 2021, 12, 78. https://doi.org/10.3390/wevj12020078
Wörner R, Morozova I, Cao D, Schneider D, Neuburger M, Mayer D, Körner C, Kagerbauer M, Kostorz N, Blesl M, et al. Analysis and Prediction of Electromobility and Energy Supply by the Example of Stuttgart. World Electric Vehicle Journal. 2021; 12(2):78. https://doi.org/10.3390/wevj12020078
Chicago/Turabian StyleWörner, Ralf, Inna Morozova, Danting Cao, Daniela Schneider, Martin Neuburger, Daniel Mayer, Christian Körner, Martin Kagerbauer, Nadine Kostorz, Markus Blesl, and et al. 2021. "Analysis and Prediction of Electromobility and Energy Supply by the Example of Stuttgart" World Electric Vehicle Journal 12, no. 2: 78. https://doi.org/10.3390/wevj12020078
APA StyleWörner, R., Morozova, I., Cao, D., Schneider, D., Neuburger, M., Mayer, D., Körner, C., Kagerbauer, M., Kostorz, N., Blesl, M., Jochem, P., & Märtz, A. (2021). Analysis and Prediction of Electromobility and Energy Supply by the Example of Stuttgart. World Electric Vehicle Journal, 12(2), 78. https://doi.org/10.3390/wevj12020078