An Improved Gaussian Process Regression Based Aging Prediction Method for Lithium-Ion Battery
Abstract
:1. Introduction
2. Experiments
2.1. Aging Protocols
- (1)
- Activation
- (2)
- Adjustment
- (3)
- Battery Partial-Cycle Test
- (4)
- Battery-Capacity Test
2.2. Experimental Results
3. Methodology
3.1. Exponential Equation
3.2. Gaussian-Process Regression
3.3. Improved Gaussian-Process Regression
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cabrera-Castillo, E.; Niedermeier, F.; Jossen, A. Calculation of the State of Safety (Sos) for Lithium Ion Batteries. J. Power Sources 2016, 324, 509–520. [Google Scholar] [CrossRef] [Green Version]
- Hannan, M.A.; Hoque, M.D.M.; Hussain, A.; Yusof, Y.; Ker, A.P.J. State-of-the-Art and Energy Management System of Lithium-Ion Batteries in Electric Vehicle Applications:Issues and Recommendations. IEEE Access 2018, 6, 19362–19378. [Google Scholar] [CrossRef]
- Kouchachvili, L.; Yaïci, W.; Entchev, E. Hybrid Battery/Supercapacitor Energy Storage System for the Electric Vehicles. J. Power Sources 2018, 374, 237–248. [Google Scholar] [CrossRef]
- Yang, R.; Yu, G.; Wu, Z.; Lu, T.; Hu, T.; Liu, F.; Zhao, H. Aging of Lithium-Ion Battery Separators during Battery Cycling. J. Energy Storage 2023, 63, 107107. [Google Scholar] [CrossRef]
- Song, K.; Hu, D.; Tong, Y.; Yue, X. Remaining Life Prediction of Lithium-Ion Batteries Based on Health Management: A Review. J. Energy Storage 2023, 57, 17. [Google Scholar] [CrossRef]
- Wang, Y.; Li, K.; Peng, P.; Chen, Z. Health Diagnosis for Lithium-Ion Battery by Combining Partial Incremental Capacity and Deep Belief Network during Insufficient Discharge Profile. IEEE Trans. Ind. Electron. 2022, 70, 11242–11250. [Google Scholar] [CrossRef]
- Li, K.; Wang, Y.; Chen, Z. A Comparative Study of Battery State-of-Health Estimation based on Empirical Mode Decomposition and Neural Network. J. Energy Storage 2022, 54, 105333. [Google Scholar] [CrossRef]
- Wang, Y.; Li, K.; Chen, Z. Battery Full Life Cycle Management and Health Prognosis based on Cloud Service and Broad Learning. IEEE/CAA J. Autom. Sin. 2022, 9, 1540–1542. [Google Scholar] [CrossRef]
- Han, X.; Feng, X.; Ouyang, M.; Lu, L.; Li, J.; Zheng, Y.; Li, Z. A Comparative Study of Charging Voltage Curve Analysis and State of Health Estimation of Lithium-Ion Batteries in Electric Vehicle. Automot. Innov. 2019, 2, 263–275. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, A.; Foster, J.M.; Offer, G.; Marinescu, M. A Shrinking-Core Model for the Degradation of High-Nickel Cathodes (Nmc811) in Li-Ion Batteries: Passivation Layer Growth and Oxygen Evolution. J. Electrochem. Soc. 2021, 168, 020509. [Google Scholar] [CrossRef]
- Birkl, C.R.; Roberts, M.R.; McTurk, E.; Bruce, P.G.; Howey, D.A. Degradation Diagnostics for Lithium Ion Cells. J. Power Sources 2017, 341, 373–386. [Google Scholar] [CrossRef]
- Han, X.; Lu, L.; Zheng, Y.; Feng, X.; Li, Z.; Li, J.; Ouyang, M. A Review on the Key Issues of the Lithium Ion Battery Degradation among the Whole Life Cycle. eTransportation 2019, 1, 100005. [Google Scholar] [CrossRef]
- Collath, N.; Tepe, B.; Englberger, S.; Jossen, A.; Hesse, H. Aging Aware Operation of Lithium-Ion Battery Energy Storage Systems: A Review. J. Energy Storage 2022, 55, 20. [Google Scholar] [CrossRef]
- Rodrigues, M.-T.F.; Sayed, F.N.; Gullapalli, H.; Ajayan, P.M. High-Temperature Solid Electrolyte Interphases (Sei) in Graphite Electrodes. J. Power Sources 2018, 381, 107–115. [Google Scholar] [CrossRef]
- Qu, W.; Shen, W.; Liu, J. A Joint Grey Relational Analysis Based State of Health Estimation for Lithium Ion Batteries Considering Temperature Effects. J. Energy Storage 2021, 42, 103102. [Google Scholar] [CrossRef]
- Gao, Y.; Jiang, J.; Zhang, C.; Zhang, W.; Ma, Z.; Jiang, Y. Lithium-Ion Battery Aging Mechanisms and Life Model under Different Charging Stresses. J. Power Sources 2017, 356, 103–114. [Google Scholar] [CrossRef]
- Wang, A.; Kadam, S.; Li, H.; Shi, S.; Qi, Y. Review on Modeling of the Anode Solid Electrolyte Interphase (Sei) for Lithium-Ion Batteries. NPJ Comput. Mater. 2018, 4, 15. [Google Scholar] [CrossRef] [Green Version]
- Schimpe, M.; von Kuepach, M.E.; Naumann, M.; Hesse, H.C.; Smith, K.; Jossen, A. Comprehensive Modeling of Temperature-Dependent Degradation Mechanisms in Lithium Iron Phosphate Batteries. J. Electrochem. Soc. 2018, 165, A181–A193. [Google Scholar] [CrossRef] [Green Version]
- Bjorklund, E.; Wikner, E.; Younesi, R.; Brandell, D.; Edstrom, K. Influence of State-of-Charge in Commercial LiNi0.33Mn0.33Co0.33O2/LiMn2O4-Graphite Cells Analyzed by Synchrotron-Based Photoelectron Spectroscopy. J. Energy Storage 2018, 15, 172–180. [Google Scholar] [CrossRef]
- Benavente-Araoz, F.; Varini, M.; Lundblad, A.; Cabrera, S.; Lindbergh, G. Effect of Partial Cycling of Nca/Graphite Cylindrical Cells in Different Soc Intervals. J. Electrochem. Soc. 2020, 167, 9. [Google Scholar] [CrossRef]
- Han, X.; Ouyang, M.; Lu, L.; Li, J.; Zheng, Y.; Li, Z. A Comparative Study of Commercial Lithium Ion Battery Cycle Life in Electrical Vehicle: Aging Mechanism Identification. J. Power Sources 2014, 251, 38–54. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, L.; Hinds, G.; Lyu, C.; Zheng, J.; Li, J. Multi-Objective Optimization of Lithium-Ion Battery Model Using Genetic Algorithm Approach. J. Power Sources 2014, 270, 367–378. [Google Scholar] [CrossRef]
- Sankarasubramanian, S.; Krishnamurthy, B. A Capacity Fade Model for Lithium-Ion Batteries Including Diffusion and Kinetics. Electrochim. Acta 2012, 70, 248–254. [Google Scholar] [CrossRef]
- Yang, D.; Zhang, X.; Pan, R.; Wang, Y.; Chen, Z. A Novel Gaussian Process Regression Model for State-of-Health Estimation of Lithium-Ion Battery Using Charging Curve. J. Power Sources 2018, 384, 387–395. [Google Scholar] [CrossRef]
Item | Nominal Capacity | Nominal Voltage | Standard Charging Current | Standard Discharging Current | Maximum Charging Current | Maximum Discharging Current |
---|---|---|---|---|---|---|
Specification | 1.5 Ah | 3.65 V | 750 mA (0.5 C) | 300 mA (0.2 C) | 6 A (4 C) | 30 A (20 C) |
SOC Range | Start Point | DOD (%) | Discharge Capacity (Ah) | Discharge Time (min) |
---|---|---|---|---|
15~40% | 40% | 60 | 0.9 | 180 |
40~65% | 65% | 35 | 0.525 | 105 |
65~90% | 90% | 10 | 0.15 | 30 |
15~90% | 90% | 10 | 0.15 | 30 |
15–40% | Role | 40–65% | Role | 65–90% | Role | 15–90% | Role | |
---|---|---|---|---|---|---|---|---|
2 C | 2.057 | √ | 3.147 | ? | 4.372 | √ | 7.086 | √ |
6 C | 2.108 | √ | 3.483 | √ | 5.494 | ? | 8.753 | √ |
10 C | 2.12 | √ | 4.302 | ? | 6.585 | √ | 10.149 | √ |
Cycle | 15~40 @2 C | 15~40 @6 C | 15~40 @10 C | 40~65 @2 C | 40~65 @6 C | 40~65 @10 C | 65~90 @2 C | 65~90 @6 C | 65~90 @10 C | Cycle | 15~90 @2 C | 15~90 @6 C | 15~90 @10 C |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
100 | 0.51 | 0.19 | 0.44 | 0.52 | 0.30 | 0.48 | 0.66 | 1.08 | 1.42 | 50 | 1.22 | 2.16 | 3.20 |
200 | 0.73 | 0.43 | 0.58 | 0.72 | 0.67 | 0.81 | 1.18 | 1.64 | 2.01 | 100 | 2.03 | 2.94 | 3.54 |
300 | 0.63 | 0.61 | 0.68 | 0.92 | 1.05 | 2.01 | 1.44 | 2.16 | 2.79 | 150 | 2.98 | 4.35 | 4.38 |
400 | 0.83 | 0.85 | 0.85 | 1.19 | 1.21 | 2.13 | 1.86 | 2.29 | 3.35 | 200 | 3.33 | 5.00 | 5.17 |
500 | 1.00 | 0.99 | 0.95 | 1.34 | 1.45 | 2.18 | 1.84 | 2.95 | 3.72 | 250 | 3.86 | 5.69 | 6.10 |
600 | 1.03 | 1.05 | 1.06 | 1.53 | 1.98 | 2.57 | 2.27 | 3.06 | 4.12 | 300 | 4.29 | 6.28 | 6.95 |
700 | 1.34 | 1.11 | 1.21 | 1.83 | 2.06 | 2.85 | 2.39 | 3.20 | 4.54 | 350 | 4.74 | 6.86 | 7.48 |
800 | 1.44 | 1.23 | 1.30 | 2.06 | 2.28 | 2.91 | 2.53 | 3.44 | 4.84 | 400 | 4.95 | 7.22 | 8.49 |
900 | 1.56 | 1.40 | 1.41 | 2.22 | 2.37 | 3.01 | 2.95 | 3.52 | 4.60 | 450 | 4.98 | 8.14 | 9.00 |
1000 | 1.58 | 1.53 | 1.58 | 2.35 | 2.55 | 3.23 | 3.23 | 4.01 | 4.98 | 500 | 7.09 | 8.75 | 11.33 |
1100 | 1.63 | 1.65 | 1.62 | 2.48 | 2.67 | 3.38 | 3.52 | 4.37 | 5.24 | 550 | 6.93 | 9.62 | 12.89 |
1200 | 1.72 | 1.76 | 1.80 | 2.59 | 2.81 | 3.57 | 3.82 | 4.69 | 5.59 | 600 | 6.73 | 10.68 | 13.76 |
1300 | 1.84 | 1.90 | 1.85 | 2.78 | 3.03 | 3.77 | 4.06 | 5.03 | 6.03 | 650 | 6.99 | 10.95 | 18.75 |
1400 | 1.93 | 2.05 | 2.02 | 2.97 | 3.28 | 4.01 | 4.26 | 5.28 | 6.33 | 700 | 7.51 | 11.30 | |
1500 | 2.06 | 2.11 | 2.12 | 3.15 | 3.48 | 4.30 | 4.37 | 5.49 | 6.60 |
2 C | 6 C | 10 C | ||||
---|---|---|---|---|---|---|
A | b | A | b | A | b | |
15~40% | 7.476 | 0.62 | 7.06 | 0.65 | 6.703 | 0.66 |
40~65% | 11.39 | 0.67 | ||||
65~90% | 15.14 | 0.64 | 24.11 | 0.64 | ||
15~90% | 21.34 | 0.65 | 30.32 | 0.66 | 35.22 | 0.65 |
Parameter | k1 | k2 | k3 | k4 | k5 |
---|---|---|---|---|---|
Value | 10.12 | 17.71 | −12.97 | 23.27 | 24.27 |
Kernel | SE | RQ | Matern | LIN | SE + LIN | RQ + LIN | Matern + LIN |
---|---|---|---|---|---|---|---|
RMSE (10−4) | 2.3423 | 1.7526 | 1.5954 | 2.4156 | 1.8215 | 1.7235 | 1.2312 |
40~65%@2 C (Cell 1) | 40~65%@10 C (Cell 2) | 65~90%@6 C (Cell 3) | Average | |||||
---|---|---|---|---|---|---|---|---|
RMSE | R2 | RMSE | R2 | RMSE | R2 | RMSE | R2 | |
Exponential equation | 0.09% | 0.9895 | 0.22% | 0.9650 | 0.17% | 0.9858 | 0.16% | 0.9801 |
GPR | 0.15% | 0.9698 | 0.20% | 0.9715 | 0.17% | 0.9862 | 0.17% | 0.9758 |
Improved GPR | 0.03% | 0.9985 | 0.14% | 0.9851 | 0.08% | 0.9964 | 0.08% | 0.9933 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, W.; Deng, H.; Pang, Y.; Li, Z. An Improved Gaussian Process Regression Based Aging Prediction Method for Lithium-Ion Battery. World Electr. Veh. J. 2023, 14, 153. https://doi.org/10.3390/wevj14060153
Qu W, Deng H, Pang Y, Li Z. An Improved Gaussian Process Regression Based Aging Prediction Method for Lithium-Ion Battery. World Electric Vehicle Journal. 2023; 14(6):153. https://doi.org/10.3390/wevj14060153
Chicago/Turabian StyleQu, Weiwei, Hu Deng, Yi Pang, and Zhanfeng Li. 2023. "An Improved Gaussian Process Regression Based Aging Prediction Method for Lithium-Ion Battery" World Electric Vehicle Journal 14, no. 6: 153. https://doi.org/10.3390/wevj14060153
APA StyleQu, W., Deng, H., Pang, Y., & Li, Z. (2023). An Improved Gaussian Process Regression Based Aging Prediction Method for Lithium-Ion Battery. World Electric Vehicle Journal, 14(6), 153. https://doi.org/10.3390/wevj14060153